source: src/main/java/weka/classifiers/bayes/ComplementNaiveBayes.java @ 7

Last change on this file since 7 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 16.8 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    ComplementNaiveBayes.java
19 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
20 */
21
22package weka.classifiers.bayes;
23
24import weka.classifiers.Classifier;
25import weka.classifiers.AbstractClassifier;
26import weka.core.Capabilities;
27import weka.core.FastVector;
28import weka.core.Instance;
29import weka.core.Instances;
30import weka.core.Option;
31import weka.core.OptionHandler;
32import weka.core.RevisionUtils;
33import weka.core.TechnicalInformation;
34import weka.core.TechnicalInformationHandler;
35import weka.core.Utils;
36import weka.core.WeightedInstancesHandler;
37import weka.core.Capabilities.Capability;
38import weka.core.TechnicalInformation.Field;
39import weka.core.TechnicalInformation.Type;
40
41
42/**
43 <!-- globalinfo-start -->
44 * Class for building and using a Complement class Naive Bayes classifier.<br/>
45 * <br/>
46 * For more information see, <br/>
47 * <br/>
48 * Jason D. Rennie, Lawrence Shih, Jaime Teevan, David R. Karger: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In: ICML, 616-623, 2003.<br/>
49 * <br/>
50 * P.S.: TF, IDF and length normalization transforms, as described in the paper, can be performed through weka.filters.unsupervised.StringToWordVector.
51 * <p/>
52 <!-- globalinfo-end -->
53 *
54 <!-- technical-bibtex-start -->
55 * BibTeX:
56 * <pre>
57 * &#64;inproceedings{Rennie2003,
58 *    author = {Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger},
59 *    booktitle = {ICML},
60 *    pages = {616-623},
61 *    publisher = {AAAI Press},
62 *    title = {Tackling the Poor Assumptions of Naive Bayes Text Classifiers},
63 *    year = {2003}
64 * }
65 * </pre>
66 * <p/>
67 <!-- technical-bibtex-end -->
68 *
69 <!-- options-start -->
70 * Valid options are: <p/>
71 *
72 * <pre> -N
73 *  Normalize the word weights for each class
74 * </pre>
75 *
76 * <pre> -S
77 *  Smoothing value to avoid zero WordGivenClass probabilities (default=1.0).
78 * </pre>
79 *
80 <!-- options-end -->
81 *
82 * @author Ashraf M. Kibriya (amk14@cs.waikato.ac.nz)
83 * @version $Revision: 5928 $
84 */
85public class ComplementNaiveBayes extends AbstractClassifier
86    implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler {
87   
88    /** for serialization */
89    static final long serialVersionUID = 7246302925903086397L;
90 
91    /**
92      Weight of words for each class. The weight is actually the
93      log of the probability of a word (w) given a class (c)
94      (i.e. log(Pr[w|c])). The format of the matrix is:
95      wordWeights[class][wordAttribute]
96    */
97    private double[][] wordWeights;
98   
99    /** Holds the smoothing value to avoid word probabilities of zero.<br>
100        P.S.: According to the paper this is the Alpha i parameter
101     */
102    private double smoothingParameter = 1.0;
103   
104    /** True if the words weights are to be normalized */
105    private boolean m_normalizeWordWeights = false;
106   
107    /** Holds the number of Class values present in the set of specified
108        instances */
109    private int numClasses;
110   
111    /** The instances header that'll be used in toString */
112    private Instances header;
113
114   
115    /**
116     * Returns an enumeration describing the available options.
117     *
118     * @return an enumeration of all the available options.
119     */
120    public java.util.Enumeration listOptions() {
121        FastVector newVector = new FastVector(2);
122        newVector.addElement(
123        new Option("\tNormalize the word weights for each class\n",
124                   "N", 0,"-N"));
125        newVector.addElement(
126        new Option("\tSmoothing value to avoid zero WordGivenClass"+
127                   " probabilities (default=1.0).\n",
128                   "S", 1,"-S"));
129       
130        return newVector.elements();
131    }
132   
133    /**
134     * Gets the current settings of the classifier.
