1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * HNB.java |
---|
19 | * Copyright (C) 2004 Liangxiao Jiang |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.bayes; |
---|
23 | |
---|
24 | import weka.classifiers.Classifier; |
---|
25 | import weka.classifiers.AbstractClassifier; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.TechnicalInformation; |
---|
31 | import weka.core.TechnicalInformationHandler; |
---|
32 | import weka.core.Utils; |
---|
33 | import weka.core.Capabilities.Capability; |
---|
34 | import weka.core.TechnicalInformation.Field; |
---|
35 | import weka.core.TechnicalInformation.Type; |
---|
36 | |
---|
37 | /** |
---|
38 | <!-- globalinfo-start --> |
---|
39 | * Contructs Hidden Naive Bayes classification model with high classification accuracy and AUC.<br/> |
---|
40 | * <br/> |
---|
41 | * For more information refer to:<br/> |
---|
42 | * <br/> |
---|
43 | * H. Zhang, L. Jiang, J. Su: Hidden Naive Bayes. In: Twentieth National Conference on Artificial Intelligence, 919-924, 2005. |
---|
44 | * <p/> |
---|
45 | <!-- globalinfo-end --> |
---|
46 | * |
---|
47 | <!-- technical-bibtex-start --> |
---|
48 | * BibTeX: |
---|
49 | * <pre> |
---|
50 | * @inproceedings{Zhang2005, |
---|
51 | * author = {H. Zhang and L. Jiang and J. Su}, |
---|
52 | * booktitle = {Twentieth National Conference on Artificial Intelligence}, |
---|
53 | * pages = {919-924}, |
---|
54 | * publisher = {AAAI Press}, |
---|
55 | * title = {Hidden Naive Bayes}, |
---|
56 | * year = {2005} |
---|
57 | * } |
---|
58 | * </pre> |
---|
59 | * <p/> |
---|
60 | <!-- technical-bibtex-end --> |
---|
61 | * |
---|
62 | <!-- options-start --> |
---|
63 | * Valid options are: <p/> |
---|
64 | * |
---|
65 | * <pre> -D |
---|
66 | * If set, classifier is run in debug mode and |
---|
67 | * may output additional info to the console</pre> |
---|
68 | * |
---|
69 | <!-- options-end --> |
---|
70 | * |
---|
71 | * @author H. Zhang (hzhang@unb.ca) |
---|
72 | * @author Liangxiao Jiang (ljiang@cug.edu.cn) |
---|
73 | * @version $Revision: 5928 $ |
---|
74 | */ |
---|
75 | public class HNB |
---|
76 | extends AbstractClassifier |
---|
77 | implements TechnicalInformationHandler { |
---|
78 | |
---|
79 | /** for serialization */ |
---|
80 | static final long serialVersionUID = -4503874444306113214L; |
---|
81 | |
---|
82 | /** The number of each class value occurs in the dataset */ |
---|
83 | private double [] m_ClassCounts; |
---|
84 | |
---|
85 | /** The number of class and two attributes values occurs in the dataset */ |
---|
86 | private double [][][] m_ClassAttAttCounts; |
---|
87 | |
---|
88 | /** The number of values for each attribute in the dataset */ |
---|
89 | private int [] m_NumAttValues; |
---|
90 | |
---|
91 | /** The number of values for all attributes in the dataset */ |
---|
92 | private int m_TotalAttValues; |
---|
93 | |
---|
94 | /** The number of classes in the dataset */ |
---|
95 | private int m_NumClasses; |
---|
96 | |
---|
97 | /** The number of attributes including class in the dataset */ |
---|
98 | private int m_NumAttributes; |
---|
99 | |
---|
100 | /** The number of instances in the dataset */ |
---|
101 | private int m_NumInstances; |
---|
102 | |
---|
103 | /** The index of the class attribute in the dataset */ |
---|
104 | private int m_ClassIndex; |
---|
105 | |
---|
106 | /** The starting index of each attribute in the dataset */ |
---|
107 | private int[] m_StartAttIndex; |
---|
108 | |
---|
109 | /** The 2D array of conditional mutual information of each pair attributes */ |
---|
110 | private double[][] m_condiMutualInfo; |
---|
111 | |
---|
112 | /** |
---|
113 | * Returns a string describing this classifier. |
---|
114 | * |
---|
115 | * @return a description of the data generator suitable for |
---|
