1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * BayesianLogisticRegression.java |
---|
19 | * Copyright (C) 2008 Illinois Institute of Technology |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.bayes.blr.GaussianPriorImpl; |
---|
28 | import weka.classifiers.bayes.blr.LaplacePriorImpl; |
---|
29 | import weka.classifiers.bayes.blr.Prior; |
---|
30 | import weka.core.Attribute; |
---|
31 | import weka.core.Capabilities; |
---|
32 | import weka.core.Instance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.OptionHandler; |
---|
36 | import weka.core.RevisionUtils; |
---|
37 | import weka.core.SelectedTag; |
---|
38 | import weka.core.SerializedObject; |
---|
39 | import weka.core.Tag; |
---|
40 | import weka.core.TechnicalInformation; |
---|
41 | import weka.core.TechnicalInformationHandler; |
---|
42 | import weka.core.Utils; |
---|
43 | import weka.core.Capabilities.Capability; |
---|
44 | import weka.core.TechnicalInformation.Field; |
---|
45 | import weka.core.TechnicalInformation.Type; |
---|
46 | import weka.filters.Filter; |
---|
47 | import weka.filters.unsupervised.attribute.Normalize; |
---|
48 | |
---|
49 | import java.util.Enumeration; |
---|
50 | import java.util.Random; |
---|
51 | import java.util.StringTokenizer; |
---|
52 | import java.util.Vector; |
---|
53 | |
---|
54 | /** |
---|
55 | <!-- globalinfo-start --> |
---|
56 | * Implements Bayesian Logistic Regression for both Gaussian and Laplace Priors.<br/> |
---|
57 | * <br/> |
---|
58 | * For more information, see<br/> |
---|
59 | * <br/> |
---|
60 | * Alexander Genkin, David D. Lewis, David Madigan (2004). Large-scale bayesian logistic regression for text categorization. URL http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf. |
---|
61 | * <p/> |
---|
62 | <!-- globalinfo-end --> |
---|
63 | * |
---|
64 | <!-- technical-bibtex-start --> |
---|
65 | * BibTeX: |
---|
66 | * <pre> |
---|
67 | * @techreport{Genkin2004, |
---|
68 | * author = {Alexander Genkin and David D. Lewis and David Madigan}, |
---|
69 | * institution = {DIMACS}, |
---|
70 | * title = {Large-scale bayesian logistic regression for text categorization}, |
---|
71 | * year = {2004}, |
---|
72 | * URL = {http://www.stat.rutgers.edu/\~madigan/PAPERS/shortFat-v3a.pdf} |
---|
73 | * } |
---|
74 | * </pre> |
---|
75 | * <p/> |
---|
76 | <!-- technical-bibtex-end --> |
---|
77 | * |
---|
78 | * |
---|
79 | * @author Navendu Garg (gargnav at iit dot edu) |
---|
80 | * @version $Revision: 5928 $ |
---|
81 | */ |
---|
82 | public class BayesianLogisticRegression extends AbstractClassifier |
---|
83 | implements OptionHandler, TechnicalInformationHandler { |
---|
84 | |
---|
85 | static final long serialVersionUID = -8013478897911757631L; |
---|
86 | |
---|
87 | /** Log-likelihood values to be used to choose the best hyperparameter. */ |
---|
88 | public static double[] LogLikelihood; |
---|
89 | |
---|
90 | /** Set of values to be used as hyperparameter values during Cross-Validation. */ |
---|
91 | public static double[] InputHyperparameterValues; |
---|
92 | |
---|
93 | /** DEBUG Mode*/ |
---|
94 | boolean debug = false; |
---|
95 | |
---|
96 | /** Choose whether to normalize data or not */ |
---|
97 | public boolean NormalizeData = false; |
---|
98 | |
---|
99 | /** Tolerance criteria for the stopping criterion. */ |
---|
100 | public double Tolerance = 0.0005; |
---|
101 | |
---|
102 | /** Threshold for binary classification of probabilisitic estimate*/ |
---|
103 | public double Threshold = 0.5; |
---|
104 | |
---|
105 | /** Distributions available */ |
---|
106 | public static final int GAUSSIAN = 1; |
---|
107 | public static final int LAPLACIAN = 2; |
---|
108 | |
---|
109 | public static final Tag[] TAGS_PRIOR = { |
---|
110 | new Tag(GAUSSIAN, "Gaussian"), |
---|
111 | new Tag(LAPLACIAN, "Laplacian") |
---|
112 | }; |
---|
113 | |
---|
114 | /** Distribution Prior class */ |
---|
115 | public int PriorClass = GAUSSIAN; |
---|
116 | |
---|
117 | /** NumFolds for CV based Hyperparameters selection*/ |
---|
118 | public int NumFolds = 2; |
---|
119 | |
---|
120 | /** Methods for selecting the hyperparameter value */ |
---|
121 | public static final int NORM_BASED = 1; |
---|
122 | public static final int CV_BASED = 2; |
---|
123 | public static final int SPECIFIC_VALUE = 3; |
---|
124 | |
---|
125 | public static final Tag[] TAGS_HYPER_METHOD = { |
---|
126 | new Tag(NORM_BASED, "Norm-based"), |
---|
127 | new Tag(CV_BASED, "CV-based"), |
---|
128 | new Tag(SPECIFIC_VALUE, "Specific value") |
---|
129 | }; |
---|
130 | |
---|
131 | /** Hyperparameter selection method */ |
---|
132 | public int HyperparameterSelection = NORM_BASED; |
---|
133 | |
---|
134 | /** The class index from the training data */ |
---|
135 | public int ClassIndex = -1; |
---|
136 | |
---|
137 | /** Best hyperparameter for test phase */ |
---|
138 | public double HyperparameterValue = 0.27; |
---|
139 | |
---|
140 | /** CV Hyperparameter Range */ |
---|
141 | public String HyperparameterRange = "R:0.01-316,3.16"; |
---|
142 | |
---|
143 | /** Maximum number of iterations */ |
---|
144 | public int maxIterations = 100; |
---|
145 | |
---|
146 | /**Iteration counter */ |
---|
147 | public int iterationCounter = 0; |
---|
148 | |
---|
149 | /** Array for storing coefficients of Bayesian regression model. */ |
---|
150 | public double[] BetaVector; |
---|
151 | |
---|
152 | /** Array to store Regression Coefficient updates. */ |
---|
153 | public double[] DeltaBeta; |
---|
154 | |
---|
155 | /** Trust Region Radius Update*/ |
---|
156 | public double[] DeltaUpdate; |
---|
157 | |
---|
158 | /** Trust Region Radius*/ |
---|
159 | public double[] Delta; |
