1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NaiveBayesMultinomialUpdateable.java |
---|
19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
20 | * Copyright (C) 2007 Jiang Su (incremental version) |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes; |
---|
24 | |
---|
25 | import weka.classifiers.UpdateableClassifier; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.RevisionUtils; |
---|
29 | import weka.core.Utils; |
---|
30 | |
---|
31 | /** |
---|
32 | <!-- globalinfo-start --> |
---|
33 | * Class for building and using a multinomial Naive Bayes classifier. For more information see,<br/> |
---|
34 | * <br/> |
---|
35 | * Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.<br/> |
---|
36 | * <br/> |
---|
37 | * The core equation for this classifier:<br/> |
---|
38 | * <br/> |
---|
39 | * P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)<br/> |
---|
40 | * <br/> |
---|
41 | * where Ci is class i and D is a document.<br/> |
---|
42 | * <br/> |
---|
43 | * Incremental version of the algorithm. |
---|
44 | * <p/> |
---|
45 | <!-- globalinfo-end --> |
---|
46 | * |
---|
47 | <!-- technical-bibtex-start --> |
---|
48 | * BibTeX: |
---|
49 | * <pre> |
---|
50 | * @inproceedings{Mccallum1998, |
---|
51 | * author = {Andrew Mccallum and Kamal Nigam}, |
---|
52 | * booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'}, |
---|
53 | * title = {A Comparison of Event Models for Naive Bayes Text Classification}, |
---|
54 | * year = {1998} |
---|
55 | * } |
---|
56 | * </pre> |
---|
57 | * <p/> |
---|
58 | <!-- technical-bibtex-end --> |
---|
59 | * |
---|
60 | <!-- options-start --> |
---|
61 | * Valid options are: <p/> |
---|
62 | * |
---|
63 | * <pre> -D |
---|
64 | * If set, classifier is run in debug mode and |
---|
65 | * may output additional info to the console</pre> |
---|
66 | * |
---|
67 | <!-- options-end --> |
---|
68 | * |
---|
69 | * @author Andrew Golightly (acg4@cs.waikato.ac.nz) |
---|
70 | * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) |
---|
71 | * @author Jiang Su |
---|
72 | * @version $Revision: 1.3 $ |
---|
73 | */ |
---|
74 | public class NaiveBayesMultinomialUpdateable |
---|
75 | extends NaiveBayesMultinomial |
---|
76 | implements UpdateableClassifier { |
---|
77 | |
---|
78 | /** for serialization */ |
---|
79 | private static final long serialVersionUID = -7204398796974263186L; |
---|
80 | |
---|
81 | /** the word count per class */ |
---|
82 | protected double[] m_wordsPerClass; |
---|
83 | |
---|
84 | /** |
---|
85 | * Returns a string describing this classifier |
---|
86 | * |
---|
87 | * @return a description of the classifier suitable for |
---|
88 | * displaying in the explorer/experimenter gui |
---|
89 | */ |
---|
90 | public String globalInfo() { |
---|
91 | return |
---|
92 | super.globalInfo() + "\n\n" |
---|
93 | + "Incremental version of the algorithm."; |
---|
94 | } |
---|
95 | |
---|
96 | /** |
---|
97 | * Generates the classifier. |
---|
98 | * |
---|
99 | * @param instances set of instances serving as training data |
---|
100 | * @throws Exception if the classifier has not been generated successfully |
---|
101 | */ |
---|
102 | public void buildClassifier(Instances instances) throws Exception { |
---|
103 | // can classifier handle the data? |
---|
104 | getCapabilities().testWithFail(instances); |
---|
105 | |
---|
106 | // remove instances with missing class |
---|
107 | instances = new Instances(instances); |
---|
108 | instances.deleteWithMissingClass(); |
---|
109 | |
---|
110 | m_headerInfo = new Instances(instances, 0); |
---|
111 | m_numClasses = instances.numClasses(); |
---|
112 | m_numAttributes = instances.numAttributes(); |
---|
113 | m_probOfWordGivenClass = new double[m_numClasses][]; |
---|
114 | m_wordsPerClass = new double[m_numClasses]; |
---|
115 | m_probOfClass = new double[m_numClasses]; |
---|
116 | |
---|
117 | // initialising the matrix of word counts |
---|
118 | // NOTE: Laplace estimator introduced in case a word that does not |
---|
119 | // appear for a class in the training set does so for the test set |
---|
120 | double laplace = 1; |
---|
121 | for (int c = 0; c < m_numClasses; c++) { |
---|
122 | m_probOfWordGivenClass[c] = new double[m_numAttributes]; |
---|
123 | m_probOfClass[c] = laplace; |
---|
124 | m_wordsPerClass[c] = laplace * m_numAttributes; |
---|
125 | for(int att = 0; att<m_numAttributes; att++) { |
---|
126 | m_probOfWordGivenClass[c][att] = laplace; |
---|
127 | } |
---|
128 | } |
---|
129 | |
---|
130 | for (int i = 0; i < instances.numInstances(); i++) |
---|
131 | updateClassifier(instances.instance(i)); |
---|
132 | } |
---|
133 | |
---|
134 | /** |
---|