116 | * displaying in the explorer/experimenter gui |
---|
117 | */ |
---|
118 | public String globalInfo() { |
---|
119 | |
---|
120 | return |
---|
121 | "Contructs Hidden Naive Bayes classification model with high " |
---|
122 | + "classification accuracy and AUC.\n\n" |
---|
123 | + "For more information refer to:\n\n" |
---|
124 | + getTechnicalInformation().toString(); |
---|
125 | } |
---|
126 | |
---|
127 | /** |
---|
128 | * Returns an instance of a TechnicalInformation object, containing |
---|
129 | * detailed information about the technical background of this class, |
---|
130 | * e.g., paper reference or book this class is based on. |
---|
131 | * |
---|
132 | * @return the technical information about this class |
---|
133 | */ |
---|
134 | public TechnicalInformation getTechnicalInformation() { |
---|
135 | TechnicalInformation result; |
---|
136 | |
---|
137 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
138 | result.setValue(Field.AUTHOR, "H. Zhang and L. Jiang and J. Su"); |
---|
139 | result.setValue(Field.TITLE, "Hidden Naive Bayes"); |
---|
140 | result.setValue(Field.BOOKTITLE, "Twentieth National Conference on Artificial Intelligence"); |
---|
141 | result.setValue(Field.YEAR, "2005"); |
---|
142 | result.setValue(Field.PAGES, "919-924"); |
---|
143 | result.setValue(Field.PUBLISHER, "AAAI Press"); |
---|
144 | |
---|
145 | return result; |
---|
146 | } |
---|
147 | |
---|
148 | /** |
---|
149 | * Returns default capabilities of the classifier. |
---|
150 | * |
---|
151 | * @return the capabilities of this classifier |
---|
152 | */ |
---|
153 | public Capabilities getCapabilities() { |
---|
154 | Capabilities result = super.getCapabilities(); |
---|
155 | result.disableAll(); |
---|
156 | |
---|
157 | // attributes |
---|
158 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
159 | |
---|
160 | // class |
---|
161 | result.enable(Capability.NOMINAL_CLASS); |
---|
162 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
163 | |
---|
164 | return result; |
---|
165 | } |
---|
166 | |
---|
167 | /** |
---|
168 | * Generates the classifier. |
---|
169 | * |
---|
170 | * @param instances set of instances serving as training data |
---|
171 | * @exception Exception if the classifier has not been generated successfully |
---|
172 | */ |
---|
173 | public void buildClassifier(Instances instances) throws Exception { |
---|
174 | |
---|
175 | // can classifier handle the data? |
---|
176 | getCapabilities().testWithFail(instances); |
---|
177 | |
---|
178 | // remove instances with missing class |
---|
179 | instances = new Instances(instances); |
---|
180 | instances.deleteWithMissingClass(); |
---|
181 | |
---|
182 | // reset variable |
---|
183 | m_NumClasses = instances.numClasses(); |
---|
184 | m_ClassIndex = instances.classIndex(); |
---|
185 | m_NumAttributes = instances.numAttributes(); |
---|
186 | m_NumInstances = instances.numInstances(); |
---|
187 | m_TotalAttValues = 0; |
---|
188 | |
---|
189 | // allocate space for attribute reference arrays |
---|
190 | m_StartAttIndex = new int[m_NumAttributes]; |
---|
191 | m_NumAttValues = new int[m_NumAttributes]; |
---|
192 | |
---|
193 | // set the starting index of each attribute and the number of values for |
---|
194 | // each attribute and the total number of values for all attributes (not including class). |
---|
195 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
196 | if(i != m_ClassIndex) { |
---|
197 | m_StartAttIndex[i] = m_TotalAttValues; |
---|
198 | m_NumAttValues[i] = instances.attribute(i).numValues(); |
---|
199 | m_TotalAttValues += m_NumAttValues[i]; |
---|
200 | } |
---|
201 | else { |
---|
202 | m_StartAttIndex[i] = -1; |
---|
203 | m_NumAttValues[i] = m_NumClasses; |
---|
204 | } |
---|
205 | } |
---|
206 | |
---|