---|
160 | |
---|
161 | /** Array to store Hyperparameter values for each feature. */ |
---|
162 | public double[] Hyperparameters; |
---|
163 | |
---|
164 | /** R(i)= BetaVector X x(i) X y(i). |
---|
165 | * This an intermediate value with respect to vector BETA, input values and corresponding class labels*/ |
---|
166 | public double[] R; |
---|
167 | |
---|
168 | /** This vector is used to store the increments on the R(i). It is also used to determining the stopping criterion.*/ |
---|
169 | public double[] DeltaR; |
---|
170 | |
---|
171 | /** |
---|
172 | * This variable is used to keep track of change in |
---|
173 | * the value of delta summation of r(i). |
---|
174 | */ |
---|
175 | public double Change; |
---|
176 | |
---|
177 | /** |
---|
178 | * Bayesian Logistic Regression returns the probability of a given instance will belong to a certain |
---|
179 | * class (p(y=+1|Beta,X). To obtain a binary value the Threshold value is used. |
---|
180 | * <pre> |
---|
181 | * p(y=+1|Beta,X)>Threshold ? 1 : -1 |
---|
182 | * </pre> |
---|
183 | */ |
---|
184 | |
---|
185 | /** Filter interface used to point to weka.filters.unsupervised.attribute.Normalize object |
---|
186 | * |
---|
187 | */ |
---|
188 | public Filter m_Filter; |
---|
189 | |
---|
190 | /** Dataset provided to do Training/Test set.*/ |
---|
191 | protected Instances m_Instances; |
---|
192 | |
---|
193 | /** Prior class object interface*/ |
---|
194 | protected Prior m_PriorUpdate; |
---|
195 | |
---|
196 | public String globalInfo() { |
---|
197 | return "Implements Bayesian Logistic Regression " |
---|
198 | + "for both Gaussian and Laplace Priors.\n\n" |
---|
199 | + "For more information, see\n\n" |
---|
200 | + getTechnicalInformation(); |
---|
201 | } |
---|
202 | |
---|
203 | /** |
---|
204 | * <pre> |
---|
205 | * (1)Initialize m_Beta[j] to 0. |
---|
206 | * (2)Initialize m_DeltaUpdate[j]. |
---|
207 | * </pre> |
---|
208 | * |
---|
209 | * */ |
---|
210 | public void initialize() throws Exception { |
---|
211 | int numOfAttributes; |
---|
212 | int numOfInstances; |
---|
213 | int i; |
---|
214 | int j; |
---|
215 | |
---|
216 | Change = 0.0; |
---|
217 | |
---|
218 | //Manipulate Data |
---|
219 | if (NormalizeData) { |
---|
220 | m_Filter = new Normalize(); |
---|
221 | m_Filter.setInputFormat(m_Instances); |
---|
222 | m_Instances = Filter.useFilter(m_Instances, m_Filter); |
---|
223 | } |
---|
224 | |
---|
225 | //Set the intecept coefficient. |
---|
226 | Attribute att = new Attribute("(intercept)"); |
---|
227 | Instance instance; |
---|
228 | |
---|
229 | m_Instances.insertAttributeAt(att, 0); |
---|
230 | |
---|
231 | for (i = 0; i < m_Instances.numInstances(); i++) { |
---|
232 | instance = m_Instances.instance(i); |
---|
233 | instance.setValue(0, 1.0); |
---|
234 | } |
---|
235 | |
---|
236 | //Get the number of attributes |
---|
237 | numOfAttributes = m_Instances.numAttributes(); |
---|
238 | numOfInstances = m_Instances.numInstances(); |
---|
239 | ClassIndex = m_Instances.classIndex(); |
---|
240 | iterationCounter = 0; |
---|
241 | |
---|
242 | //Initialize Arrays. |
---|
243 | switch (HyperparameterSelection) { |
---|
244 | case 1: |
---|
245 | HyperparameterValue = normBasedHyperParameter(); |
---|
246 | |
---|
247 | if (debug) { |
---|
248 | System.out.println("Norm-based Hyperparameter: " + HyperparameterValue); |
---|
249 | } |
---|
250 | |
---|
251 | break; |
---|
252 | |
---|
253 | case 2: |
---|
254 | HyperparameterValue = CVBasedHyperparameter(); |
---|
255 | |
---|
256 | if (debug) { |
---|
257 | System.out.println("CV-based Hyperparameter: " + HyperparameterValue); |
---|
258 | } |
---|
259 | |
---|
260 | break; |
---|
261 | } |
---|
262 | |
---|
263 | BetaVector = new double[numOfAttributes]; |
---|
264 | Delta = new double[numOfAttributes]; |
---|
265 | DeltaBeta = new double[numOfAttributes]; |
---|
266 | Hyperparameters = new double[numOfAttributes]; |
---|
267 | DeltaUpdate = new double[numOfAttributes]; |
---|
268 | |
---|
269 | for (j = 0; j < numOfAttributes; j++) { |
---|
270 | BetaVector[j] = 0.0; |
---|
271 | Delta[j] = 1.0; |
---|
272 | DeltaBeta[j] = 0.0; |
---|
273 | DeltaUpdate[j] = 0.0; |
---|
274 | |
---|
275 | //TODO: Change the way it takes values. |
---|
276 | Hyperparameters[j] = HyperparameterValue; |
---|
277 | } |
---|
278 | |
---|
279 | DeltaR = new double[numOfInstances]; |
---|
280 | R = new double[numOfInstances]; |
---|
281 | |
---|
282 | for (i = 0; i < numOfInstances; i++) { |
---|
283 | DeltaR[i] = 0.0; |
---|
284 | R[i] = 0.0; |
---|
285 | } |
---|
286 | |
---|
287 | //Set the Prior interface to the appropriate prior implementation. |
---|
288 | if (PriorClass == GAUSSIAN) { |
---|
289 | m_PriorUpdate = new GaussianPriorImpl(); |
---|
290 | } else { |
---|
291 | m_PriorUpdate = new LaplacePriorImpl(); |
---|
292 | } |
---|
293 | } |
---|
294 | |
---|
295 | /** |
---|
296 | * This method tests what kind of data this classifier can handle. |
---|
297 | * return Capabilities |
---|
298 | */ |
---|
299 | public Capabilities getCapabilities() { |
---|
300 | Capabilities result = super.getCapabilities(); |
---|
301 | result.disableAll(); |
---|
302 | |
---|
303 | // attributes |
---|
304 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
305 | |
---|
306 | result.enable(Capability.BINARY_ATTRIBUTES); |
---|
307 | |
---|
308 | // class |
---|
309 | result.enable(Capability.BINARY_CLASS); |
---|
310 | |
---|
311 | // instances |
---|
312 | result.setMinimumNumberInstances(0); |
---|
313 | |
---|
314 | return result; |
---|
315 | } |
---|
316 | |
---|
317 | /** |
---|
318 | * <ul> |
---|
319 | * <li>(1) Set the data to the class attribute m_Instances.</li> |