135     *
136     * @return an array of strings suitable for passing to setOptions
137     */
138    public String[] getOptions() {
139        String options[] = new String[4];
140        int current=0;
141       
142        if(getNormalizeWordWeights())
143            options[current++] = "-N";
144       
145        options[current++] = "-S";
146        options[current++] = Double.toString(smoothingParameter);
147       
148        while (current < options.length) {
149            options[current++] = "";
150        }
151       
152        return options;
153    }       
154
155    /**
156     * Parses a given list of options. <p/>
157     *
158     <!-- options-start -->
159     * Valid options are: <p/>
160     *
161     * <pre> -N
162     *  Normalize the word weights for each class
163     * </pre>
164     *
165     * <pre> -S
166     *  Smoothing value to avoid zero WordGivenClass probabilities (default=1.0).
167     * </pre>
168     *
169     <!-- options-end -->
170     *
171     * @param options the list of options as an array of strings
172     * @throws Exception if an option is not supported
173     */
174    public void setOptions(String[] options) throws Exception {
175       
176        setNormalizeWordWeights(Utils.getFlag('N', options));
177       
178        String val = Utils.getOption('S', options);
179        if(val.length()!=0)
180          setSmoothingParameter(Double.parseDouble(val));
181        else
182          setSmoothingParameter(1.0);
183    }
184   
185    /**
186     * Returns true if the word weights for each class are to be normalized
187     *
188     * @return true if the word weights are normalized
189     */
190    public boolean getNormalizeWordWeights() {
191        return m_normalizeWordWeights;
192    }
193   
194    /**
195     * Sets whether if the word weights for each class should be normalized
196     *
197     * @param doNormalize whether the word weights are to be normalized
198     */
199    public void setNormalizeWordWeights(boolean doNormalize) {
200        m_normalizeWordWeights = doNormalize;
201    }
202   
203    /**
204     * Returns the tip text for this property
205     * @return tip text for this property suitable for
206     * displaying in the explorer/experimenter gui
207     */
208    public String normalizeWordWeightsTipText() {
209        return "Normalizes the word weights for each class.";
210    }
211   
212    /**
213     * Gets the smoothing value to be used to avoid zero WordGivenClass
214     * probabilities.
215     *
216     * @return the smoothing value
217     */
218    public double getSmoothingParameter() {
219        return smoothingParameter;
220    }
221
222    /**
223     * Sets the smoothing value used to avoid zero WordGivenClass probabilities
224     *
225     * @param val the new smooting value
226     */
227    public void setSmoothingParameter(double val) {
228        smoothingParameter = val;
229    }
230       
231    /**
232     * Returns the tip text for this property
233     * @return tip text for this property suitable for
234     * displaying in the explorer/experimenter gui
235     */
236    public String smoothingParameterTipText() {
237        return "Sets the smoothing parameter to avoid zero WordGivenClass "+
238               "probabilities (default=1.0).";
239    }
240
241    /**
242     * Returns a string describing this classifier
243     * @return a description of the classifier suitable for
244     * displaying in the explorer/experimenter gui
245     */
246    public String globalInfo() {
247       
248        return  "Class for building and using a Complement class Naive Bayes "+
249                "classifier.\n\nFor more information see, \n\n"+
250                getTechnicalInformation().toString() + "\n\n" +
251                "P.S.: TF, IDF and length normalization transforms, as "+
252                "described in the paper, can be performed through "+
253                "weka.filters.unsupervised.StringToWordVector.";
254    }
255
256    /**
257     * Returns an instance of a TechnicalInformation object, containing
258     * detailed information about the technical background of this class,
259     * e.g., paper reference or book this class is based on.
260     *
261     * @return the technical information about this class
262     */
263    public TechnicalInformation getTechnicalInformation() {
264      TechnicalInformation      result;
265     
266      result = new TechnicalInformation(Type.INPROCEEDINGS);
267      result.setValue(Field.AUTHOR, "Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger");
268      result.setValue(Field.TITLE, "Tackling the Poor Assumptions of Naive Bayes Text Classifiers");
269      result.setValue(Field.BOOKTITLE, "ICML");
270      result.setValue(Field.YEAR, "2003");
271      result.setValue(Field.PAGES, "616-623");
272      result.setValue(Field.PUBLISHER, "AAAI Press");
273     
274      return result;
275    }
276
277    /**
278     * Returns default capabilities of the classifier.