207 | // allocate space for counts and frequencies |
---|
208 | m_ClassCounts = new double[m_NumClasses]; |
---|
209 | m_ClassAttAttCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; |
---|
210 | |
---|
211 | // Calculate the counts |
---|
212 | for(int k = 0; k < m_NumInstances; k++) { |
---|
213 | int classVal=(int)instances.instance(k).classValue(); |
---|
214 | m_ClassCounts[classVal] ++; |
---|
215 | int[] attIndex = new int[m_NumAttributes]; |
---|
216 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
217 | if(i == m_ClassIndex) |
---|
218 | attIndex[i] = -1; |
---|
219 | else |
---|
220 | attIndex[i] = m_StartAttIndex[i] + (int)instances.instance(k).value(i); |
---|
221 | } |
---|
222 | for(int Att1 = 0; Att1 < m_NumAttributes; Att1++) { |
---|
223 | if(attIndex[Att1] == -1) continue; |
---|
224 | for(int Att2 = 0; Att2 < m_NumAttributes; Att2++) { |
---|
225 | if((attIndex[Att2] != -1)) { |
---|
226 | m_ClassAttAttCounts[classVal][attIndex[Att1]][attIndex[Att2]] ++; |
---|
227 | } |
---|
228 | } |
---|
229 | } |
---|
230 | } |
---|
231 | |
---|
232 | //compute conditional mutual information of each pair attributes (not including class) |
---|
233 | m_condiMutualInfo=new double[m_NumAttributes][m_NumAttributes]; |
---|
234 | for(int son=0;son<m_NumAttributes;son++){ |
---|
235 | if(son == m_ClassIndex) continue; |
---|
236 | for(int parent=0;parent<m_NumAttributes;parent++){ |
---|
237 | if(parent == m_ClassIndex || son==parent) continue; |
---|
238 | m_condiMutualInfo[son][parent]=conditionalMutualInfo(son,parent); |
---|
239 | } |
---|
240 | } |
---|
241 | } |
---|
242 | |
---|
243 | /** |
---|
244 | * Computes conditional mutual information between a pair of attributes. |
---|
245 | * |
---|
246 | * @param son the son attribute |
---|
247 | * @param parent the parent attribute |
---|
248 | * @return the conditional mutual information between son and parent given class |
---|
249 | * @throws Exception if computation fails |
---|
250 | */ |
---|
251 | private double conditionalMutualInfo(int son, int parent) throws Exception{ |
---|
252 | |
---|
253 | double CondiMutualInfo=0; |
---|
254 | int sIndex=m_StartAttIndex[son]; |
---|
255 | int pIndex=m_StartAttIndex[parent]; |
---|
256 | double[] PriorsClass = new double[m_NumClasses]; |
---|
257 | double[][] PriorsClassSon=new double[m_NumClasses][m_NumAttValues[son]]; |
---|
258 | double[][] PriorsClassParent=new double[m_NumClasses][m_NumAttValues[parent]]; |
---|
259 | double[][][] PriorsClassParentSon=new double[m_NumClasses][m_NumAttValues[parent]][m_NumAttValues[son]]; |
---|
260 | |
---|
261 | for(int i=0;i<m_NumClasses;i++){ |
---|
262 | PriorsClass[i]=m_ClassCounts[i]/m_NumInstances; |
---|
263 | } |
---|
264 | |
---|
265 | for(int i=0;i<m_NumClasses;i++){ |
---|
266 | for(int j=0;j<m_NumAttValues[son];j++){ |
---|
267 | PriorsClassSon[i][j]=m_ClassAttAttCounts[i][sIndex+j][sIndex+j]/m_NumInstances; |
---|
268 | } |
---|
269 | } |
---|
270 | |
---|
271 | for(int i=0;i<m_NumClasses;i++){ |
---|
272 | for(int j=0;j<m_NumAttValues[parent];j++){ |
---|
273 | PriorsClassParent[i][j]=m_ClassAttAttCounts[i][pIndex+j][pIndex+j]/m_NumInstances; |
---|
274 | } |
---|
275 | } |
---|
276 | |
---|
277 | for(int i=0;i<m_NumClasses;i++){ |
---|
278 | for(int j=0;j<m_NumAttValues[parent];j++){ |
---|
279 | for(int k=0;k<m_NumAttValues[son];k++){ |
---|
280 | PriorsClassParentSon[i][j][k]=m_ClassAttAttCounts[i][pIndex+j][sIndex+k]/m_NumInstances; |
---|
281 | } |
---|
282 | } |
---|
283 | } |
---|
284 | |
---|
285 | for(int i=0;i<m_NumClasses;i++){ |
---|
286 | for(int j=0;j<m_NumAttValues[parent];j++){ |
---|
287 | for(int k=0;k<m_NumAttValues[son];k++){ |
---|
288 | CondiMutualInfo+=PriorsClassParentSon[i][j][k]*log2(PriorsClassParentSon[i][j][k]*PriorsClass[i],PriorsClassParent[i][j]*PriorsClassSon[i][k]); |
