1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NaiveBayesUpdateable.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes; |
---|
24 | |
---|
25 | import weka.classifiers.UpdateableClassifier; |
---|
26 | import weka.core.RevisionUtils; |
---|
27 | import weka.core.TechnicalInformation; |
---|
28 | |
---|
29 | /** |
---|
30 | <!-- globalinfo-start --> |
---|
31 | * Class for a Naive Bayes classifier using estimator classes. This is the updateable version of NaiveBayes.<br/> |
---|
32 | * This classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.<br/> |
---|
33 | * <br/> |
---|
34 | * For more information on Naive Bayes classifiers, see<br/> |
---|
35 | * <br/> |
---|
36 | * George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995. |
---|
37 | * <p/> |
---|
38 | <!-- globalinfo-end --> |
---|
39 | * |
---|
40 | <!-- technical-bibtex-start --> |
---|
41 | * BibTeX: |
---|
42 | * <pre> |
---|
43 | * @inproceedings{John1995, |
---|
44 | * address = {San Mateo}, |
---|
45 | * author = {George H. John and Pat Langley}, |
---|
46 | * booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence}, |
---|
47 | * pages = {338-345}, |
---|
48 | * publisher = {Morgan Kaufmann}, |
---|
49 | * title = {Estimating Continuous Distributions in Bayesian Classifiers}, |
---|
50 | * year = {1995} |
---|
51 | * } |
---|
52 | * </pre> |
---|
53 | * <p/> |
---|
54 | <!-- technical-bibtex-end --> |
---|
55 | * |
---|
56 | <!-- options-start --> |
---|
57 | * Valid options are: <p/> |
---|
58 | * |
---|
59 | * <pre> -K |
---|
60 | * Use kernel density estimator rather than normal |
---|
61 | * distribution for numeric attributes</pre> |
---|
62 | * |
---|
63 | * <pre> -D |
---|
64 | * Use supervised discretization to process numeric attributes |
---|
65 | * </pre> |
---|
66 | * |
---|
67 | * <pre> -O |
---|
68 | * Display model in old format (good when there are many classes) |
---|
69 | * </pre> |
---|
70 | * |
---|
71 | <!-- options-end --> |
---|
72 | * |
---|
73 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
74 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
75 | * @version $Revision: 1.11 $ |
---|
76 | */ |
---|
77 | public class NaiveBayesUpdateable extends NaiveBayes |
---|
78 | implements UpdateableClassifier { |
---|
79 | |
---|
80 | /** for serialization */ |
---|
81 | static final long serialVersionUID = -5354015843807192221L; |
---|
82 | |
---|
83 | /** |
---|
84 | * Returns a string describing this classifier |
---|
85 | * @return a description of the classifier suitable for |
---|
86 | * displaying in the explorer/experimenter gui |
---|
87 | */ |
---|
88 | public String globalInfo() { |
---|
89 | return "Class for a Naive Bayes classifier using estimator classes. This is the " |
---|
90 | +"updateable version of NaiveBayes.\n" |
---|
91 | +"This classifier will use a default precision of 0.1 for numeric attributes " |
---|
92 | +"when buildClassifier is called with zero training instances.\n\n" |
---|
93 | +"For more information on Naive Bayes classifiers, see\n\n" |
---|
94 | + getTechnicalInformation().toString(); |
---|
95 | } |
---|
96 | |
---|
97 | /** |
---|
98 | * Returns an instance of a TechnicalInformation object, containing |
---|
99 | * detailed information about the technical background of this class, |
---|
100 | * e.g., paper reference or book this class is based on. |
---|
101 | * |
---|
102 | * @return the technical information about this class |
---|
103 | */ |
---|
104 | public TechnicalInformation getTechnicalInformation() { |
---|
105 | return super.getTechnicalInformation(); |
---|
106 | } |
---|
107 | |
---|
108 | /** |
---|
109 | * Set whether supervised discretization is to be used. |
---|
110 | * |
---|
111 | * @param newblah true if supervised discretization is to be used. |
---|
112 | */ |
---|
113 | public void setUseSupervisedDiscretization(boolean newblah) { |
---|
114 | |
---|
115 | if (newblah) { |
---|
116 | throw new IllegalArgumentException("Can't use discretization " + |
---|
117 | "in NaiveBayesUpdateable!"); |
---|
118 | } |
---|
119 | m_UseDiscretization = false; |
---|
120 | } |
---|
121 | |
---|
122 | /** |
---|
123 | * Returns the revision string. |
---|
124 | * |
---|
125 | * @return the revision |
---|
126 | */ |
---|
127 | public String getRevision() { |
---|
128 | return RevisionUtils.extract("$Revision: 1.11 $"); |
---|
129 | } |
---|
130 | |
---|
131 | /** |
---|
132 | * Main method for testing this class. |
---|
133 | * |
---|
134 | * @param argv the options |
---|
135 | */ |
---|
136 | public static void main(String [] argv) { |
---|
137 | runClassifier(new NaiveBayesUpdateable(), argv); |
---|
138 | } |
---|
139 | } |
---|
140 | |
---|