---|
320 | * <li>(2)Call the method initialize() to initialize the values.</li> |
---|
321 | * </ul> |
---|
322 | * @param data training data |
---|
323 | * @exception Exception if classifier can't be built successfully. |
---|
324 | */ |
---|
325 | public void buildClassifier(Instances data) throws Exception { |
---|
326 | Instance instance; |
---|
327 | int i; |
---|
328 | int j; |
---|
329 | |
---|
330 | // can classifier handle the data? |
---|
331 | getCapabilities().testWithFail(data); |
---|
332 | |
---|
333 | //(1) Set the data to the class attribute m_Instances. |
---|
334 | m_Instances = new Instances(data); |
---|
335 | |
---|
336 | //(2)Call the method initialize() to initialize the values. |
---|
337 | initialize(); |
---|
338 | |
---|
339 | do { |
---|
340 | //Compute the prior Trust Region Radius Update; |
---|
341 | for (j = 0; j < m_Instances.numAttributes(); j++) { |
---|
342 | if (j != ClassIndex) { |
---|
343 | DeltaUpdate[j] = m_PriorUpdate.update(j, m_Instances, BetaVector[j], |
---|
344 | Hyperparameters[j], R, Delta[j]); |
---|
345 | //limit step to trust region. |
---|
346 | DeltaBeta[j] = Math.min(Math.max(DeltaUpdate[j], 0 - Delta[j]), |
---|
347 | Delta[j]); |
---|
348 | |
---|
349 | //Update the |
---|
350 | for (i = 0; i < m_Instances.numInstances(); i++) { |
---|
351 | instance = m_Instances.instance(i); |
---|
352 | |
---|
353 | if (instance.value(j) != 0) { |
---|
354 | DeltaR[i] = DeltaBeta[j] * instance.value(j) * classSgn(instance.classValue()); |
---|
355 | R[i] += DeltaR[i]; |
---|
356 | } |
---|
357 | } |
---|
358 | |
---|
359 | //Updated Beta values. |
---|
360 | BetaVector[j] += DeltaBeta[j]; |
---|
361 | |
---|
362 | //Update size of trust region. |
---|
363 | Delta[j] = Math.max(2 * Math.abs(DeltaBeta[j]), Delta[j] / 2.0); |
---|
364 | } |
---|
365 | } |
---|
366 | } while (!stoppingCriterion()); |
---|
367 | |
---|
368 | m_PriorUpdate.computelogLikelihood(BetaVector, m_Instances); |
---|
369 | m_PriorUpdate.computePenalty(BetaVector, Hyperparameters); |
---|
370 | } |
---|
371 | |
---|
372 | /** |
---|
373 | * This class is used to mask the internal class labels. |
---|
374 | * |
---|
375 | * @param value internal class label |
---|
376 | * @return |
---|
377 | * <pre> |
---|
378 | * <ul><li> |
---|
379 | * -1 for internal class label 0 |
---|
380 | * </li> |
---|
381 | * <li> |
---|
382 | * +1 for internal class label 1 |
---|
383 | * </li> |
---|
384 | * </ul> |
---|
385 | * </pre> |
---|
386 | */ |
---|
387 | public static double classSgn(double value) { |
---|
388 | if (value == 0.0) { |
---|
389 | return -1.0; |
---|
390 | } else { |
---|
391 | return 1.0; |
---|
392 | } |
---|
393 | } |
---|
394 | |
---|
395 | /** |
---|
396 | * Returns an instance of a TechnicalInformation object, containing |
---|
397 | * detailed information about the technical background of this class, |
---|
398 | * e.g., paper reference or book this class is based on. |
---|
399 | * |
---|
400 | * @return the technical information about this class |
---|
401 | */ |
---|
402 | public TechnicalInformation getTechnicalInformation() { |
---|
403 | TechnicalInformation result = null; |
---|
404 | |
---|
405 | result = new TechnicalInformation(Type.TECHREPORT); |
---|
406 | result.setValue(Field.AUTHOR, "Alexander Genkin and David D. Lewis and David Madigan"); |
---|
407 | result.setValue(Field.YEAR, "2004"); |
---|
408 | result.setValue(Field.TITLE, "Large-scale bayesian logistic regression for text categorization"); |
---|
409 | result.setValue(Field.INSTITUTION, "DIMACS"); |
---|
410 | result.setValue(Field.URL, "http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf"); |
---|
411 | return result; |
---|
412 | } |
---|
413 | |
---|
414 | /** |
---|
415 | * This is a convient function that defines and upper bound |
---|
416 | * (Delta>0) for values of r(i) reachable by updates in the |
---|
417 | * trust region. |
---|
418 | * |
---|
419 | * r BetaVector X x(i)y(i). |
---|
420 | * delta A parameter where sigma > 0 |
---|
421 | * @return double function value |
---|
422 | */ |
---|
423 | public static double bigF(double r, double sigma) { |
---|
424 | double funcValue = 0.25; |
---|
425 | double absR = Math.abs(r); |
---|
426 | |
---|
427 | if (absR > sigma) { |
---|
428 | funcValue = 1.0 / (2.0 + Math.exp(absR - sigma) + Math.exp(sigma - absR)); |
---|
429 | } |
---|
430 | |
---|
431 | return funcValue; |
---|
432 | } |
---|
433 | |
---|
434 | /** |
---|
435 | * This method implements the stopping criterion |
---|
436 | * function. |
---|
437 | * |
---|
438 | * @return boolean whether to stop or not. |
---|
439 | */ |
---|
440 | public boolean stoppingCriterion() { |
---|
441 | int i; |
---|
442 | double sum_deltaR = 0.0; |
---|
443 | double sum_R = 1.0; |
---|
444 | boolean shouldStop; |
---|
445 | double value = 0.0; |
---|
446 | double delta; |
---|
447 | |
---|
448 | //Summation of changes in R(i) vector. |
---|
449 | for (i = 0; i < m_Instances.numInstances(); i++) { |
---|
450 | sum_deltaR += Math.abs(DeltaR[i]); //Numerator (deltaR(i)) |
---|
451 | sum_R += Math.abs(R[i]); // Denominator (1+sum(R(i)) |
---|
452 | } |
---|
453 | |
---|
454 | delta = Math.abs(sum_deltaR - Change); |
---|
455 | Change = delta / sum_R; |
---|
456 | |
---|
457 | if (debug) { |
---|
458 | System.out.println(Change + " <= " + Tolerance); |
---|
459 | } |
---|
460 | |
---|
461 | shouldStop = ((Change <= Tolerance) || (iterationCounter >= maxIterations)) |
---|
462 | ? true : false; |
---|
463 | iterationCounter++; |
---|
464 | Change = sum_deltaR; |
---|
465 | |
---|
466 | return shouldStop; |
---|
467 | } |
---|
468 | |
---|
469 | /** |
---|
