[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * NaiveBayesMultinomial.java |
---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.bayes; |
---|
| 23 | |
---|
| 24 | import weka.classifiers.Classifier; |
---|
| 25 | import weka.classifiers.AbstractClassifier; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.RevisionUtils; |
---|
| 30 | import weka.core.TechnicalInformation; |
---|
| 31 | import weka.core.TechnicalInformationHandler; |
---|
| 32 | import weka.core.Utils; |
---|
| 33 | import weka.core.WeightedInstancesHandler; |
---|
| 34 | import weka.core.Capabilities.Capability; |
---|
| 35 | import weka.core.TechnicalInformation.Field; |
---|
| 36 | import weka.core.TechnicalInformation.Type; |
---|
| 37 | |
---|
| 38 | /** |
---|
| 39 | <!-- globalinfo-start --> |
---|
| 40 | * Class for building and using a multinomial Naive Bayes classifier. For more information see,<br/> |
---|
| 41 | * <br/> |
---|
| 42 | * Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.<br/> |
---|
| 43 | * <br/> |
---|
| 44 | * The core equation for this classifier:<br/> |
---|
| 45 | * <br/> |
---|
| 46 | * P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)<br/> |
---|
| 47 | * <br/> |
---|
| 48 | * where Ci is class i and D is a document. |
---|
| 49 | * <p/> |
---|
| 50 | <!-- globalinfo-end --> |
---|
| 51 | * |
---|
| 52 | <!-- technical-bibtex-start --> |
---|
| 53 | * BibTeX: |
---|
| 54 | * <pre> |
---|
| 55 | * @inproceedings{Mccallum1998, |
---|
| 56 | * author = {Andrew Mccallum and Kamal Nigam}, |
---|
| 57 | * booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'}, |
---|
| 58 | * title = {A Comparison of Event Models for Naive Bayes Text Classification}, |
---|
| 59 | * year = {1998} |
---|
| 60 | * } |
---|
| 61 | * </pre> |
---|
| 62 | * <p/> |
---|
| 63 | <!-- technical-bibtex-end --> |
---|
| 64 | * |
---|
| 65 | <!-- options-start --> |
---|
| 66 | * Valid options are: <p/> |
---|
| 67 | * |
---|
| 68 | * <pre> -D |
---|
| 69 | * If set, classifier is run in debug mode and |
---|
| 70 | * may output additional info to the console</pre> |
---|
| 71 | * |
---|
| 72 | <!-- options-end --> |
---|
| 73 | * |
---|
| 74 | * @author Andrew Golightly (acg4@cs.waikato.ac.nz) |
---|
| 75 | * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) |
---|
| 76 | * @version $Revision: 5928 $ |
---|
| 77 | */ |
---|
| 78 | public class NaiveBayesMultinomial |
---|
| 79 | extends AbstractClassifier |
---|
| 80 | implements WeightedInstancesHandler,TechnicalInformationHandler { |
---|
| 81 | |
---|
| 82 | /** for serialization */ |
---|
| 83 | static final long serialVersionUID = 5932177440181257085L; |
---|
| 84 | |
---|
| 85 | /** |
---|
| 86 | * probability that a word (w) exists in a class (H) (i.e. Pr[w|H]) |
---|
| 87 | * The matrix is in the this format: probOfWordGivenClass[class][wordAttribute] |
---|
| 88 | * NOTE: the values are actually the log of Pr[w|H] |
---|
| 89 | */ |
---|
| 90 | protected double[][] m_probOfWordGivenClass; |
---|
| 91 | |
---|
| 92 | /** the probability of a class (i.e. Pr[H]) */ |
---|
| 93 | protected double[] m_probOfClass; |
---|
| 94 | |
---|
| 95 | /** number of unique words */ |
---|
| 96 | protected int m_numAttributes; |
---|
| 97 | |
---|
| 98 | /** number of class values */ |
---|
| 99 | protected int m_numClasses; |
---|
| 100 | |
---|
| 101 | /** cache lnFactorial computations */ |
---|
| 102 | protected double[] m_lnFactorialCache = new double[]{0.0,0.0}; |
---|
| 103 | |
---|
| 104 | /** copy of header information for use in toString method */ |
---|
| 105 | protected Instances m_headerInfo; |
---|
| 106 | |
---|
| 107 | /** |
---|
| 108 | * Returns a string describing this classifier |
---|
| 109 | * @return a description of the classifier suitable for |
---|
| 110 | * displaying in the explorer/experimenter gui |
---|
| 111 | */ |
---|
| 112 | public String globalInfo() { |
---|
| 113 | return |
---|
