[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * ComplementNaiveBayes.java |
---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.bayes; |
---|
| 23 | |
---|
| 24 | import weka.classifiers.Classifier; |
---|
| 25 | import weka.classifiers.AbstractClassifier; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.TechnicalInformation; |
---|
| 34 | import weka.core.TechnicalInformationHandler; |
---|
| 35 | import weka.core.Utils; |
---|
| 36 | import weka.core.WeightedInstancesHandler; |
---|
| 37 | import weka.core.Capabilities.Capability; |
---|
| 38 | import weka.core.TechnicalInformation.Field; |
---|
| 39 | import weka.core.TechnicalInformation.Type; |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | /** |
---|
| 43 | <!-- globalinfo-start --> |
---|
| 44 | * Class for building and using a Complement class Naive Bayes classifier.<br/> |
---|
| 45 | * <br/> |
---|
| 46 | * For more information see, <br/> |
---|
| 47 | * <br/> |
---|
| 48 | * Jason D. Rennie, Lawrence Shih, Jaime Teevan, David R. Karger: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In: ICML, 616-623, 2003.<br/> |
---|
| 49 | * <br/> |
---|
| 50 | * P.S.: TF, IDF and length normalization transforms, as described in the paper, can be performed through weka.filters.unsupervised.StringToWordVector. |
---|
| 51 | * <p/> |
---|
| 52 | <!-- globalinfo-end --> |
---|
| 53 | * |
---|
| 54 | <!-- technical-bibtex-start --> |
---|
| 55 | * BibTeX: |
---|
| 56 | * <pre> |
---|
| 57 | * @inproceedings{Rennie2003, |
---|
| 58 | * author = {Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger}, |
---|
| 59 | * booktitle = {ICML}, |
---|
| 60 | * pages = {616-623}, |
---|
| 61 | * publisher = {AAAI Press}, |
---|
| 62 | * title = {Tackling the Poor Assumptions of Naive Bayes Text Classifiers}, |
---|
| 63 | * year = {2003} |
---|
| 64 | * } |
---|
| 65 | * </pre> |
---|
| 66 | * <p/> |
---|
| 67 | <!-- technical-bibtex-end --> |
---|
| 68 | * |
---|
| 69 | <!-- options-start --> |
---|
| 70 | * Valid options are: <p/> |
---|
| 71 | * |
---|
| 72 | * <pre> -N |
---|
| 73 | * Normalize the word weights for each class |
---|
| 74 | * </pre> |
---|
| 75 | * |
---|
| 76 | * <pre> -S |
---|
| 77 | * Smoothing value to avoid zero WordGivenClass probabilities (default=1.0). |
---|
| 78 | * </pre> |
---|
| 79 | * |
---|
| 80 | <!-- options-end --> |
---|
| 81 | * |
---|
| 82 | * @author Ashraf M. Kibriya (amk14@cs.waikato.ac.nz) |
---|
| 83 | * @version $Revision: 5928 $ |
---|
| 84 | */ |
---|
| 85 | public class ComplementNaiveBayes extends AbstractClassifier |
---|
| 86 | implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler { |
---|
| 87 | |
---|
| 88 | /** for serialization */ |
---|
| 89 | static final long serialVersionUID = 7246302925903086397L; |
---|
| 90 | |
---|
| 91 | /** |
---|
| 92 | Weight of words for each class. The weight is actually the |
---|
| 93 | log of the probability of a word (w) given a class (c) |
---|
| 94 | (i.e. log(Pr[w|c])). The format of the matrix is: |
---|
| 95 | wordWeights[class][wordAttribute] |
---|
| 96 | */ |
---|
| 97 | private double[][] wordWeights; |
---|
| 98 | |
---|
| 99 | /** Holds the smoothing value to avoid word probabilities of zero.<br> |
---|
| 100 | P.S.: According to the paper this is the Alpha i parameter |
---|
| 101 | */ |
---|
| 102 | private double smoothingParameter = 1.0; |
---|
| 103 | |
---|
| 104 | /** True if the words weights are to be normalized */ |
---|
| 105 | private boolean m_normalizeWordWeights = false; |
---|
| 106 | |
---|
| 107 | /** Holds the number of Class values present in the set of specified |
---|
| 108 | instances */ |
---|
| 109 | private int numClasses; |
---|
| 110 | |
---|
| 111 | /** The instances header that'll be used in toString */ |
---|
| 112 | private Instances header; |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | /** |
---|
| 116 | * Returns an enumeration describing the available options. |