470 | * This method computes the values for the logistic link function. |
---|
471 | * <pre>f(r)=exp(r)/(1+exp(r))</pre> |
---|
472 | * |
---|
473 | * @return output value |
---|
474 | */ |
---|
475 | public static double logisticLinkFunction(double r) { |
---|
476 | return Math.exp(r) / (1.0 + Math.exp(r)); |
---|
477 | } |
---|
478 | |
---|
479 | /** |
---|
480 | * Sign for a given value. |
---|
481 | * @param r |
---|
482 | * @return double +1 if r>0, -1 if r<0 |
---|
483 | */ |
---|
484 | public static double sgn(double r) { |
---|
485 | double sgn = 0.0; |
---|
486 | |
---|
487 | if (r > 0) { |
---|
488 | sgn = 1.0; |
---|
489 | } else if (r < 0) { |
---|
490 | sgn = -1.0; |
---|
491 | } |
---|
492 | |
---|
493 | return sgn; |
---|
494 | } |
---|
495 | |
---|
496 | /** |
---|
497 | * This function computes the norm-based hyperparameters |
---|
498 | * and stores them in the m_Hyperparameters. |
---|
499 | */ |
---|
500 | public double normBasedHyperParameter() { |
---|
501 | //TODO: Implement this method. |
---|
502 | Instance instance; |
---|
503 | |
---|
504 | double mean = 0.0; |
---|
505 | |
---|
506 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
507 | instance = m_Instances.instance(i); |
---|
508 | |
---|
509 | double sqr_sum = 0.0; |
---|
510 | |
---|
511 | for (int j = 0; j < m_Instances.numAttributes(); j++) { |
---|
512 | if (j != ClassIndex) { |
---|
513 | sqr_sum += (instance.value(j) * instance.value(j)); |
---|
514 | } |
---|
515 | } |
---|
516 | |
---|
517 | //sqr_sum=Math.sqrt(sqr_sum); |
---|
518 | mean += sqr_sum; |
---|
519 | } |
---|
520 | |
---|
521 | mean = mean / (double) m_Instances.numInstances(); |
---|
522 | |
---|
523 | return ((double) m_Instances.numAttributes()) / mean; |
---|
524 | } |
---|
525 | |
---|
526 | /** |
---|
527 | * Classifies the given instance using the Bayesian Logistic Regression function. |
---|
528 | * |
---|
529 | * @param instance the test instance |
---|
530 | * @return the classification |
---|
531 | * @throws Exception if classification can't be done successfully |
---|
532 | */ |
---|
533 | public double classifyInstance(Instance instance) throws Exception { |
---|
534 | //TODO: Implement |
---|
535 | double sum_R = 0.0; |
---|
536 | double classification = 0.0; |
---|
537 | |
---|
538 | sum_R = BetaVector[0]; |
---|
539 | |
---|
540 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
541 | if (j != (ClassIndex - 1)) { |
---|
542 | sum_R += (BetaVector[j + 1] * instance.value(j)); |
---|
543 | } |
---|
544 | } |
---|
545 | |
---|
546 | sum_R = logisticLinkFunction(sum_R); |
---|
547 | |
---|
548 | if (sum_R > Threshold) { |
---|
549 | classification = 1.0; |
---|
550 | } else { |
---|
551 | classification = 0.0; |
---|
552 | } |
---|
553 | |
---|
554 | return classification; |
---|
555 | } |
---|
556 | |
---|
557 | /** |
---|
558 | * Outputs the linear regression model as a string. |
---|
559 | * |
---|
560 | * @return the model as string |
---|
561 | */ |
---|
562 | public String toString() { |
---|
563 | |
---|
564 | if (m_Instances == null) { |
---|
565 | return "Bayesian logistic regression: No model built yet."; |
---|
566 | } |
---|
567 | |
---|
568 | StringBuffer buf = new StringBuffer(); |
---|
569 | String text = ""; |
---|
570 | |
---|
571 | switch (HyperparameterSelection) { |
---|
572 | case 1: |
---|
573 | text = "Norm-Based Hyperparameter Selection: "; |
---|
574 | |
---|
575 | break; |
---|
576 | |
---|
577 | case 2: |
---|
578 | text = "Cross-Validation Based Hyperparameter Selection: "; |
---|
579 | |
---|
580 | break; |
---|
581 | |
---|
582 | case 3: |
---|
583 | text = "Specified Hyperparameter: "; |
---|
584 | |
---|
585 | break; |
---|
586 | } |
---|
587 | |
---|
588 | buf.append(text).append(HyperparameterValue).append("\n\n"); |
---|
589 | |
---|
590 | buf.append("Regression Coefficients\n"); |
---|
591 | buf.append("=========================\n\n"); |
---|
592 | |
---|
593 | for (int j = 0; j < m_Instances.numAttributes(); j++) { |
---|
594 | if (j != ClassIndex) { |
---|
595 | if (BetaVector[j] != 0.0) { |
---|
596 | buf.append(m_Instances.attribute(j).name()).append(" : ") |
---|
597 | .append(BetaVector[j]).append("\n"); |
---|
598 | } |
---|
599 | } |
---|
600 | } |
---|
601 | |
---|
602 | buf.append("===========================\n\n"); |
---|
603 | buf.append("Likelihood: " + m_PriorUpdate.getLoglikelihood() + "\n\n"); |
---|
604 | buf.append("Penalty: " + m_PriorUpdate.getPenalty() + "\n\n"); |
---|
605 | buf.append("Regularized Log Posterior: " + m_PriorUpdate.getLogPosterior() + |
---|
606 | "\n"); |
---|
607 | buf.append("===========================\n\n"); |
---|
608 | |
---|
609 | return buf.toString(); |
---|
610 | } |
---|
611 | |
---|
612 | /** |
---|
613 | * Method computes the best hyperparameter value by doing cross |
---|
614 | * -validation on the training data and compute the likelihood. |
---|
615 | * The method can parse a range of values or a list of values. |
---|
616 | * @return Best hyperparameter value with the max likelihood value on the training data. |
---|
617 | * @throws Exception |
---|
618 | */ |
---|
619 | public double CVBasedHyperparameter() throws Exception { |
---|
620 | //TODO: Method incomplete. |
---|
621 | double start; |
---|
622 | |
---|
623 | //TODO: Method incomplete. |
---|
624 | double end; |
---|
625 | |
---|
626 | //TODO: Method incomplete. |
---|
627 | double multiplier; |
---|
628 | int size = 0; |
---|
629 | double[] list = null; |
---|
630 | double MaxHypeValue = 0.0; |
---|
631 | double MaxLikelihood = 0.0; |
---|
632 | StringTokenizer tokenizer = new StringTokenizer(HyperparameterRange); |
---|
633 | String rangeType = tokenizer.nextToken(":"); |