| 114 | "Class for building and using a multinomial Naive Bayes classifier. " |
---|
| 115 | + "For more information see,\n\n" |
---|
| 116 | + getTechnicalInformation().toString() + "\n\n" |
---|
| 117 | + "The core equation for this classifier:\n\n" |
---|
| 118 | + "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n" |
---|
| 119 | + "where Ci is class i and D is a document."; |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | /** |
---|
| 123 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 124 | * detailed information about the technical background of this class, |
---|
| 125 | * e.g., paper reference or book this class is based on. |
---|
| 126 | * |
---|
| 127 | * @return the technical information about this class |
---|
| 128 | */ |
---|
| 129 | public TechnicalInformation getTechnicalInformation() { |
---|
| 130 | TechnicalInformation result; |
---|
| 131 | |
---|
| 132 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 133 | result.setValue(Field.AUTHOR, "Andrew Mccallum and Kamal Nigam"); |
---|
| 134 | result.setValue(Field.YEAR, "1998"); |
---|
| 135 | result.setValue(Field.TITLE, "A Comparison of Event Models for Naive Bayes Text Classification"); |
---|
| 136 | result.setValue(Field.BOOKTITLE, "AAAI-98 Workshop on 'Learning for Text Categorization'"); |
---|
| 137 | |
---|
| 138 | return result; |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | /** |
---|
| 142 | * Returns default capabilities of the classifier. |
---|
| 143 | * |
---|
| 144 | * @return the capabilities of this classifier |
---|
| 145 | */ |
---|
| 146 | public Capabilities getCapabilities() { |
---|
| 147 | Capabilities result = super.getCapabilities(); |
---|
| 148 | result.disableAll(); |
---|
| 149 | |
---|
| 150 | // attributes |
---|
| 151 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 152 | |
---|
| 153 | // class |
---|
| 154 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 155 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 156 | |
---|
| 157 | return result; |
---|
| 158 | } |
---|
| 159 | |
---|
| 160 | /** |
---|
| 161 | * Generates the classifier. |
---|
| 162 | * |
---|
| 163 | * @param instances set of instances serving as training data |
---|
| 164 | * @throws Exception if the classifier has not been generated successfully |
---|
| 165 | */ |
---|
| 166 | public void buildClassifier(Instances instances) throws Exception |
---|
| 167 | { |
---|
| 168 | // can classifier handle the data? |
---|
| 169 | getCapabilities().testWithFail(instances); |
---|
| 170 | |
---|
| 171 | // remove instances with missing class |
---|
| 172 | instances = new Instances(instances); |
---|
| 173 | instances.deleteWithMissingClass(); |
---|
| 174 | |
---|
| 175 | m_headerInfo = new Instances(instances, 0); |
---|
| 176 | m_numClasses = instances.numClasses(); |
---|
| 177 | m_numAttributes = instances.numAttributes(); |
---|
| 178 | m_probOfWordGivenClass = new double[m_numClasses][]; |
---|
| 179 | |
---|
| 180 | /* |
---|
| 181 | initialising the matrix of word counts |
---|
| 182 | NOTE: Laplace estimator introduced in case a word that does not appear for a class in the |
---|
| 183 | training set does so for the test set |
---|
| 184 | */ |
---|
| 185 | for(int c = 0; c<m_numClasses; c++) |
---|
| 186 | { |
---|
| 187 | m_probOfWordGivenClass[c] = new double[m_numAttributes]; |
---|
| 188 | for(int att = 0; att<m_numAttributes; att++) |
---|
| 189 | { |
---|
| 190 | m_probOfWordGivenClass[c][att] = 1; |
---|
| 191 | } |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | //enumerate through the instances |
---|
| 195 | Instance instance; |
---|
| 196 | int classIndex; |
---|
| 197 | double numOccurences; |
---|
| 198 | double[] docsPerClass = new double[m_numClasses]; |
---|
| 199 | double[] wordsPerClass = new double[m_numClasses]; |
---|
| 200 | |
---|
| 201 | java.util.Enumeration enumInsts = instances.enumerateInstances(); |
---|
| 202 | while (enumInsts.hasMoreElements()) |
---|
| 203 | { |
---|
