/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Discriminative Multinomial Naive Bayes for Text Classification
* Copyright (C) 2008 Jiang Su
*/
package weka.classifiers.bayes;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.classifiers.UpdateableClassifier;
import java.util.*;
import java.io.Serializable;
import weka.core.Capabilities;
import weka.core.OptionHandler;
/**
* Class for building and using a Discriminative Multinomial Naive Bayes classifier. For more information see,
*
* Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin: Discriminative Parameter Learning for Bayesian Networks. In: ICML 2008', 2008.
*
* The core equation for this classifier:
*
* P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
*
* where Ci is class i and D is a document.
*
* @inproceedings{JiangSu2008, * author = {Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin}, * booktitle = {ICML 2008'}, * title = {Discriminative Parameter Learning for Bayesian Networks}, * year = {2008} * } ** * * Valid options are: * *
-D * If set, classifier is run in debug mode and * may output additional info to the console* * * @author Jiang Su (Jiang.Su@unb.ca) 2008 * @version $Revision: 5928 $ */ public class DMNBtext extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler, UpdateableClassifier { /** for serialization */ static final long serialVersionUID = 5932177450183457085L; /** The number of iterations. */ protected int m_NumIterations = 1; protected boolean m_BinaryWord = true; int m_numClasses=-1; protected Instances m_headerInfo; DNBBinary[] m_binaryClassifiers = null; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a Discriminative Multinomial Naive Bayes classifier. " + "For more information see,\n\n" + getTechnicalInformation().toString() + "\n\n" + "The core equation for this classifier:\n\n" + "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n" + "where Ci is class i and D is a document."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin"); result.setValue(Field.YEAR, "2008"); result.setValue(Field.TITLE, "Discriminative Parameter Learning for Bayesian Networks"); result.setValue(Field.BOOKTITLE, "ICML 2008'"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param data set of instances serving as training data * @exception Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class Instances instances = new Instances(data); instances.deleteWithMissingClass(); m_binaryClassifiers = new DNBBinary[instances.numClasses()]; m_numClasses=instances.numClasses(); m_headerInfo = new Instances(instances, 0); for (int i = 0; i < instances.numClasses(); i++) { m_binaryClassifiers[i] = new DNBBinary(); m_binaryClassifiers[i].setTargetClass(i); m_binaryClassifiers[i].initClassifier(instances); } if (instances.numInstances() == 0) return; //Iterative update Random random = new Random(); for (int it = 0; it < m_NumIterations; it++) { for (int i = 0; i < instances.numInstances(); i++) { updateClassifier(instances.instance(i)); } } // Utils.normalize(m_oldClassDis); // Utils.normalize(m_ClassDis); // m_originalPositive = m_oldClassDis[0]; // m_positive = m_ClassDis[0]; } /** * Updates the classifier with the given instance. * * @param instance the new training instance to include in the model * @exception Exception if the instance could not be incorporated in * the model. */ public void updateClassifier(Instance instance) throws Exception { if (m_numClasses == 2) { m_binaryClassifiers[0].updateClassifier(instance); } else { for (int i = 0; i < instance.numClasses(); i++) m_binaryClassifiers[i].updateClassifier(instance); } } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @exception Exception if there is a problem generating the prediction */ public double[] distributionForInstance(Instance instance) throws Exception { if (m_numClasses == 2) { // System.out.println(m_binaryClassifiers[0].getProbForTargetClass(instance)); return m_binaryClassifiers[0].distributionForInstance(instance); } double[] logDocGivenClass = new double[instance.numClasses()]; for (int i = 0; i < m_numClasses; i++) logDocGivenClass[i] = m_binaryClassifiers[i].getLogProbForTargetClass(instance); double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)]; for(int i = 0; i