---|
| 117 | * |
---|
| 118 | * @return an enumeration of all the available options. |
---|
| 119 | */ |
---|
| 120 | public java.util.Enumeration listOptions() { |
---|
| 121 | FastVector newVector = new FastVector(2); |
---|
| 122 | newVector.addElement( |
---|
| 123 | new Option("\tNormalize the word weights for each class\n", |
---|
| 124 | "N", 0,"-N")); |
---|
| 125 | newVector.addElement( |
---|
| 126 | new Option("\tSmoothing value to avoid zero WordGivenClass"+ |
---|
| 127 | " probabilities (default=1.0).\n", |
---|
| 128 | "S", 1,"-S")); |
---|
| 129 | |
---|
| 130 | return newVector.elements(); |
---|
| 131 | } |
---|
| 132 | |
---|
| 133 | /** |
---|
| 134 | * Gets the current settings of the classifier. |
---|
| 135 | * |
---|
| 136 | * @return an array of strings suitable for passing to setOptions |
---|
| 137 | */ |
---|
| 138 | public String[] getOptions() { |
---|
| 139 | String options[] = new String[4]; |
---|
| 140 | int current=0; |
---|
| 141 | |
---|
| 142 | if(getNormalizeWordWeights()) |
---|
| 143 | options[current++] = "-N"; |
---|
| 144 | |
---|
| 145 | options[current++] = "-S"; |
---|
| 146 | options[current++] = Double.toString(smoothingParameter); |
---|
| 147 | |
---|
| 148 | while (current < options.length) { |
---|
| 149 | options[current++] = ""; |
---|
| 150 | } |
---|
| 151 | |
---|
| 152 | return options; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | /** |
---|
| 156 | * Parses a given list of options. <p/> |
---|
| 157 | * |
---|
| 158 | <!-- options-start --> |
---|
| 159 | * Valid options are: <p/> |
---|
| 160 | * |
---|
| 161 | * <pre> -N |
---|
| 162 | * Normalize the word weights for each class |
---|
| 163 | * </pre> |
---|
| 164 | * |
---|
| 165 | * <pre> -S |
---|
| 166 | * Smoothing value to avoid zero WordGivenClass probabilities (default=1.0). |
---|
| 167 | * </pre> |
---|
| 168 | * |
---|
| 169 | <!-- options-end --> |
---|
| 170 | * |
---|
| 171 | * @param options the list of options as an array of strings |
---|
| 172 | * @throws Exception if an option is not supported |
---|
| 173 | */ |
---|
| 174 | public void setOptions(String[] options) throws Exception { |
---|
| 175 | |
---|
| 176 | setNormalizeWordWeights(Utils.getFlag('N', options)); |
---|
| 177 | |
---|
| 178 | String val = Utils.getOption('S', options); |
---|
| 179 | if(val.length()!=0) |
---|
| 180 | setSmoothingParameter(Double.parseDouble(val)); |
---|
| 181 | else |
---|
| 182 | setSmoothingParameter(1.0); |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | /** |
---|
| 186 | * Returns true if the word weights for each class are to be normalized |
---|
| 187 | * |
---|
| 188 | * @return true if the word weights are normalized |
---|
| 189 | */ |
---|
| 190 | public boolean getNormalizeWordWeights() { |
---|
| 191 | return m_normalizeWordWeights; |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | /** |
---|
| 195 | * Sets whether if the word weights for each class should be normalized |
---|
| 196 | * |
---|
| 197 | * @param doNormalize whether the word weights are to be normalized |
---|
| 198 | */ |
---|
| 199 | public void setNormalizeWordWeights(boolean doNormalize) { |
---|
| 200 | m_normalizeWordWeights = doNormalize; |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | /** |
---|
| 204 | * Returns the tip text for this property |
---|
| 205 | * @return tip text for this property suitable for |
---|
| 206 | * displaying in the explorer/experimenter gui |
---|
| 207 | */ |
---|
| 208 | public String normalizeWordWeightsTipText() { |
---|
| 209 | return "Normalizes the word weights for each class."; |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | /** |
---|
| 213 | * Gets the smoothing value to be used to avoid zero WordGivenClass |
---|
| 214 | * probabilities. |
---|
| 215 | * |
---|
| 216 | * @return the smoothing value |
---|
| 217 | */ |
---|
| 218 | public double getSmoothingParameter() { |
---|