279     *
280     * @return      the capabilities of this classifier
281     */
282    public Capabilities getCapabilities() {
283      Capabilities result = super.getCapabilities();
284      result.disableAll();
285
286      // attributes
287      result.enable(Capability.NUMERIC_ATTRIBUTES);
288      result.enable(Capability.MISSING_VALUES);
289
290      // class
291      result.enable(Capability.NOMINAL_CLASS);
292      result.enable(Capability.MISSING_CLASS_VALUES);
293     
294      return result;
295    }
296   
297    /**
298     * Generates the classifier.
299     *
300     * @param instances set of instances serving as training data
301     * @throws Exception if the classifier has not been built successfully
302     */
303    public void buildClassifier(Instances instances) throws Exception {
304
305      // can classifier handle the data?
306      getCapabilities().testWithFail(instances);
307
308      // remove instances with missing class
309      instances = new Instances(instances);
310      instances.deleteWithMissingClass();
311     
312        numClasses = instances.numClasses();
313        int numAttributes = instances.numAttributes();
314       
315        header = new Instances(instances, 0);
316        double [][] ocrnceOfWordInClass = new double[numClasses][numAttributes];       
317        wordWeights = new double[numClasses][numAttributes];
318        //double [] docsPerClass = new double[numClasses];
319        double[] wordsPerClass = new double[numClasses];
320        double totalWordOccurrences = 0;
321        double sumOfSmoothingParams = (numAttributes-1)*smoothingParameter;
322        int classIndex = instances.instance(0).classIndex();       
323        Instance instance;
324        int docClass;
325        double numOccurrences;       
326       
327        java.util.Enumeration enumInsts = instances.enumerateInstances();
328        while (enumInsts.hasMoreElements()) {
329                instance = (Instance) enumInsts.nextElement();
330                docClass = (int)instance.value(classIndex);
331                //docsPerClass[docClass] += instance.weight();
332               
333                for(int a = 0; a<instance.numValues(); a++)
334                    if(instance.index(a) != instance.classIndex()) {
335                            if(!instance.isMissing(a)) {
336                                    numOccurrences = instance.valueSparse(a) * instance.weight();
337                                    if(numOccurrences < 0)
338                                        throw new Exception("Numeric attribute"+
339                                                  " values must all be greater"+
340                                                  " or equal to zero.");
341                                    totalWordOccurrences += numOccurrences;
342                                    wordsPerClass[docClass] += numOccurrences;
343                                    ocrnceOfWordInClass[docClass]
344                                          [instance.index(a)] += numOccurrences;
345                                    //For the time being wordweights[0][i]
346                                    //will hold the total occurrence of word
347                                    // i over all classes
348                                    wordWeights[0]
349                                          [instance.index(a)] += numOccurrences;
350                            }
351                    }
352        }
353
354        //Calculating the complement class probability for all classes except 0       
355        for(int c=1; c<numClasses; c++) {
356            //total occurrence of words in classes other than c
357            double totalWordOcrnces = totalWordOccurrences - wordsPerClass[c];
358
359            for(int w=0; w<numAttributes; w++) {
360                if(w != classIndex ) {
361                     //occurrence of w in classes other that c
362                    double ocrncesOfWord = 
363                                wordWeights[0][w] - ocrnceOfWordInClass[c][w];
364
365                    wordWeights[c][w] = 
366                        Math.log((ocrncesOfWord+smoothingParameter) / 
367                                (totalWordOcrnces+sumOfSmoothingParams));
368                }
369            }
370        }
371       
372        //Now calculating the complement class probability for class 0
373        for(int w=0; w<numAttributes; w++) {
374            if(w != classIndex) {
375                //occurrence of w in classes other that c
376                double ocrncesOfWord = wordWeights[0][w] - ocrnceOfWordInClass[0][w];