135 | * Updates the classifier with the given instance. |
---|
136 | * |
---|
137 | * @param instance the new training instance to include in the model |
---|
138 | * @throws Exception if the instance could not be incorporated in |
---|
139 | * the model. |
---|
140 | */ |
---|
141 | public void updateClassifier(Instance instance) throws Exception { |
---|
142 | int classIndex = (int) instance.value(instance.classIndex()); |
---|
143 | m_probOfClass[classIndex] += instance.weight(); |
---|
144 | |
---|
145 | for (int a = 0; a < instance.numValues(); a++) { |
---|
146 | if (instance.index(a) == instance.classIndex() || |
---|
147 | instance.isMissing(a)) |
---|
148 | continue; |
---|
149 | |
---|
150 | double numOccurences = instance.valueSparse(a) * instance.weight(); |
---|
151 | if (numOccurences < 0) |
---|
152 | throw new Exception( |
---|
153 | "Numeric attribute values must all be greater or equal to zero."); |
---|
154 | m_wordsPerClass[classIndex] += numOccurences; |
---|
155 | m_probOfWordGivenClass[classIndex][instance.index(a)] += numOccurences; |
---|
156 | } |
---|
157 | } |
---|
158 | |
---|
159 | /** |
---|
160 | * Calculates the class membership probabilities for the given test |
---|
161 | * instance. |
---|
162 | * |
---|
163 | * @param instance the instance to be classified |
---|
164 | * @return predicted class probability distribution |
---|
165 | * @throws Exception if there is a problem generating the prediction |
---|
166 | */ |
---|
167 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
168 | double[] probOfClassGivenDoc = new double[m_numClasses]; |
---|
169 | |
---|
170 | // calculate the array of log(Pr[D|C]) |
---|
171 | double[] logDocGivenClass = new double[m_numClasses]; |
---|
172 | for (int c = 0; c < m_numClasses; c++) { |
---|
173 | logDocGivenClass[c] += Math.log(m_probOfClass[c]); |
---|
174 | int allWords = 0; |
---|
175 | for (int i = 0; i < instance.numValues(); i++) { |
---|
176 | if (instance.index(i) == instance.classIndex()) |
---|
177 | continue; |
---|
178 | double frequencies = instance.valueSparse(i); |
---|
179 | allWords += frequencies; |
---|
180 | logDocGivenClass[c] += frequencies * |
---|
181 | Math.log(m_probOfWordGivenClass[c][instance.index(i)]); |
---|
182 | } |
---|
183 | logDocGivenClass[c] -= allWords * Math.log(m_wordsPerClass[c]); |
---|
184 | } |
---|
185 | |
---|
186 | double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)]; |
---|
187 | for (int i = 0; i < m_numClasses; i++) |
---|
188 | probOfClassGivenDoc[i] = Math.exp(logDocGivenClass[i] - max); |
---|
189 | |
---|
190 | Utils.normalize(probOfClassGivenDoc); |
---|
191 | |
---|
192 | return probOfClassGivenDoc; |
---|
193 | } |
---|
194 | |
---|
195 | /** |
---|
196 | * Returns a string representation of the classifier. |
---|
197 | * |
---|
198 | * @return a string representation of the classifier |
---|
199 | */ |
---|
200 | public String toString() { |
---|
201 | StringBuffer result = new StringBuffer(); |
---|
202 | |
---|
203 | result.append("The independent probability of a class\n"); |
---|
204 | result.append("--------------------------------------\n"); |
---|
205 | |
---|
206 | for (int c = 0; c < m_numClasses; c++) |
---|
207 | result.append(m_headerInfo.classAttribute().value(c)).append("\t"). |
---|
208 | append(Double.toString(m_probOfClass[c])).append("\n"); |
---|
209 | |
---|
210 | result.append("\nThe probability of a word given the class\n"); |
---|
211 | result.append("-----------------------------------------\n\t"); |
---|
212 | |
---|
213 | for (int c = 0; c < m_numClasses; c++) |
---|
214 | result.append(m_headerInfo.classAttribute().value(c)).append("\t"); |
---|
215 | |
---|
216 | result.append("\n"); |
---|
217 | |
---|
218 | for (int w = 0; w < m_numAttributes; w++) { |
---|
219 | result.append(m_headerInfo.attribute(w).name()).append("\t"); |
---|
220 | for (int c = 0; c < m_numClasses; c++) |
---|
221 | result.append( |
---|
222 | Double.toString(Math.exp(m_probOfWordGivenClass[c][w]))).append("\t"); |
---|
223 | result.append("\n"); |
---|
224 | } |
---|
225 | |
---|
226 | return result.toString(); |
---|
227 | } |
---|
228 | |
---|
229 | /** |
---|
230 | * Returns the revision string. |
---|
231 | * |
---|
232 | * @return the revision |
---|
233 | */ |
---|
234 | public String getRevision() { |
---|
235 | return RevisionUtils.extract("$Revision: 1.3 $"); |
---|
236 | } |
---|
237 | |
---|
238 | /** |
---|
239 | * Main method for testing this class. |
---|
240 | * |
---|
241 | * @param args the options |
---|
242 | */ |
---|
243 | public static void main(String[] args) { |
---|
244 | runClassifier(new NaiveBayesMultinomialUpdateable(), args); |
---|
245 | } |
---|
246 | } |
---|