| 219 | return smoothingParameter; |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | /** |
---|
| 223 | * Sets the smoothing value used to avoid zero WordGivenClass probabilities |
---|
| 224 | * |
---|
| 225 | * @param val the new smooting value |
---|
| 226 | */ |
---|
| 227 | public void setSmoothingParameter(double val) { |
---|
| 228 | smoothingParameter = val; |
---|
| 229 | } |
---|
| 230 | |
---|
| 231 | /** |
---|
| 232 | * Returns the tip text for this property |
---|
| 233 | * @return tip text for this property suitable for |
---|
| 234 | * displaying in the explorer/experimenter gui |
---|
| 235 | */ |
---|
| 236 | public String smoothingParameterTipText() { |
---|
| 237 | return "Sets the smoothing parameter to avoid zero WordGivenClass "+ |
---|
| 238 | "probabilities (default=1.0)."; |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | /** |
---|
| 242 | * Returns a string describing this classifier |
---|
| 243 | * @return a description of the classifier suitable for |
---|
| 244 | * displaying in the explorer/experimenter gui |
---|
| 245 | */ |
---|
| 246 | public String globalInfo() { |
---|
| 247 | |
---|
| 248 | return "Class for building and using a Complement class Naive Bayes "+ |
---|
| 249 | "classifier.\n\nFor more information see, \n\n"+ |
---|
| 250 | getTechnicalInformation().toString() + "\n\n" + |
---|
| 251 | "P.S.: TF, IDF and length normalization transforms, as "+ |
---|
| 252 | "described in the paper, can be performed through "+ |
---|
| 253 | "weka.filters.unsupervised.StringToWordVector."; |
---|
| 254 | } |
---|
| 255 | |
---|
| 256 | /** |
---|
| 257 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 258 | * detailed information about the technical background of this class, |
---|
| 259 | * e.g., paper reference or book this class is based on. |
---|
| 260 | * |
---|
| 261 | * @return the technical information about this class |
---|
| 262 | */ |
---|
| 263 | public TechnicalInformation getTechnicalInformation() { |
---|
| 264 | TechnicalInformation result; |
---|
| 265 | |
---|
| 266 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 267 | result.setValue(Field.AUTHOR, "Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger"); |
---|
| 268 | result.setValue(Field.TITLE, "Tackling the Poor Assumptions of Naive Bayes Text Classifiers"); |
---|
| 269 | result.setValue(Field.BOOKTITLE, "ICML"); |
---|
| 270 | result.setValue(Field.YEAR, "2003"); |
---|
| 271 | result.setValue(Field.PAGES, "616-623"); |
---|
| 272 | result.setValue(Field.PUBLISHER, "AAAI Press"); |
---|
| 273 | |
---|
| 274 | return result; |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | /** |
---|
| 278 | * Returns default capabilities of the classifier. |
---|
| 279 | * |
---|
| 280 | * @return the capabilities of this classifier |
---|
| 281 | */ |
---|
| 282 | public Capabilities getCapabilities() { |
---|
| 283 | Capabilities result = super.getCapabilities(); |
---|
| 284 | result.disableAll(); |
---|
| 285 | |
---|
| 286 | // attributes |
---|
| 287 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 288 | result.enable(Capability.MISSING_VALUES); |
---|
| 289 | |
---|
| 290 | // class |
---|
| 291 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 292 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 293 | |
---|
| 294 | return result; |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | /** |
---|
| 298 | * Generates the classifier. |
---|
| 299 | * |
---|
| 300 | * @param instances set of instances serving as training data |
---|
| 301 | * @throws Exception if the classifier has not been built successfully |
---|
| 302 | */ |
---|
| 303 | public void buildClassifier(Instances instances) throws Exception { |
---|
| 304 | |
---|
| 305 | // can classifier handle the data? |
---|
| 306 | getCapabilities().testWithFail(instances); |
---|
| 307 | |
---|
| 308 | // remove instances with missing class |
---|
| 309 | instances = new Instances(instances); |
---|