---|
634 | |
---|
635 | if (rangeType.equals("R")) { |
---|
636 | String temp = tokenizer.nextToken(); |
---|
637 | tokenizer = new StringTokenizer(temp); |
---|
638 | start = Double.parseDouble(tokenizer.nextToken("-")); |
---|
639 | tokenizer = new StringTokenizer(tokenizer.nextToken()); |
---|
640 | end = Double.parseDouble(tokenizer.nextToken(",")); |
---|
641 | multiplier = Double.parseDouble(tokenizer.nextToken()); |
---|
642 | |
---|
643 | int steps = (int) (((Math.log10(end) - Math.log10(start)) / Math.log10(multiplier)) + |
---|
644 | 1); |
---|
645 | list = new double[steps]; |
---|
646 | |
---|
647 | int count = 0; |
---|
648 | |
---|
649 | for (double i = start; i <= end; i *= multiplier) { |
---|
650 | list[count++] = i; |
---|
651 | } |
---|
652 | } else if (rangeType.equals("L")) { |
---|
653 | Vector vec = new Vector(); |
---|
654 | |
---|
655 | while (tokenizer.hasMoreTokens()) { |
---|
656 | vec.add(tokenizer.nextToken(",")); |
---|
657 | } |
---|
658 | |
---|
659 | list = new double[vec.size()]; |
---|
660 | |
---|
661 | for (int i = 0; i < vec.size(); i++) { |
---|
662 | list[i] = Double.parseDouble((String) vec.get(i)); |
---|
663 | } |
---|
664 | } else { |
---|
665 | //throw exception. |
---|
666 | } |
---|
667 | |
---|
668 | // Perform two-fold cross-validation to collect |
---|
669 | // unbiased predictions |
---|
670 | if (list != null) { |
---|
671 | int numFolds = (int) NumFolds; |
---|
672 | Random random = new Random(); |
---|
673 | m_Instances.randomize(random); |
---|
674 | m_Instances.stratify(numFolds); |
---|
675 | |
---|
676 | for (int k = 0; k < list.length; k++) { |
---|
677 | for (int i = 0; i < numFolds; i++) { |
---|
678 | Instances train = m_Instances.trainCV(numFolds, i, random); |
---|
679 | SerializedObject so = new SerializedObject(this); |
---|
680 | BayesianLogisticRegression blr = (BayesianLogisticRegression) so.getObject(); |
---|
681 | // blr.setHyperparameterSelection(3); |
---|
682 | blr.setHyperparameterSelection(new SelectedTag(SPECIFIC_VALUE, |
---|
683 | TAGS_HYPER_METHOD)); |
---|
684 | blr.setHyperparameterValue(list[k]); |
---|
685 | // blr.setPriorClass(PriorClass); |
---|
686 | blr.setPriorClass(new SelectedTag(PriorClass, |
---|
687 | TAGS_PRIOR)); |
---|
688 | blr.setThreshold(Threshold); |
---|
689 | blr.setTolerance(Tolerance); |
---|
690 | blr.buildClassifier(train); |
---|
691 | |
---|
692 | Instances test = m_Instances.testCV(numFolds, i); |
---|
693 | double val = blr.getLoglikeliHood(blr.BetaVector, test); |
---|
694 | |
---|
695 | if (debug) { |
---|
696 | System.out.println("Fold " + i + "Hyperparameter: " + list[k]); |
---|
697 | System.out.println("==================================="); |
---|
698 | System.out.println(" Likelihood: " + val); |
---|
699 | } |
---|
700 | |
---|
701 | if ((k == 0) | (val > MaxLikelihood)) { |
---|
702 | MaxLikelihood = val; |
---|
703 | MaxHypeValue = list[k]; |
---|
704 | } |
---|
705 | } |
---|
706 | } |
---|
707 | } else { |
---|
708 | return HyperparameterValue; |
---|
709 | } |
---|
710 | |
---|
711 | return MaxHypeValue; |
---|
712 | } |
---|
713 | |
---|
714 | /** |
---|
715 | * |
---|
716 | * @return likelihood for a given set of betas and instances |
---|
717 | */ |
---|
718 | public double getLoglikeliHood(double[] betas, Instances instances) { |
---|
719 | m_PriorUpdate.computelogLikelihood(betas, instances); |
---|
720 | |
---|
721 | return m_PriorUpdate.getLoglikelihood(); |
---|
722 | } |
---|
723 | |
---|
724 | /** |
---|
725 | * Returns an enumeration describing the available options. |
---|
726 | * |
---|
727 | * @return an enumeration of all the available options. |
---|
728 | */ |
---|
729 | public Enumeration listOptions() { |
---|
730 | Vector newVector = new Vector(); |
---|
731 | |
---|
732 | newVector.addElement(new Option("\tShow Debugging Output\n", "D", 0, "-D")); |
---|
733 | newVector.addElement(new Option("\tDistribution of the Prior " |
---|
734 | +"(1=Gaussian, 2=Laplacian)" |
---|
735 | +"\n\t(default: 1=Gaussian)" |
---|
736 | , "P", 1, |
---|
737 | "-P <integer>")); |
---|
738 | newVector.addElement(new Option("\tHyperparameter Selection Method " |
---|
739 | +"(1=Norm-based, 2=CV-based, 3=specific value)\n" |
---|
740 | +"\t(default: 1=Norm-based)", |
---|
741 | "H", |
---|
742 | 1, |
---|
743 | "-H <integer>")); |
---|
744 | newVector.addElement(new Option("\tSpecified Hyperparameter Value (use in conjunction with -H 3)\n" |
---|
745 | +"\t(default: 0.27)", |
---|
746 | "V", |
---|
747 | 1, |
---|
748 | "-V <double>")); |
---|
749 | newVector.addElement(new Option( |
---|
750 | "\tHyperparameter Range (use in conjunction with -H 2)\n" |
---|
751 | +"\t(format: R:start-end,multiplier OR L:val(1), val(2), ..., val(n))\n" |
---|
752 | +"\t(default: R:0.01-316,3.16)", |
---|
753 | "R", |
---|
754 | 1, |
---|
755 | "-R <string>")); |
---|
756 | newVector.addElement(new Option("\tTolerance Value\n\t(default: 0.0005)", |
---|
757 | "Tl", |
---|
758 | 1, |
---|
759 | "-Tl <double>")); |
---|
760 | newVector.addElement(new Option("\tThreshold Value\n\t(default: 0.5)", |
---|
761 | "S", |
---|
762 | 1, |
---|
763 | "-S <double>")); |
---|
764 | newVector.addElement(new Option("\tNumber Of Folds (use in conjuction with -H 2)\n" |
---|
765 | +"\t(default: 2)", |
---|
766 | "F", |
---|
767 | 1, |
---|
768 | "-F <integer>")); |
---|
769 | newVector.addElement(new Option("\tMax Number of Iterations\n\t(default: 100)", |
---|
770 | "I", |
---|
771 | 1, |
---|
772 | "-I <integer>")); |
---|
773 | newVector.addElement(new Option("\tNormalize the data", |
---|
774 | "N", 0, "-N")); |
---|
775 | |
---|
776 | return newVector.elements(); |
