source: src/main/java/weka/classifiers/bayes/NaiveBayesMultinomial.java @ 26

Last change on this file since 26 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 12.2 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 * NaiveBayesMultinomial.java
19 * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
20 */
21
22package weka.classifiers.bayes;
23
24import weka.classifiers.Classifier;
25import weka.classifiers.AbstractClassifier;
26import weka.core.Capabilities;
27import weka.core.Instance;
28import weka.core.Instances;
29import weka.core.RevisionUtils;
30import weka.core.TechnicalInformation;
31import weka.core.TechnicalInformationHandler;
32import weka.core.Utils;
33import weka.core.WeightedInstancesHandler;
34import weka.core.Capabilities.Capability;
35import weka.core.TechnicalInformation.Field;
36import weka.core.TechnicalInformation.Type;
37
38/**
39 <!-- globalinfo-start -->
40 * Class for building and using a multinomial Naive Bayes classifier. For more information see,<br/>
41 * <br/>
42 * Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.<br/>
43 * <br/>
44 * The core equation for this classifier:<br/>
45 * <br/>
46 * P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)<br/>
47 * <br/>
48 * where Ci is class i and D is a document.
49 * <p/>
50 <!-- globalinfo-end -->
51 *
52 <!-- technical-bibtex-start -->
53 * BibTeX:
54 * <pre>
55 * &#64;inproceedings{Mccallum1998,
56 *    author = {Andrew Mccallum and Kamal Nigam},
57 *    booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'},
58 *    title = {A Comparison of Event Models for Naive Bayes Text Classification},
59 *    year = {1998}
60 * }
61 * </pre>
62 * <p/>
63 <!-- technical-bibtex-end -->
64 *
65 <!-- options-start -->
66 * Valid options are: <p/>
67 *
68 * <pre> -D
69 *  If set, classifier is run in debug mode and
70 *  may output additional info to the console</pre>
71 *
72 <!-- options-end -->
73 *
74 * @author Andrew Golightly (acg4@cs.waikato.ac.nz)
75 * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz)
76 * @version $Revision: 5928 $
77 */
78public class NaiveBayesMultinomial 
79  extends AbstractClassifier
80  implements WeightedInstancesHandler,TechnicalInformationHandler {
81 
82  /** for serialization */
83  static final long serialVersionUID = 5932177440181257085L;
84 
85  /**
86   * probability that a word (w) exists in a class (H) (i.e. Pr[w|H])
87   * The matrix is in the this format: probOfWordGivenClass[class][wordAttribute]
88   * NOTE: the values are actually the log of Pr[w|H]
89   */
90  protected double[][] m_probOfWordGivenClass;
91   
92  /** the probability of a class (i.e. Pr[H]) */
93  protected double[] m_probOfClass;
94   
95  /** number of unique words */
96  protected int m_numAttributes;
97   
98  /** number of class values */
99  protected int m_numClasses;
100   
101  /** cache lnFactorial computations */
102  protected double[] m_lnFactorialCache = new double[]{0.0,0.0};
103   
104  /** copy of header information for use in toString method */
105  protected Instances m_headerInfo;
106
107  /**
108   * Returns a string describing this classifier
109   * @return a description of the classifier suitable for
110   * displaying in the explorer/experimenter gui
111   */
112  public String globalInfo() {
113    return 
114        "Class for building and using a multinomial Naive Bayes classifier. "
115      + "For more information see,\n\n"
116      + getTechnicalInformation().toString() + "\n\n"
117      + "The core equation for this classifier:\n\n"
118      + "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n"
119      + "where Ci is class i and D is a document.";
120  }
121
122  /**
123   * Returns an instance of a TechnicalInformation object, containing
124   * detailed information about the technical background of this class,
125   * e.g., paper reference or book this class is based on.
126   *
127   * @return the technical information about this class
128   */
129  public TechnicalInformation getTechnicalInformation() {
130    TechnicalInformation        result;
131   
132    result = new TechnicalInformation(Type.INPROCEEDINGS);
133    result.setValue(Field.AUTHOR, "Andrew Mccallum and Kamal Nigam");
134    result.setValue(Field.YEAR, "1998");
135    result.setValue(Field.TITLE, "A Comparison of Event Models for Naive Bayes Text Classification");
136    result.setValue(Field.BOOKTITLE, "AAAI-98 Workshop on 'Learning for Text Categorization'");
137   
138    return result;
139  }
140
141  /**
142   * Returns default capabilities of the classifier.