| 310 | instances.deleteWithMissingClass(); |
---|
| 311 | |
---|
| 312 | numClasses = instances.numClasses(); |
---|
| 313 | int numAttributes = instances.numAttributes(); |
---|
| 314 | |
---|
| 315 | header = new Instances(instances, 0); |
---|
| 316 | double [][] ocrnceOfWordInClass = new double[numClasses][numAttributes]; |
---|
| 317 | wordWeights = new double[numClasses][numAttributes]; |
---|
| 318 | //double [] docsPerClass = new double[numClasses]; |
---|
| 319 | double[] wordsPerClass = new double[numClasses]; |
---|
| 320 | double totalWordOccurrences = 0; |
---|
| 321 | double sumOfSmoothingParams = (numAttributes-1)*smoothingParameter; |
---|
| 322 | int classIndex = instances.instance(0).classIndex(); |
---|
| 323 | Instance instance; |
---|
| 324 | int docClass; |
---|
| 325 | double numOccurrences; |
---|
| 326 | |
---|
| 327 | java.util.Enumeration enumInsts = instances.enumerateInstances(); |
---|
| 328 | while (enumInsts.hasMoreElements()) { |
---|
| 329 | instance = (Instance) enumInsts.nextElement(); |
---|
| 330 | docClass = (int)instance.value(classIndex); |
---|
| 331 | //docsPerClass[docClass] += instance.weight(); |
---|
| 332 | |
---|
| 333 | for(int a = 0; a<instance.numValues(); a++) |
---|
| 334 | if(instance.index(a) != instance.classIndex()) { |
---|
| 335 | if(!instance.isMissing(a)) { |
---|
| 336 | numOccurrences = instance.valueSparse(a) * instance.weight(); |
---|
| 337 | if(numOccurrences < 0) |
---|
| 338 | throw new Exception("Numeric attribute"+ |
---|
| 339 | " values must all be greater"+ |
---|
| 340 | " or equal to zero."); |
---|
| 341 | totalWordOccurrences += numOccurrences; |
---|
| 342 | wordsPerClass[docClass] += numOccurrences; |
---|
| 343 | ocrnceOfWordInClass[docClass] |
---|
| 344 | [instance.index(a)] += numOccurrences; |
---|
| 345 | //For the time being wordweights[0][i] |
---|
| 346 | //will hold the total occurrence of word |
---|
| 347 | // i over all classes |
---|
| 348 | wordWeights[0] |
---|
| 349 | [instance.index(a)] += numOccurrences; |
---|
| 350 | } |
---|
| 351 | } |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | //Calculating the complement class probability for all classes except 0 |
---|
| 355 | for(int c=1; c<numClasses; c++) { |
---|
| 356 | //total occurrence of words in classes other than c |
---|
| 357 | double totalWordOcrnces = totalWordOccurrences - wordsPerClass[c]; |
---|
| 358 | |
---|
| 359 | for(int w=0; w<numAttributes; w++) { |
---|
| 360 | if(w != classIndex ) { |
---|
| 361 | //occurrence of w in classes other that c |
---|
| 362 | double ocrncesOfWord = |
---|
| 363 | wordWeights[0][w] - ocrnceOfWordInClass[c][w]; |
---|
| 364 | |
---|
| 365 | wordWeights[c][w] = |
---|
| 366 | Math.log((ocrncesOfWord+smoothingParameter) / |
---|
| 367 | (totalWordOcrnces+sumOfSmoothingParams)); |
---|
| 368 | } |
---|
| 369 | } |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | //Now calculating the complement class probability for class 0 |
---|
| 373 | for(int w=0; w<numAttributes; w++) { |
---|
| 374 | if(w != classIndex) { |
---|
| 375 | //occurrence of w in classes other that c |
---|
| 376 | double ocrncesOfWord = wordWeights[0][w] - ocrnceOfWordInClass[0][w]; |
---|
| 377 | //total occurrence of words in classes other than c |
---|
| 378 | double totalWordOcrnces = totalWordOccurrences - wordsPerClass[0]; |
---|
| 379 | |
---|
| 380 | wordWeights[0][w] = |
---|
| 381 | Math.log((ocrncesOfWord+smoothingParameter) / |
---|
| 382 | (totalWordOcrnces+sumOfSmoothingParams)); |
---|
| 383 | } |
---|
| 384 | } |
---|
| 385 | |
---|
| 386 | //Normalizing weights |
---|
| 387 | if(m_normalizeWordWeights==true) |
---|
| 388 | for(int c=0; c<numClasses; c++) { |
---|
| 389 | double sum=0; |
---|
| 390 | for(int w=0; w<numAttributes; w++) { |
---|
| 391 | if(w!=classIndex) |
---|
| 392 | sum += Math.abs(wordWeights[c][w]); |
---|
| 393 | } |
---|
| 394 | for(int w=0; w<numAttributes; w++) { |