---|
777 | } |
---|
778 | |
---|
779 | /** |
---|
780 | * Parses a given list of options. <p/> |
---|
781 | * |
---|
782 | <!-- options-start --> |
---|
783 | * Valid options are: <p/> |
---|
784 | * |
---|
785 | * <pre> -D |
---|
786 | * Show Debugging Output |
---|
787 | * </pre> |
---|
788 | * |
---|
789 | * <pre> -P <integer> |
---|
790 | * Distribution of the Prior (1=Gaussian, 2=Laplacian) |
---|
791 | * (default: 1=Gaussian)</pre> |
---|
792 | * |
---|
793 | * <pre> -H <integer> |
---|
794 | * Hyperparameter Selection Method (1=Norm-based, 2=CV-based, 3=specific value) |
---|
795 | * (default: 1=Norm-based)</pre> |
---|
796 | * |
---|
797 | * <pre> -V <double> |
---|
798 | * Specified Hyperparameter Value (use in conjunction with -H 3) |
---|
799 | * (default: 0.27)</pre> |
---|
800 | * |
---|
801 | * <pre> -R <string> |
---|
802 | * Hyperparameter Range (use in conjunction with -H 2) |
---|
803 | * (format: R:start-end,multiplier OR L:val(1), val(2), ..., val(n)) |
---|
804 | * (default: R:0.01-316,3.16)</pre> |
---|
805 | * |
---|
806 | * <pre> -Tl <double> |
---|
807 | * Tolerance Value |
---|
808 | * (default: 0.0005)</pre> |
---|
809 | * |
---|
810 | * <pre> -S <double> |
---|
811 | * Threshold Value |
---|
812 | * (default: 0.5)</pre> |
---|
813 | * |
---|
814 | * <pre> -F <integer> |
---|
815 | * Number Of Folds (use in conjuction with -H 2) |
---|
816 | * (default: 2)</pre> |
---|
817 | * |
---|
818 | * <pre> -I <integer> |
---|
819 | * Max Number of Iterations |
---|
820 | * (default: 100)</pre> |
---|
821 | * |
---|
822 | * <pre> -N |
---|
823 | * Normalize the data</pre> |
---|
824 | * |
---|
825 | <!-- options-end --> |
---|
826 | * |
---|
827 | * @param options the list of options as an array of strings |
---|
828 | * @throws Exception if an option is not supported |
---|
829 | */ |
---|
830 | public void setOptions(String[] options) throws Exception { |
---|
831 | //Debug Option |
---|
832 | debug = Utils.getFlag('D', options); |
---|
833 | |
---|
834 | // Set Tolerance. |
---|
835 | String Tol = Utils.getOption("Tl", options); |
---|
836 | |
---|
837 | if (Tol.length() != 0) { |
---|
838 | Tolerance = Double.parseDouble(Tol); |
---|
839 | } |
---|
840 | |
---|
841 | //Set Threshold |
---|
842 | String Thres = Utils.getOption('S', options); |
---|
843 | |
---|
844 | if (Thres.length() != 0) { |
---|
845 | Threshold = Double.parseDouble(Thres); |
---|
846 | } |
---|
847 | |
---|
848 | //Set Hyperparameter Type |
---|
849 | String Hype = Utils.getOption('H', options); |
---|
850 | |
---|
851 | if (Hype.length() != 0) { |
---|
852 | HyperparameterSelection = Integer.parseInt(Hype); |
---|
853 | } |
---|
854 | |
---|
855 | //Set Hyperparameter Value |
---|
856 | String HyperValue = Utils.getOption('V', options); |
---|
857 | |
---|
858 | if (HyperValue.length() != 0) { |
---|
859 | HyperparameterValue = Double.parseDouble(HyperValue); |
---|
860 | } |
---|
861 | |
---|
862 | // Set hyper parameter range or list. |
---|
863 | String HyperparameterRange = Utils.getOption("R", options); |
---|
864 | |
---|
865 | //Set Prior class. |
---|
866 | String strPrior = Utils.getOption('P', options); |
---|
867 | |
---|
868 | if (strPrior.length() != 0) { |
---|
869 | PriorClass = Integer.parseInt(strPrior); |
---|
870 | } |
---|
871 | |
---|
872 | String folds = Utils.getOption('F', options); |
---|
873 | |
---|
874 | if (folds.length() != 0) { |
---|
875 | NumFolds = Integer.parseInt(folds); |
---|
876 | } |
---|
877 | |
---|
878 | String iterations = Utils.getOption('I', options); |
---|
879 | |
---|
880 | if (iterations.length() != 0) { |
---|
881 | maxIterations = Integer.parseInt(iterations); |
---|
882 | } |
---|
883 | |
---|
884 | NormalizeData = Utils.getFlag('N', options); |
---|
885 | |
---|
886 | //TODO: Implement this method for other options. |
---|
887 | Utils.checkForRemainingOptions(options); |
---|
888 | } |
---|
889 | |
---|
890 | /** |
---|
891 | * |
---|
892 | */ |
---|
893 | public String[] getOptions() { |
---|
894 | Vector result = new Vector(); |
---|
895 | |
---|
896 | //Add Debug Mode to options. |
---|
897 | result.add("-D"); |
---|
898 | |
---|
899 | //Add Tolerance value to options |
---|
900 | result.add("-Tl"); |
---|
901 | result.add("" + Tolerance); |
---|
902 | |
---|
903 | //Add Threshold value to options |
---|
904 | result.add("-S"); |
---|
905 | result.add("" + Threshold); |
---|
906 | |
---|
907 | //Add Hyperparameter value to options |
---|
908 | result.add("-H"); |
---|
909 | result.add("" + HyperparameterSelection); |
---|
910 | |
---|
911 | result.add("-V"); |
---|
912 | result.add("" + HyperparameterValue); |
---|
913 | |
---|
914 | result.add("-R"); |
---|
915 | result.add("" + HyperparameterRange); |
---|
916 | |
---|
917 | //Add Prior Class to options |
---|
918 | result.add("-P"); |
---|
919 | result.add("" + PriorClass); |
---|
920 | |
---|
921 | result.add("-F"); |
---|
922 | result.add("" + NumFolds); |
---|
923 | |
---|
924 | result.add("-I"); |
---|
925 | result.add("" + maxIterations); |
---|
926 | |
---|
927 | result.add("-N"); |
---|
928 | |
---|
929 | return (String[]) result.toArray(new String[result.size()]); |
---|
930 | } |
---|
931 | |
---|
932 | /** |
---|
933 | * Main method for testing this class. |
---|
934 | * |
---|
935 | * @param argv the options |
---|
936 | */ |
---|
937 | public static void main(String[] argv) { |
---|
938 | runClassifier(new BayesianLogisticRegression(), argv); |
---|
939 | } |
---|
940 | |
---|
941 | /** |
---|
942 | * Returns the tip text for this property |
---|
943 | * |
---|
944 | * @return tip text for this property suitable for |
---|
945 | * displaying in the explorer/experimenter gui |