143   *
144   * @return      the capabilities of this classifier
145   */
146  public Capabilities getCapabilities() {
147    Capabilities result = super.getCapabilities();
148    result.disableAll();
149
150    // attributes
151    result.enable(Capability.NUMERIC_ATTRIBUTES);
152
153    // class
154    result.enable(Capability.NOMINAL_CLASS);
155    result.enable(Capability.MISSING_CLASS_VALUES);
156   
157    return result;
158  }
159
160  /**
161   * Generates the classifier.
162   *
163   * @param instances set of instances serving as training data
164   * @throws Exception if the classifier has not been generated successfully
165   */
166  public void buildClassifier(Instances instances) throws Exception
167  {
168    // can classifier handle the data?
169    getCapabilities().testWithFail(instances);
170
171    // remove instances with missing class
172    instances = new Instances(instances);
173    instances.deleteWithMissingClass();
174   
175    m_headerInfo = new Instances(instances, 0);
176    m_numClasses = instances.numClasses();
177    m_numAttributes = instances.numAttributes();
178    m_probOfWordGivenClass = new double[m_numClasses][];
179       
180    /*
181      initialising the matrix of word counts
182      NOTE: Laplace estimator introduced in case a word that does not appear for a class in the
183      training set does so for the test set
184    */
185    for(int c = 0; c<m_numClasses; c++)
186      {
187        m_probOfWordGivenClass[c] = new double[m_numAttributes];
188        for(int att = 0; att<m_numAttributes; att++)
189          {
190            m_probOfWordGivenClass[c][att] = 1;
191          }
192      }
193       
194    //enumerate through the instances
195    Instance instance;
196    int classIndex;
197    double numOccurences;
198    double[] docsPerClass = new double[m_numClasses];
199    double[] wordsPerClass = new double[m_numClasses];
200       
201    java.util.Enumeration enumInsts = instances.enumerateInstances();
202    while (enumInsts.hasMoreElements()) 
203      {
204        instance = (Instance) enumInsts.nextElement();
205        classIndex = (int)instance.value(instance.classIndex());
206        docsPerClass[classIndex] += instance.weight();
207               
208        for(int a = 0; a<instance.numValues(); a++)
209          if(instance.index(a) != instance.classIndex())
210            {
211              if(!instance.isMissing(a))
212                {
213                  numOccurences = instance.valueSparse(a) * instance.weight();
214                  if(numOccurences < 0)
215                    throw new Exception("Numeric attribute values must all be greater or equal to zero.");
216                  wordsPerClass[classIndex] += numOccurences;
217                  m_probOfWordGivenClass[classIndex][instance.index(a)] += numOccurences;
218                }
219            } 
220      }
221       
222    /*
223      normalising probOfWordGivenClass values
224      and saving each value as the log of each value
225    */
226    for(int c = 0; c<m_numClasses; c++)
227      for(int v = 0; v<m_numAttributes; v++) 
228        m_probOfWordGivenClass[c][v] = Math.log(m_probOfWordGivenClass[c][v] / (wordsPerClass[c] + m_numAttributes - 1));
229       
230    /*
231      calculating Pr(H)
232      NOTE: Laplace estimator introduced in case a class does not get mentioned in the set of
233      training instances
234    */
235    final double numDocs = instances.sumOfWeights() + m_numClasses;
236    m_probOfClass = new double[m_numClasses];
237    for(int h=0; h<m_numClasses; h++)
238      m_probOfClass[h] = (double)(docsPerClass[h] + 1)/numDocs; 
239  }
240   
241  /**
242   * Calculates the class membership probabilities for the given test
243   * instance.
244   *
245   * @param instance the instance to be classified
246   * @return predicted class probability distribution
247   * @throws Exception if there is a problem generating the prediction
248   */
249  public double [] distributionForInstance(Instance instance) throws Exception
250  {
251    double[] probOfClassGivenDoc = new double[m_numClasses];
252       
253    //calculate the array of log(Pr[D|C])
254    double[] logDocGivenClass = new double[m_numClasses];
255    for(int h = 0; h<m_numClasses; h++)
256      logDocGivenClass[h] = probOfDocGivenClass(instance, h);
257       
258    double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)];
259    double probOfDoc = 0.0;
260       
261    for(int i = 0; i<m_numClasses; i++) 
262      {
263        probOfClassGivenDoc[i] = Math.exp(logDocGivenClass[i] - max) * m_probOfClass[i];
264        probOfDoc += probOfClassGivenDoc[i];
265      }
266       
267    Utils.normalize(probOfClassGivenDoc,probOfDoc);
268       
269    return probOfClassGivenDoc;
270  }
271   
272  /**
273   * log(N!) + (for all the words)(log(Pi^ni) - log(ni!))