---|
| 395 | if(w!=classIndex) { |
---|
| 396 | wordWeights[c][w] = wordWeights[c][w]/sum; |
---|
| 397 | } |
---|
| 398 | } |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | |
---|
| 404 | /** |
---|
| 405 | * Classifies a given instance. <p> |
---|
| 406 | * |
---|
| 407 | * The classification rule is: <br> |
---|
| 408 | * MinC(forAllWords(ti*Wci)) <br> |
---|
| 409 | * where <br> |
---|
| 410 | * ti is the frequency of word i in the given instance <br> |
---|
| 411 | * Wci is the weight of word i in Class c. <p> |
---|
| 412 | * |
---|
| 413 | * For more information see section 4.4 of the paper mentioned above |
---|
| 414 | * in the classifiers description. |
---|
| 415 | * |
---|
| 416 | * @param instance the instance to classify |
---|
| 417 | * @return the index of the class the instance is most likely to belong. |
---|
| 418 | * @throws Exception if the classifier has not been built yet. |
---|
| 419 | */ |
---|
| 420 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 421 | |
---|
| 422 | if(wordWeights==null) |
---|
| 423 | throw new Exception("Error. The classifier has not been built "+ |
---|
| 424 | "properly."); |
---|
| 425 | |
---|
| 426 | double [] valueForClass = new double[numClasses]; |
---|
| 427 | double sumOfClassValues=0; |
---|
| 428 | |
---|
| 429 | for(int c=0; c<numClasses; c++) { |
---|
| 430 | double sumOfWordValues=0; |
---|
| 431 | for(int w=0; w<instance.numValues(); w++) { |
---|
| 432 | if(instance.index(w)!=instance.classIndex()) { |
---|
| 433 | double freqOfWordInDoc = instance.valueSparse(w); |
---|
| 434 | sumOfWordValues += freqOfWordInDoc * |
---|
| 435 | wordWeights[c][instance.index(w)]; |
---|
| 436 | } |
---|
| 437 | } |
---|
| 438 | //valueForClass[c] = Math.log(probOfClass[c]) - sumOfWordValues; |
---|
| 439 | valueForClass[c] = sumOfWordValues; |
---|
| 440 | sumOfClassValues += valueForClass[c]; |
---|
| 441 | } |
---|
| 442 | |
---|
| 443 | int minidx=0; |
---|
| 444 | for(int i=0; i<numClasses; i++) |
---|
| 445 | if(valueForClass[i]<valueForClass[minidx]) |
---|
| 446 | minidx = i; |
---|
| 447 | |
---|
| 448 | return minidx; |
---|
| 449 | } |
---|
| 450 | |
---|
| 451 | |
---|
| 452 | /** |
---|
| 453 | * Prints out the internal model built by the classifier. In this case |
---|
| 454 | * it prints out the word weights calculated when building the classifier. |
---|
| 455 | */ |
---|
| 456 | public String toString() { |
---|
| 457 | if(wordWeights==null) { |
---|
| 458 | return "The classifier hasn't been built yet."; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | int numAttributes = header.numAttributes(); |
---|
| 462 | StringBuffer result = new StringBuffer("The word weights for each class are: \n"+ |
---|
| 463 | "------------------------------------\n\t"); |
---|
| 464 | |
---|
| 465 | for(int c = 0; c<numClasses; c++) |
---|
| 466 | result.append(header.classAttribute().value(c)).append("\t"); |
---|
| 467 | |
---|
| 468 | result.append("\n"); |
---|
| 469 | |
---|
| 470 | for(int w = 0; w<numAttributes; w++) { |
---|
| 471 | result.append(header.attribute(w).name()).append("\t"); |
---|
| 472 | for(int c = 0; c<numClasses; c++) |
---|
| 473 | result.append(Double.toString(wordWeights[c][w])).append("\t"); |
---|
| 474 | result.append("\n"); |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | return result.toString(); |
---|
| 478 | } |
---|
| 479 | |
---|
| 480 | /** |
---|
| 481 | * Returns the revision string. |
---|
| 482 | * |
---|
| 483 | * @return the revision |
---|
| 484 | */ |
---|
| 485 | public String getRevision() { |
---|
| 486 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | /** |
---|
| 490 | * Main method for testing this class. |
---|
| 491 | * |
---|
| 492 | * @param argv the options |
---|
| 493 | */ |
---|
| 494 | public static void main(String [] argv) { |
---|
| 495 | runClassifier(new ComplementNaiveBayes(), argv); |
---|
| 496 | } |
---|
| 497 | } |
---|
| 498 | |
---|