source: src/main/java/weka/classifiers/bayes/NaiveBayesMultinomialUpdateable.java @ 11

Last change on this file since 11 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 7.9 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    NaiveBayesMultinomialUpdateable.java
19 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
20 *    Copyright (C) 2007 Jiang Su (incremental version)
21 */
22
23package weka.classifiers.bayes;
24
25import weka.classifiers.UpdateableClassifier;
26import weka.core.Instance;
27import weka.core.Instances;
28import weka.core.RevisionUtils;
29import weka.core.Utils;
30
31/**
32 <!-- globalinfo-start -->
33 * Class for building and using a multinomial Naive Bayes classifier. For more information see,<br/>
34 * <br/>
35 * Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.<br/>
36 * <br/>
37 * The core equation for this classifier:<br/>
38 * <br/>
39 * P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)<br/>
40 * <br/>
41 * where Ci is class i and D is a document.<br/>
42 * <br/>
43 * Incremental version of the algorithm.
44 * <p/>
45 <!-- globalinfo-end -->
46 *
47 <!-- technical-bibtex-start -->
48 * BibTeX:
49 * <pre>
50 * &#64;inproceedings{Mccallum1998,
51 *    author = {Andrew Mccallum and Kamal Nigam},
52 *    booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'},
53 *    title = {A Comparison of Event Models for Naive Bayes Text Classification},
54 *    year = {1998}
55 * }
56 * </pre>
57 * <p/>
58 <!-- technical-bibtex-end -->
59 *
60 <!-- options-start -->
61 * Valid options are: <p/>
62 *
63 * <pre> -D
64 *  If set, classifier is run in debug mode and
65 *  may output additional info to the console</pre>
66 *
67 <!-- options-end -->
68 *
69 * @author Andrew Golightly (acg4@cs.waikato.ac.nz)
70 * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz)
71 * @author Jiang Su
72 * @version $Revision: 1.3 $
73 */
74public class NaiveBayesMultinomialUpdateable
75  extends NaiveBayesMultinomial
76  implements UpdateableClassifier {
77
78  /** for serialization */
79  private static final long serialVersionUID = -7204398796974263186L;
80 
81  /** the word count per class */
82  protected double[] m_wordsPerClass;
83 
84  /**
85   * Returns a string describing this classifier
86   *
87   * @return            a description of the classifier suitable for
88   *                    displaying in the explorer/experimenter gui
89   */
90  public String globalInfo() {
91    return
92        super.globalInfo() + "\n\n"
93      + "Incremental version of the algorithm.";
94  }
95
96  /**
97   * Generates the classifier.
98   *
99   * @param instances   set of instances serving as training data
100   * @throws Exception  if the classifier has not been generated successfully
101   */
102  public void buildClassifier(Instances instances) throws Exception {
103    // can classifier handle the data?
104    getCapabilities().testWithFail(instances);
105
106    // remove instances with missing class
107    instances = new Instances(instances);
108    instances.deleteWithMissingClass();
109
110    m_headerInfo = new Instances(instances, 0);
111    m_numClasses = instances.numClasses();
112    m_numAttributes = instances.numAttributes();
113    m_probOfWordGivenClass = new double[m_numClasses][];
114    m_wordsPerClass = new double[m_numClasses];
115    m_probOfClass = new double[m_numClasses];
116
117    // initialising the matrix of word counts
118    // NOTE: Laplace estimator introduced in case a word that does not
119    // appear for a class in the training set does so for the test set
120    double laplace = 1;
121    for (int c = 0; c < m_numClasses; c++) {
122      m_probOfWordGivenClass[c] = new double[m_numAttributes];
123      m_probOfClass[c]   = laplace;
124      m_wordsPerClass[c] = laplace * m_numAttributes;
125      for(int att = 0; att<m_numAttributes; att++) {
126        m_probOfWordGivenClass[c][att] = laplace;
127      }
128    }
129
130    for (int i = 0; i < instances.numInstances(); i++)
131      updateClassifier(instances.instance(i));
132  }
133
134  /**
135   * Updates the classifier with the given instance.
