/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* NaiveBayesMultinomial.java
* Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
*/
package weka.classifiers.bayes;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
/**
* Class for building and using a multinomial Naive Bayes classifier. For more information see,
*
* Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.
*
* The core equation for this classifier:
*
* P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
*
* where Ci is class i and D is a document.
*
* @inproceedings{Mccallum1998, * author = {Andrew Mccallum and Kamal Nigam}, * booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'}, * title = {A Comparison of Event Models for Naive Bayes Text Classification}, * year = {1998} * } ** * * Valid options are: * *
-D * If set, classifier is run in debug mode and * may output additional info to the console* * * @author Andrew Golightly (acg4@cs.waikato.ac.nz) * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class NaiveBayesMultinomial extends AbstractClassifier implements WeightedInstancesHandler,TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5932177440181257085L; /** * probability that a word (w) exists in a class (H) (i.e. Pr[w|H]) * The matrix is in the this format: probOfWordGivenClass[class][wordAttribute] * NOTE: the values are actually the log of Pr[w|H] */ protected double[][] m_probOfWordGivenClass; /** the probability of a class (i.e. Pr[H]) */ protected double[] m_probOfClass; /** number of unique words */ protected int m_numAttributes; /** number of class values */ protected int m_numClasses; /** cache lnFactorial computations */ protected double[] m_lnFactorialCache = new double[]{0.0,0.0}; /** copy of header information for use in toString method */ protected Instances m_headerInfo; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a multinomial Naive Bayes classifier. " + "For more information see,\n\n" + getTechnicalInformation().toString() + "\n\n" + "The core equation for this classifier:\n\n" + "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n" + "where Ci is class i and D is a document."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Andrew Mccallum and Kamal Nigam"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "A Comparison of Event Models for Naive Bayes Text Classification"); result.setValue(Field.BOOKTITLE, "AAAI-98 Workshop on 'Learning for Text Categorization'"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); m_headerInfo = new Instances(instances, 0); m_numClasses = instances.numClasses(); m_numAttributes = instances.numAttributes(); m_probOfWordGivenClass = new double[m_numClasses][]; /* initialising the matrix of word counts NOTE: Laplace estimator introduced in case a word that does not appear for a class in the training set does so for the test set */ for(int c = 0; c