274   * 
275   *  where
276   *      N is the total number of words
277   *      Pi is the probability of obtaining word i
278   *      ni is the number of times the word at index i occurs in the document
279   *
280   * @param inst       The instance to be classified
281   * @param classIndex The index of the class we are calculating the probability with respect to
282   *
283   * @return The log of the probability of the document occuring given the class
284   */
285   
286  private double probOfDocGivenClass(Instance inst, int classIndex)
287  {
288    double answer = 0;
289    //double totalWords = 0; //no need as we are not calculating the factorial at all.
290       
291    double freqOfWordInDoc;  //should be double
292    for(int i = 0; i<inst.numValues(); i++)
293      if(inst.index(i) != inst.classIndex())
294        {
295          freqOfWordInDoc = inst.valueSparse(i);
296          //totalWords += freqOfWordInDoc;
297          answer += (freqOfWordInDoc * m_probOfWordGivenClass[classIndex][inst.index(i)] 
298                     ); //- lnFactorial(freqOfWordInDoc));
299        }
300       
301    //answer += lnFactorial(totalWords);//The factorial terms don't make
302    //any difference to the classifier's
303    //accuracy, so not needed.
304       
305    return answer;
306  }
307   
308  /**
309   * Fast computation of ln(n!) for non-negative ints
310   *
311   * negative ints are passed on to the general gamma-function
312   * based version in weka.core.SpecialFunctions
313   *
314   * if the current n value is higher than any previous one,
315   * the cache is extended and filled to cover it
316   *
317   * the common case is reduced to a simple array lookup
318   *
319   * @param  n the integer
320   * @return ln(n!)
321   */
322   
323  public double lnFactorial(int n) 
324  {
325    if (n < 0) return weka.core.SpecialFunctions.lnFactorial(n);
326       
327    if (m_lnFactorialCache.length <= n) {
328      double[] tmp = new double[n+1];
329      System.arraycopy(m_lnFactorialCache,0,tmp,0,m_lnFactorialCache.length);
330      for(int i = m_lnFactorialCache.length; i < tmp.length; i++) 
331        tmp[i] = tmp[i-1] + Math.log(i);
332      m_lnFactorialCache = tmp;
333    }
334       
335    return m_lnFactorialCache[n];
336  }
337   
338  /**
339   * Returns a string representation of the classifier.
340   *
341   * @return a string representation of the classifier
342   */
343  public String toString()
344  {
345    StringBuffer result = new StringBuffer("The independent probability of a class\n--------------------------------------\n");
346       
347    for(int c = 0; c<m_numClasses; c++)
348      result.append(m_headerInfo.classAttribute().value(c)).append("\t").append(Double.toString(m_probOfClass[c])).append("\n");
349       
350    result.append("\nThe probability of a word given the class\n-----------------------------------------\n\t");
351
352    for(int c = 0; c<m_numClasses; c++)
353      result.append(m_headerInfo.classAttribute().value(c)).append("\t");
354       
355    result.append("\n");
356
357    for(int w = 0; w<m_numAttributes; w++)
358      {
359        result.append(m_headerInfo.attribute(w).name()).append("\t");
360        for(int c = 0; c<m_numClasses; c++)
361          result.append(Double.toString(Math.exp(m_probOfWordGivenClass[c][w]))).append("\t");
362        result.append("\n");
363      }
364
365    return result.toString();
366  }
367 
368  /**
369   * Returns the revision string.
370   *
371   * @return            the revision
372   */
373  public String getRevision() {
374    return RevisionUtils.extract("$Revision: 5928 $");
375  }
376   
377  /**
378   * Main method for testing this class.
379   *
380   * @param argv the options
381   */
382  public static void main(String [] argv) {
383    runClassifier(new NaiveBayesMultinomial(), argv);
384  }
385}
386
Note: See TracBrowser for help on using the repository browser.