| 204 | instance = (Instance) enumInsts.nextElement(); |
---|
| 205 | classIndex = (int)instance.value(instance.classIndex()); |
---|
| 206 | docsPerClass[classIndex] += instance.weight(); |
---|
| 207 | |
---|
| 208 | for(int a = 0; a<instance.numValues(); a++) |
---|
| 209 | if(instance.index(a) != instance.classIndex()) |
---|
| 210 | { |
---|
| 211 | if(!instance.isMissing(a)) |
---|
| 212 | { |
---|
| 213 | numOccurences = instance.valueSparse(a) * instance.weight(); |
---|
| 214 | if(numOccurences < 0) |
---|
| 215 | throw new Exception("Numeric attribute values must all be greater or equal to zero."); |
---|
| 216 | wordsPerClass[classIndex] += numOccurences; |
---|
| 217 | m_probOfWordGivenClass[classIndex][instance.index(a)] += numOccurences; |
---|
| 218 | } |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | /* |
---|
| 223 | normalising probOfWordGivenClass values |
---|
| 224 | and saving each value as the log of each value |
---|
| 225 | */ |
---|
| 226 | for(int c = 0; c<m_numClasses; c++) |
---|
| 227 | for(int v = 0; v<m_numAttributes; v++) |
---|
| 228 | m_probOfWordGivenClass[c][v] = Math.log(m_probOfWordGivenClass[c][v] / (wordsPerClass[c] + m_numAttributes - 1)); |
---|
| 229 | |
---|
| 230 | /* |
---|
| 231 | calculating Pr(H) |
---|
| 232 | NOTE: Laplace estimator introduced in case a class does not get mentioned in the set of |
---|
| 233 | training instances |
---|
| 234 | */ |
---|
| 235 | final double numDocs = instances.sumOfWeights() + m_numClasses; |
---|
| 236 | m_probOfClass = new double[m_numClasses]; |
---|
| 237 | for(int h=0; h<m_numClasses; h++) |
---|
| 238 | m_probOfClass[h] = (double)(docsPerClass[h] + 1)/numDocs; |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | /** |
---|
| 242 | * Calculates the class membership probabilities for the given test |
---|
| 243 | * instance. |
---|
| 244 | * |
---|
| 245 | * @param instance the instance to be classified |
---|
| 246 | * @return predicted class probability distribution |
---|
| 247 | * @throws Exception if there is a problem generating the prediction |
---|
| 248 | */ |
---|
| 249 | public double [] distributionForInstance(Instance instance) throws Exception |
---|
| 250 | { |
---|
| 251 | double[] probOfClassGivenDoc = new double[m_numClasses]; |
---|
| 252 | |
---|
| 253 | //calculate the array of log(Pr[D|C]) |
---|
| 254 | double[] logDocGivenClass = new double[m_numClasses]; |
---|
| 255 | for(int h = 0; h<m_numClasses; h++) |
---|
| 256 | logDocGivenClass[h] = probOfDocGivenClass(instance, h); |
---|
| 257 | |
---|
| 258 | double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)]; |
---|
| 259 | double probOfDoc = 0.0; |
---|
| 260 | |
---|
| 261 | for(int i = 0; i<m_numClasses; i++) |
---|
| 262 | { |
---|
| 263 | probOfClassGivenDoc[i] = Math.exp(logDocGivenClass[i] - max) * m_probOfClass[i]; |
---|
| 264 | probOfDoc += probOfClassGivenDoc[i]; |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | Utils.normalize(probOfClassGivenDoc,probOfDoc); |
---|
| 268 | |
---|
| 269 | return probOfClassGivenDoc; |
---|
| 270 | } |
---|
| 271 | |
---|
| 272 | /** |
---|
| 273 | * log(N!) + (for all the words)(log(Pi^ni) - log(ni!)) |
---|
| 274 | * |
---|
| 275 | * where |
---|
| 276 | * N is the total number of words |
---|
| 277 | * Pi is the probability of obtaining word i |
---|
| 278 | * ni is the number of times the word at index i occurs in the document |
---|
| 279 | * |
---|
| 280 | * @param inst The instance to be classified |
---|
| 281 | * @param classIndex The index of the class we are calculating the probability with respect to |
---|
| 282 | * |
---|
| 283 | * @return The log of the probability of the document occuring given the class |
---|
| 284 | */ |
---|
| 285 | |
---|
| 286 | private double probOfDocGivenClass(Instance inst, int classIndex) |
---|
| 287 | { |
---|
| 288 | double answer = 0; |
---|
| 289 | //double totalWords = 0; //no need as we are not calculating the factorial at all. |
---|
