/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * ComplementNaiveBayes.java * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand */ package weka.classifiers.bayes; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.core.Capabilities; import weka.core.FastVector; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; /** * Class for building and using a Complement class Naive Bayes classifier.
*
* For more information see,
*
* Jason D. Rennie, Lawrence Shih, Jaime Teevan, David R. Karger: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In: ICML, 616-623, 2003.
*
* P.S.: TF, IDF and length normalization transforms, as described in the paper, can be performed through weka.filters.unsupervised.StringToWordVector. *

* * BibTeX: *

 * @inproceedings{Rennie2003,
 *    author = {Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger},
 *    booktitle = {ICML},
 *    pages = {616-623},
 *    publisher = {AAAI Press},
 *    title = {Tackling the Poor Assumptions of Naive Bayes Text Classifiers},
 *    year = {2003}
 * }
 * 
*

* * Valid options are:

* *

 -N
 *  Normalize the word weights for each class
 * 
* *
 -S
 *  Smoothing value to avoid zero WordGivenClass probabilities (default=1.0).
 * 
* * * @author Ashraf M. Kibriya (amk14@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class ComplementNaiveBayes extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 7246302925903086397L; /** Weight of words for each class. The weight is actually the log of the probability of a word (w) given a class (c) (i.e. log(Pr[w|c])). The format of the matrix is: wordWeights[class][wordAttribute] */ private double[][] wordWeights; /** Holds the smoothing value to avoid word probabilities of zero.
P.S.: According to the paper this is the Alpha i parameter */ private double smoothingParameter = 1.0; /** True if the words weights are to be normalized */ private boolean m_normalizeWordWeights = false; /** Holds the number of Class values present in the set of specified instances */ private int numClasses; /** The instances header that'll be used in toString */ private Instances header; /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public java.util.Enumeration listOptions() { FastVector newVector = new FastVector(2); newVector.addElement( new Option("\tNormalize the word weights for each class\n", "N", 0,"-N")); newVector.addElement( new Option("\tSmoothing value to avoid zero WordGivenClass"+ " probabilities (default=1.0).\n", "S", 1,"-S")); return newVector.elements(); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String options[] = new String[4]; int current=0; if(getNormalizeWordWeights()) options[current++] = "-N"; options[current++] = "-S"; options[current++] = Double.toString(smoothingParameter); while (current < options.length) { options[current++] = ""; } return options; } /** * Parses a given list of options.

* * Valid options are:

* *

 -N
     *  Normalize the word weights for each class
     * 
* *
 -S
     *  Smoothing value to avoid zero WordGivenClass probabilities (default=1.0).
     * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setNormalizeWordWeights(Utils.getFlag('N', options)); String val = Utils.getOption('S', options); if(val.length()!=0) setSmoothingParameter(Double.parseDouble(val)); else setSmoothingParameter(1.0); } /** * Returns true if the word weights for each class are to be normalized * * @return true if the word weights are normalized */ public boolean getNormalizeWordWeights() { return m_normalizeWordWeights; } /** * Sets whether if the word weights for each class should be normalized * * @param doNormalize whether the word weights are to be normalized */ public void setNormalizeWordWeights(boolean doNormalize) { m_normalizeWordWeights = doNormalize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String normalizeWordWeightsTipText() { return "Normalizes the word weights for each class."; } /** * Gets the smoothing value to be used to avoid zero WordGivenClass * probabilities. * * @return the smoothing value */ public double getSmoothingParameter() { return smoothingParameter; } /** * Sets the smoothing value used to avoid zero WordGivenClass probabilities * * @param val the new smooting value */ public void setSmoothingParameter(double val) { smoothingParameter = val; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String smoothingParameterTipText() { return "Sets the smoothing parameter to avoid zero WordGivenClass "+ "probabilities (default=1.0)."; } /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a Complement class Naive Bayes "+ "classifier.\n\nFor more information see, \n\n"+ getTechnicalInformation().toString() + "\n\n" + "P.S.: TF, IDF and length normalization transforms, as "+ "described in the paper, can be performed through "+ "weka.filters.unsupervised.StringToWordVector."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger"); result.setValue(Field.TITLE, "Tackling the Poor Assumptions of Naive Bayes Text Classifiers"); result.setValue(Field.BOOKTITLE, "ICML"); result.setValue(Field.YEAR, "2003"); result.setValue(Field.PAGES, "616-623"); result.setValue(Field.PUBLISHER, "AAAI Press"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been built successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); numClasses = instances.numClasses(); int numAttributes = instances.numAttributes(); header = new Instances(instances, 0); double [][] ocrnceOfWordInClass = new double[numClasses][numAttributes]; wordWeights = new double[numClasses][numAttributes]; //double [] docsPerClass = new double[numClasses]; double[] wordsPerClass = new double[numClasses]; double totalWordOccurrences = 0; double sumOfSmoothingParams = (numAttributes-1)*smoothingParameter; int classIndex = instances.instance(0).classIndex(); Instance instance; int docClass; double numOccurrences; java.util.Enumeration enumInsts = instances.enumerateInstances(); while (enumInsts.hasMoreElements()) { instance = (Instance) enumInsts.nextElement(); docClass = (int)instance.value(classIndex); //docsPerClass[docClass] += instance.weight(); for(int a = 0; a * * The classification rule is:
* MinC(forAllWords(ti*Wci))
* where
* ti is the frequency of word i in the given instance
* Wci is the weight of word i in Class c.

* * For more information see section 4.4 of the paper mentioned above * in the classifiers description. * * @param instance the instance to classify * @return the index of the class the instance is most likely to belong. * @throws Exception if the classifier has not been built yet. */ public double classifyInstance(Instance instance) throws Exception { if(wordWeights==null) throw new Exception("Error. The classifier has not been built "+ "properly."); double [] valueForClass = new double[numClasses]; double sumOfClassValues=0; for(int c=0; c