---|
946 | */ |
---|
947 | public String debugTipText() { |
---|
948 | return "Turns on debugging mode."; |
---|
949 | } |
---|
950 | |
---|
951 | /** |
---|
952 | * |
---|
953 | */ |
---|
954 | public void setDebug(boolean debugMode) { |
---|
955 | debug = debugMode; |
---|
956 | } |
---|
957 | |
---|
958 | /** |
---|
959 | * Returns the tip text for this property |
---|
960 | * |
---|
961 | * @return tip text for this property suitable for |
---|
962 | * displaying in the explorer/experimenter gui |
---|
963 | */ |
---|
964 | public String hyperparameterSelectionTipText() { |
---|
965 | return "Select the type of Hyperparameter to be used."; |
---|
966 | } |
---|
967 | |
---|
968 | /** |
---|
969 | * Get the method used to select the hyperparameter |
---|
970 | * |
---|
971 | * @return the method used to select the hyperparameter |
---|
972 | */ |
---|
973 | public SelectedTag getHyperparameterSelection() { |
---|
974 | return new SelectedTag(HyperparameterSelection, |
---|
975 | TAGS_HYPER_METHOD); |
---|
976 | } |
---|
977 | |
---|
978 | /** |
---|
979 | * Set the method used to select the hyperparameter |
---|
980 | * |
---|
981 | * @param newMethod the method used to set the hyperparameter |
---|
982 | */ |
---|
983 | public void setHyperparameterSelection(SelectedTag newMethod) { |
---|
984 | if (newMethod.getTags() == TAGS_HYPER_METHOD) { |
---|
985 | int c = newMethod.getSelectedTag().getID(); |
---|
986 | if (c >= 1 && c <= 3) { |
---|
987 | HyperparameterSelection = c; |
---|
988 | } else { |
---|
989 | throw new IllegalArgumentException("Wrong selection type, -H value should be: " |
---|
990 | + "1 for norm-based, 2 for CV-based and " |
---|
991 | + "3 for specific value"); |
---|
992 | } |
---|
993 | } |
---|
994 | } |
---|
995 | |
---|
996 | /** |
---|
997 | * Returns the tip text for this property |
---|
998 | * |
---|
999 | * @return tip text for this property suitable for |
---|
1000 | * displaying in the explorer/experimenter gui |
---|
1001 | */ |
---|
1002 | public String priorClassTipText() { |
---|
1003 | return "The type of prior to be used."; |
---|
1004 | } |
---|
1005 | |
---|
1006 | /** |
---|
1007 | * Set the type of prior to use. |
---|
1008 | * |
---|
1009 | * @param newMethod the type of prior to use. |
---|
1010 | */ |
---|
1011 | public void setPriorClass(SelectedTag newMethod) { |
---|
1012 | if (newMethod.getTags() == TAGS_PRIOR) { |
---|
1013 | int c = newMethod.getSelectedTag().getID(); |
---|
1014 | if (c == GAUSSIAN || c == LAPLACIAN) { |
---|
1015 | PriorClass = c; |
---|
1016 | } else { |
---|
1017 | throw new IllegalArgumentException("Wrong selection type, -P value should be: " |
---|
1018 | + "1 for Gaussian or 2 for Laplacian"); |
---|
1019 | } |
---|
1020 | } |
---|
1021 | } |
---|
1022 | |
---|
1023 | /** |
---|
1024 | * Get the type of prior to use. |
---|
1025 | * |
---|
1026 | * @return the type of prior to use |
---|
1027 | */ |
---|
1028 | public SelectedTag getPriorClass() { |
---|
1029 | return new SelectedTag(PriorClass, |
---|
1030 | TAGS_PRIOR); |
---|
1031 | } |
---|
1032 | |
---|
1033 | /** |
---|
1034 | * Returns the tip text for this property |
---|
1035 | * |
---|
1036 | * @return tip text for this property suitable for |
---|
1037 | * displaying in the explorer/experimenter gui |
---|
1038 | */ |
---|
1039 | public String thresholdTipText() { |
---|
1040 | return "Set the threshold for classifiction. The logistic function doesn't " |
---|
1041 | + "return a class label but an estimate of p(y=+1|B,x(i)). " |
---|
1042 | + "These estimates need to be converted to binary class label predictions. " |
---|
1043 | + "values above the threshold are assigned class +1."; |
---|
1044 | } |
---|
1045 | |
---|
1046 | /** |
---|
1047 | * Return the threshold being used. |
---|
1048 | * |
---|
1049 | * @return the threshold |
---|
1050 | */ |
---|
1051 | public double getThreshold() { |
---|
1052 | return Threshold; |
---|
1053 | } |
---|
1054 | |
---|
1055 | /** |
---|
1056 | * Set the threshold to use. |
---|
1057 | * |
---|
1058 | * @param threshold the threshold to use |
---|
1059 | */ |
---|
1060 | public void setThreshold(double threshold) { |
---|
1061 | Threshold = threshold; |
---|
1062 | } |
---|
1063 | |
---|
1064 | /** |
---|
1065 | * Returns the tip text for this property |
---|
1066 | * |
---|
1067 | * @return tip text for this property suitable for |
---|
1068 | * displaying in the explorer/experimenter gui |
---|
1069 | */ |
---|
1070 | public String toleranceTipText() { |
---|
1071 | return "This value decides the stopping criterion."; |
---|
1072 | } |
---|
1073 | |
---|
1074 | /** |
---|
1075 | * Get the tolerance value |
---|
1076 | * |
---|
1077 | * @return the tolerance value |
---|
1078 | */ |
---|
1079 | public double getTolerance() { |
---|
1080 | return Tolerance; |
---|
1081 | } |
---|
1082 | |
---|
1083 | /** |
---|
1084 | * Set the tolerance value |
---|
1085 | * |
---|
1086 | * @param tolerance the tolerance value to use |
---|
1087 | */ |
---|
1088 | public void setTolerance(double tolerance) { |
---|
1089 | Tolerance = tolerance; |
---|
1090 | } |
---|
1091 | |
---|
1092 | /** |
---|
1093 | * Returns the tip text for this property |
---|
1094 | * |
---|
1095 | * @return tip text for this property suitable for |
---|
1096 | * displaying in the explorer/experimenter gui |
---|
1097 | */ |
---|
1098 | public String hyperparameterValueTipText() { |
---|
1099 | return "Specific hyperparameter value. Used when the hyperparameter " |
---|
1100 | + "selection method is set to specific value"; |
---|
1101 | } |
---|
1102 | |
---|
1103 | /** |
---|
1104 | * Get the hyperparameter value. Used when the hyperparameter |