| 290 | |
---|
| 291 | double freqOfWordInDoc; //should be double |
---|
| 292 | for(int i = 0; i<inst.numValues(); i++) |
---|
| 293 | if(inst.index(i) != inst.classIndex()) |
---|
| 294 | { |
---|
| 295 | freqOfWordInDoc = inst.valueSparse(i); |
---|
| 296 | //totalWords += freqOfWordInDoc; |
---|
| 297 | answer += (freqOfWordInDoc * m_probOfWordGivenClass[classIndex][inst.index(i)] |
---|
| 298 | ); //- lnFactorial(freqOfWordInDoc)); |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | //answer += lnFactorial(totalWords);//The factorial terms don't make |
---|
| 302 | //any difference to the classifier's |
---|
| 303 | //accuracy, so not needed. |
---|
| 304 | |
---|
| 305 | return answer; |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | /** |
---|
| 309 | * Fast computation of ln(n!) for non-negative ints |
---|
| 310 | * |
---|
| 311 | * negative ints are passed on to the general gamma-function |
---|
| 312 | * based version in weka.core.SpecialFunctions |
---|
| 313 | * |
---|
| 314 | * if the current n value is higher than any previous one, |
---|
| 315 | * the cache is extended and filled to cover it |
---|
| 316 | * |
---|
| 317 | * the common case is reduced to a simple array lookup |
---|
| 318 | * |
---|
| 319 | * @param n the integer |
---|
| 320 | * @return ln(n!) |
---|
| 321 | */ |
---|
| 322 | |
---|
| 323 | public double lnFactorial(int n) |
---|
| 324 | { |
---|
| 325 | if (n < 0) return weka.core.SpecialFunctions.lnFactorial(n); |
---|
| 326 | |
---|
| 327 | if (m_lnFactorialCache.length <= n) { |
---|
| 328 | double[] tmp = new double[n+1]; |
---|
| 329 | System.arraycopy(m_lnFactorialCache,0,tmp,0,m_lnFactorialCache.length); |
---|
| 330 | for(int i = m_lnFactorialCache.length; i < tmp.length; i++) |
---|
| 331 | tmp[i] = tmp[i-1] + Math.log(i); |
---|
| 332 | m_lnFactorialCache = tmp; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | return m_lnFactorialCache[n]; |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | /** |
---|
| 339 | * Returns a string representation of the classifier. |
---|
| 340 | * |
---|
| 341 | * @return a string representation of the classifier |
---|
| 342 | */ |
---|
| 343 | public String toString() |
---|
| 344 | { |
---|
| 345 | StringBuffer result = new StringBuffer("The independent probability of a class\n--------------------------------------\n"); |
---|
| 346 | |
---|
| 347 | for(int c = 0; c<m_numClasses; c++) |
---|
| 348 | result.append(m_headerInfo.classAttribute().value(c)).append("\t").append(Double.toString(m_probOfClass[c])).append("\n"); |
---|
| 349 | |
---|
| 350 | result.append("\nThe probability of a word given the class\n-----------------------------------------\n\t"); |
---|
| 351 | |
---|
| 352 | for(int c = 0; c<m_numClasses; c++) |
---|
| 353 | result.append(m_headerInfo.classAttribute().value(c)).append("\t"); |
---|
| 354 | |
---|
| 355 | result.append("\n"); |
---|
| 356 | |
---|
| 357 | for(int w = 0; w<m_numAttributes; w++) |
---|
| 358 | { |
---|
| 359 | result.append(m_headerInfo.attribute(w).name()).append("\t"); |
---|
| 360 | for(int c = 0; c<m_numClasses; c++) |
---|
| 361 | result.append(Double.toString(Math.exp(m_probOfWordGivenClass[c][w]))).append("\t"); |
---|
| 362 | result.append("\n"); |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | return result.toString(); |
---|
| 366 | } |
---|
| 367 | |
---|
| 368 | /** |
---|
| 369 | * Returns the revision string. |
---|
| 370 | * |
---|
| 371 | * @return the revision |
---|
| 372 | */ |
---|
| 373 | public String getRevision() { |
---|
| 374 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 375 | } |
---|
| 376 | |
---|
| 377 | /** |
---|
| 378 | * Main method for testing this class. |
---|
| 379 | * |
---|
| 380 | * @param argv the options |
---|
| 381 | */ |
---|
| 382 | public static void main(String [] argv) { |
---|
| 383 | runClassifier(new NaiveBayesMultinomial(), argv); |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | |
---|