377                //total occurrence of words in classes other than c
378                double totalWordOcrnces = totalWordOccurrences - wordsPerClass[0];
379               
380                wordWeights[0][w] =
381                Math.log((ocrncesOfWord+smoothingParameter) /
382                (totalWordOcrnces+sumOfSmoothingParams));
383            }           
384        }
385       
386        //Normalizing weights
387        if(m_normalizeWordWeights==true)
388            for(int c=0; c<numClasses; c++) {
389                double sum=0;
390                for(int w=0; w<numAttributes; w++) {
391                    if(w!=classIndex)
392                        sum += Math.abs(wordWeights[c][w]);
393                }
394                for(int w=0; w<numAttributes; w++) {
395                    if(w!=classIndex) {
396                        wordWeights[c][w] = wordWeights[c][w]/sum;
397                    }
398                }
399            }
400
401    }
402
403   
404    /**
405     * Classifies a given instance. <p>
406     *
407     * The classification rule is: <br>
408     *     MinC(forAllWords(ti*Wci)) <br>
409     *      where <br>
410     *         ti is the frequency of word i in the given instance <br>
411     *         Wci is the weight of word i in Class c. <p>
412     *
413     * For more information see section 4.4 of the paper mentioned above
414     * in the classifiers description.
415     *
416     * @param instance the instance to classify
417     * @return the index of the class the instance is most likely to belong.
418     * @throws Exception if the classifier has not been built yet.
419     */
420    public double classifyInstance(Instance instance) throws Exception {
421
422        if(wordWeights==null)
423            throw new Exception("Error. The classifier has not been built "+
424                                "properly.");
425       
426        double [] valueForClass = new double[numClasses];
427        double sumOfClassValues=0;
428       
429        for(int c=0; c<numClasses; c++) {
430            double sumOfWordValues=0;
431            for(int w=0; w<instance.numValues(); w++) {
432                if(instance.index(w)!=instance.classIndex()) {
433                    double freqOfWordInDoc = instance.valueSparse(w);
434                    sumOfWordValues += freqOfWordInDoc * 
435                                  wordWeights[c][instance.index(w)];
436                }
437            }
438            //valueForClass[c] = Math.log(probOfClass[c]) - sumOfWordValues;
439            valueForClass[c] = sumOfWordValues;
440            sumOfClassValues += valueForClass[c];
441        }
442
443        int minidx=0;
444        for(int i=0; i<numClasses; i++)
445            if(valueForClass[i]<valueForClass[minidx])
446                minidx = i;
447       
448        return minidx;
449    }
450
451
452    /**
453     * Prints out the internal model built by the classifier. In this case
454     * it prints out the word weights calculated when building the classifier.
455     */
456    public String toString() {
457        if(wordWeights==null) {           
458            return "The classifier hasn't been built yet.";
459        }
460       
461        int numAttributes = header.numAttributes();
462        StringBuffer result = new StringBuffer("The word weights for each class are: \n"+
463                                               "------------------------------------\n\t");
464       
465        for(int c = 0; c<numClasses; c++)
466            result.append(header.classAttribute().value(c)).append("\t");
467       
468        result.append("\n");
469       
470        for(int w = 0; w<numAttributes; w++) {
471            result.append(header.attribute(w).name()).append("\t");
472            for(int c = 0; c<numClasses; c++)
473                result.append(Double.toString(wordWeights[c][w])).append("\t");
474            result.append("\n");
475        }
476       
477        return result.toString();
478    }
479   
480    /**
481     * Returns the revision string.
482     *
483     * @return          the revision
484     */
485    public String getRevision() {
486      return RevisionUtils.extract("$Revision: 5928 $");
487    }
488   
489    /**
490     * Main method for testing this class.
491     *
492     * @param argv the options
493     */
494    public static void main(String [] argv) {
495      runClassifier(new ComplementNaiveBayes(), argv);
496    }       
497}
498
Note: See TracBrowser for help on using the repository browser.