---|
1105 | * selection method is set to specific value |
---|
1106 | * |
---|
1107 | * @return the hyperparameter value |
---|
1108 | */ |
---|
1109 | public double getHyperparameterValue() { |
---|
1110 | return HyperparameterValue; |
---|
1111 | } |
---|
1112 | |
---|
1113 | /** |
---|
1114 | * Set the hyperparameter value. Used when the hyperparameter |
---|
1115 | * selection method is set to specific value |
---|
1116 | * |
---|
1117 | * @param hyperparameterValue the value of the hyperparameter |
---|
1118 | */ |
---|
1119 | public void setHyperparameterValue(double hyperparameterValue) { |
---|
1120 | HyperparameterValue = hyperparameterValue; |
---|
1121 | } |
---|
1122 | |
---|
1123 | /** |
---|
1124 | * Returns the tip text for this property |
---|
1125 | * |
---|
1126 | * @return tip text for this property suitable for |
---|
1127 | * displaying in the explorer/experimenter gui |
---|
1128 | */ |
---|
1129 | public String numFoldsTipText() { |
---|
1130 | return "The number of folds to use for CV-based hyperparameter selection."; |
---|
1131 | } |
---|
1132 | |
---|
1133 | /** |
---|
1134 | * Return the number of folds for CV-based hyperparameter selection |
---|
1135 | * |
---|
1136 | * @return the number of CV folds |
---|
1137 | */ |
---|
1138 | public int getNumFolds() { |
---|
1139 | return NumFolds; |
---|
1140 | } |
---|
1141 | |
---|
1142 | /** |
---|
1143 | * Set the number of folds to use for CV-based hyperparameter |
---|
1144 | * selection |
---|
1145 | * |
---|
1146 | * @param numFolds number of folds to select |
---|
1147 | */ |
---|
1148 | public void setNumFolds(int numFolds) { |
---|
1149 | NumFolds = numFolds; |
---|
1150 | } |
---|
1151 | |
---|
1152 | /** |
---|
1153 | * Returns the tip text for this property |
---|
1154 | * |
---|
1155 | * @return tip text for this property suitable for |
---|
1156 | * displaying in the explorer/experimenter gui |
---|
1157 | */ |
---|
1158 | public String maxIterationsTipText() { |
---|
1159 | return "The maximum number of iterations to perform."; |
---|
1160 | } |
---|
1161 | |
---|
1162 | /** |
---|
1163 | * Get the maximum number of iterations to perform |
---|
1164 | * |
---|
1165 | * @return the maximum number of iterations |
---|
1166 | */ |
---|
1167 | public int getMaxIterations() { |
---|
1168 | return maxIterations; |
---|
1169 | } |
---|
1170 | |
---|
1171 | /** |
---|
1172 | * Set the maximum number of iterations to perform |
---|
1173 | * |
---|
1174 | * @param maxIterations maximum number of iterations |
---|
1175 | */ |
---|
1176 | public void setMaxIterations(int maxIterations) { |
---|
1177 | this.maxIterations = maxIterations; |
---|
1178 | } |
---|
1179 | |
---|
1180 | /** |
---|
1181 | * Returns the tip text for this property |
---|
1182 | * |
---|
1183 | * @return tip text for this property suitable for |
---|
1184 | * displaying in the explorer/experimenter gui |
---|
1185 | */ |
---|
1186 | public String normalizeDataTipText() { |
---|
1187 | return "Normalize the data."; |
---|
1188 | } |
---|
1189 | |
---|
1190 | /** |
---|
1191 | * Returns true if the data is to be normalized first |
---|
1192 | * |
---|
1193 | * @return true if the data is to be normalized |
---|
1194 | */ |
---|
1195 | public boolean isNormalizeData() { |
---|
1196 | return NormalizeData; |
---|
1197 | } |
---|
1198 | |
---|
1199 | /** |
---|
1200 | * Set whether to normalize the data or not |
---|
1201 | * |
---|
1202 | * @param normalizeData true if data is to be normalized |
---|
1203 | */ |
---|
1204 | public void setNormalizeData(boolean normalizeData) { |
---|
1205 | NormalizeData = normalizeData; |
---|
1206 | } |
---|
1207 | |
---|
1208 | /** |
---|
1209 | * Returns the tip text for this property |
---|
1210 | * |
---|
1211 | * @return tip text for this property suitable for |
---|
1212 | * displaying in the explorer/experimenter gui |
---|
1213 | */ |
---|
1214 | public String hyperparameterRangeTipText() { |
---|
1215 | return "Hyperparameter value range. In case of CV-based Hyperparameters, " |
---|
1216 | + "you can specify the range in two ways: \n" |
---|
1217 | + "Comma-Separated: L: 3,5,6 (This will be a list of possible values.)\n" |
---|
1218 | + "Range: R:0.01-316,3.16 (This will take values from 0.01-316 (inclusive) " |
---|
1219 | + "in multiplications of 3.16"; |
---|
1220 | } |
---|
1221 | |
---|
1222 | /** |
---|
1223 | * Get the range of hyperparameter values to consider |
---|
1224 | * during CV-based selection. |
---|
1225 | * |
---|
1226 | * @return the range of hyperparameters as a Stringe |
---|
1227 | */ |
---|
1228 | public String getHyperparameterRange() { |
---|
1229 | return HyperparameterRange; |
---|
1230 | } |
---|
1231 | |
---|
1232 | /** |
---|
1233 | * Set the range of hyperparameter values to consider |
---|
1234 | * during CV-based selection |
---|
1235 | * |
---|
1236 | * @param hyperparameterRange the range of hyperparameter values |
---|
1237 | */ |
---|
1238 | public void setHyperparameterRange(String hyperparameterRange) { |
---|
1239 | HyperparameterRange = hyperparameterRange; |
---|
1240 | } |
---|
1241 | |
---|
1242 | /** |
---|
1243 | * Returns true if debug is turned on. |
---|
1244 | * |
---|
1245 | * @return true if debug is turned on |
---|
1246 | */ |
---|
1247 | public boolean isDebug() { |
---|
1248 | return debug; |
---|
1249 | } |
---|
1250 | |
---|
1251 | /** |
---|
1252 | * Returns the revision string. |
---|
1253 | * |
---|
1254 | * @return the revision |
---|
1255 | */ |
---|
1256 | public String getRevision() { |
---|
1257 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
1258 | } |
---|
1259 | } |
---|
1260 | |
---|