---|
289 | } |
---|
290 | } |
---|
291 | } |
---|
292 | return CondiMutualInfo; |
---|
293 | } |
---|
294 | |
---|
295 | /** |
---|
296 | * compute the logarithm whose base is 2. |
---|
297 | * |
---|
298 | * @param x numerator of the fraction. |
---|
299 | * @param y denominator of the fraction. |
---|
300 | * @return the natual logarithm of this fraction. |
---|
301 | */ |
---|
302 | private double log2(double x,double y){ |
---|
303 | |
---|
304 | if(x<1e-6||y<1e-6) |
---|
305 | return 0.0; |
---|
306 | else |
---|
307 | return Math.log(x/y)/Math.log(2); |
---|
308 | } |
---|
309 | |
---|
310 | /** |
---|
311 | * Calculates the class membership probabilities for the given test instance |
---|
312 | * |
---|
313 | * @param instance the instance to be classified |
---|
314 | * @return predicted class probability distribution |
---|
315 | * @exception Exception if there is a problem generating the prediction |
---|
316 | */ |
---|
317 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
318 | |
---|
319 | //Definition of local variables |
---|
320 | double[] probs = new double[m_NumClasses]; |
---|
321 | int sIndex; |
---|
322 | double prob; |
---|
323 | double condiMutualInfoSum; |
---|
324 | |
---|
325 | // store instance's att values in an int array |
---|
326 | int[] attIndex = new int[m_NumAttributes]; |
---|
327 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
328 | if(att == m_ClassIndex) |
---|
329 | attIndex[att] = -1; |
---|
330 | else |
---|
331 | attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); |
---|
332 | } |
---|
333 | |
---|
334 | // calculate probabilities for each possible class value |
---|
335 | for(int classVal = 0; classVal < m_NumClasses; classVal++) { |
---|
336 | probs[classVal]=(m_ClassCounts[classVal]+1.0/m_NumClasses)/(m_NumInstances+1.0); |
---|
337 | for(int son = 0; son < m_NumAttributes; son++) { |
---|
338 | if(attIndex[son]==-1) continue; |
---|
339 | sIndex=attIndex[son]; |
---|
340 | attIndex[son]=-1; |
---|
341 | prob=0; |
---|
342 | condiMutualInfoSum=0; |
---|
343 | for(int parent=0; parent<m_NumAttributes; parent++) { |
---|
344 | if(attIndex[parent]==-1) continue; |
---|
345 | condiMutualInfoSum+=m_condiMutualInfo[son][parent]; |
---|
346 | prob+=m_condiMutualInfo[son][parent]*(m_ClassAttAttCounts[classVal][attIndex[parent]][sIndex]+1.0/m_NumAttValues[son])/(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0); |
---|
347 | } |
---|
348 | if(condiMutualInfoSum>0){ |
---|
349 | prob=prob/condiMutualInfoSum; |
---|
350 | probs[classVal] *= prob; |
---|
351 | } |
---|
352 | else{ |
---|
353 | prob=(m_ClassAttAttCounts[classVal][sIndex][sIndex]+1.0/m_NumAttValues[son])/(m_ClassCounts[classVal]+1.0); |
---|
354 | probs[classVal]*= prob; |
---|
355 | } |
---|
356 | attIndex[son] = sIndex; |
---|
357 | } |
---|
358 | } |
---|
359 | Utils.normalize(probs); |
---|
360 | return probs; |
---|
361 | } |
---|
362 | |
---|
363 | /** |
---|
364 | * returns a string representation of the classifier |
---|
365 | * |
---|
366 | * @return a representation of the classifier |
---|
367 | */ |
---|
368 | public String toString() { |
---|
369 | |
---|
370 | return "HNB (Hidden Naive Bayes)"; |
---|
371 | } |
---|
372 | |
---|
373 | /** |
---|
374 | * Returns the revision string. |
---|
375 | * |
---|
376 | * @return the revision |
---|
377 | */ |
---|
378 | public String getRevision() { |
---|
379 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
380 | } |
---|
381 | |
---|
382 | /** |
---|
383 | * Main method for testing this class. |
---|
384 | * |
---|
385 | * @param args the options |
---|
386 | */ |
---|
387 | public static void main(String[] args) { |
---|
388 | runClassifier(new HNB(), args); |
---|
389 | } |
---|
390 | } |
---|
391 | |
---|