136   *
137   * @param instance    the new training instance to include in the model
138   * @throws Exception  if the instance could not be incorporated in
139   *                    the model.
140   */
141  public void updateClassifier(Instance instance) throws Exception {
142    int classIndex = (int) instance.value(instance.classIndex());
143    m_probOfClass[classIndex] += instance.weight();
144
145    for (int a = 0; a < instance.numValues(); a++) {
146      if (instance.index(a) == instance.classIndex() ||
147          instance.isMissing(a))
148        continue;
149
150      double numOccurences = instance.valueSparse(a) * instance.weight();
151      if (numOccurences < 0)
152        throw new Exception(
153            "Numeric attribute values must all be greater or equal to zero.");
154      m_wordsPerClass[classIndex] += numOccurences;
155      m_probOfWordGivenClass[classIndex][instance.index(a)] += numOccurences;
156    }
157  }
158
159  /**
160   * Calculates the class membership probabilities for the given test
161   * instance.
162   *
163   * @param instance    the instance to be classified
164   * @return            predicted class probability distribution
165   * @throws Exception  if there is a problem generating the prediction
166   */
167  public double[] distributionForInstance(Instance instance) throws Exception {
168    double[] probOfClassGivenDoc = new double[m_numClasses];
169
170    // calculate the array of log(Pr[D|C])
171    double[] logDocGivenClass = new double[m_numClasses];
172    for (int c = 0; c < m_numClasses; c++) {
173      logDocGivenClass[c] += Math.log(m_probOfClass[c]);
174      int allWords = 0;
175      for (int i = 0; i < instance.numValues(); i++) {
176        if (instance.index(i) == instance.classIndex())
177          continue;
178        double frequencies = instance.valueSparse(i);
179        allWords += frequencies;
180        logDocGivenClass[c] += frequencies *
181        Math.log(m_probOfWordGivenClass[c][instance.index(i)]);
182      }
183      logDocGivenClass[c] -= allWords * Math.log(m_wordsPerClass[c]);
184    }
185
186    double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)];
187    for (int i = 0; i < m_numClasses; i++)
188      probOfClassGivenDoc[i] = Math.exp(logDocGivenClass[i] - max);
189
190    Utils.normalize(probOfClassGivenDoc);
191
192    return probOfClassGivenDoc;
193  }
194
195  /**
196   * Returns a string representation of the classifier.
197   *
198   * @return            a string representation of the classifier
199   */
200  public String toString() {
201    StringBuffer result = new StringBuffer();
202
203    result.append("The independent probability of a class\n");
204    result.append("--------------------------------------\n");
205
206    for (int c = 0; c < m_numClasses; c++)
207      result.append(m_headerInfo.classAttribute().value(c)).append("\t").
208      append(Double.toString(m_probOfClass[c])).append("\n");
209
210    result.append("\nThe probability of a word given the class\n");
211    result.append("-----------------------------------------\n\t");
212
213    for (int c = 0; c < m_numClasses; c++)
214      result.append(m_headerInfo.classAttribute().value(c)).append("\t");
215
216    result.append("\n");
217
218    for (int w = 0; w < m_numAttributes; w++) {
219      result.append(m_headerInfo.attribute(w).name()).append("\t");
220      for (int c = 0; c < m_numClasses; c++)
221        result.append(
222            Double.toString(Math.exp(m_probOfWordGivenClass[c][w]))).append("\t");
223      result.append("\n");
224    }
225
226    return result.toString();
227  }
228 
229  /**
230   * Returns the revision string.
231   *
232   * @return            the revision
233   */
234  public String getRevision() {
235    return RevisionUtils.extract("$Revision: 1.3 $");
236  }
237
238  /**
239   * Main method for testing this class.
240   *
241   * @param args        the options
242   */
243  public static void main(String[] args) {
244    runClassifier(new NaiveBayesMultinomialUpdateable(), args);
245  }
246}
Note: See TracBrowser for help on using the repository browser.