[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * BayesianLogisticRegression.java |
---|
| 19 | * Copyright (C) 2008 Illinois Institute of Technology |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.bayes; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.bayes.blr.GaussianPriorImpl; |
---|
| 28 | import weka.classifiers.bayes.blr.LaplacePriorImpl; |
---|
| 29 | import weka.classifiers.bayes.blr.Prior; |
---|
| 30 | import weka.core.Attribute; |
---|
| 31 | import weka.core.Capabilities; |
---|
| 32 | import weka.core.Instance; |
---|
| 33 | import weka.core.Instances; |
---|
| 34 | import weka.core.Option; |
---|
| 35 | import weka.core.OptionHandler; |
---|
| 36 | import weka.core.RevisionUtils; |
---|
| 37 | import weka.core.SelectedTag; |
---|
| 38 | import weka.core.SerializedObject; |
---|
| 39 | import weka.core.Tag; |
---|
| 40 | import weka.core.TechnicalInformation; |
---|
| 41 | import weka.core.TechnicalInformationHandler; |
---|
| 42 | import weka.core.Utils; |
---|
| 43 | import weka.core.Capabilities.Capability; |
---|
| 44 | import weka.core.TechnicalInformation.Field; |
---|
| 45 | import weka.core.TechnicalInformation.Type; |
---|
| 46 | import weka.filters.Filter; |
---|
| 47 | import weka.filters.unsupervised.attribute.Normalize; |
---|
| 48 | |
---|
| 49 | import java.util.Enumeration; |
---|
| 50 | import java.util.Random; |
---|
| 51 | import java.util.StringTokenizer; |
---|
| 52 | import java.util.Vector; |
---|
| 53 | |
---|
| 54 | /** |
---|
| 55 | <!-- globalinfo-start --> |
---|
| 56 | * Implements Bayesian Logistic Regression for both Gaussian and Laplace Priors.<br/> |
---|
| 57 | * <br/> |
---|
| 58 | * For more information, see<br/> |
---|
| 59 | * <br/> |
---|
| 60 | * Alexander Genkin, David D. Lewis, David Madigan (2004). Large-scale bayesian logistic regression for text categorization. URL http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf. |
---|
| 61 | * <p/> |
---|
| 62 | <!-- globalinfo-end --> |
---|
| 63 | * |
---|
| 64 | <!-- technical-bibtex-start --> |
---|
| 65 | * BibTeX: |
---|
| 66 | * <pre> |
---|
| 67 | * @techreport{Genkin2004, |
---|
| 68 | * author = {Alexander Genkin and David D. Lewis and David Madigan}, |
---|
| 69 | * institution = {DIMACS}, |
---|
| 70 | * title = {Large-scale bayesian logistic regression for text categorization}, |
---|
| 71 | * year = {2004}, |
---|
| 72 | * URL = {http://www.stat.rutgers.edu/\~madigan/PAPERS/shortFat-v3a.pdf} |
---|
| 73 | * } |
---|
| 74 | * </pre> |
---|
| 75 | * <p/> |
---|
| 76 | <!-- technical-bibtex-end --> |
---|
| 77 | * |
---|
| 78 | * |
---|
| 79 | * @author Navendu Garg (gargnav at iit dot edu) |
---|
| 80 | * @version $Revision: 5928 $ |
---|
| 81 | */ |
---|
| 82 | public class BayesianLogisticRegression extends AbstractClassifier |
---|
| 83 | implements OptionHandler, TechnicalInformationHandler { |
---|
| 84 | |
---|
| 85 | static final long serialVersionUID = -8013478897911757631L; |
---|
| 86 | |
---|
| 87 | /** Log-likelihood values to be used to choose the best hyperparameter. */ |
---|
| 88 | public static double[] LogLikelihood; |
---|
| 89 | |
---|
| 90 | /** Set of values to be used as hyperparameter values during Cross-Validation. */ |
---|
| 91 | public static double[] InputHyperparameterValues; |
---|
| 92 | |
---|
| 93 | /** DEBUG Mode*/ |
---|
| 94 | boolean debug = false; |
---|
| 95 | |
---|
| 96 | /** Choose whether to normalize data or not */ |
---|
| 97 | public boolean NormalizeData = false; |
---|
| 98 | |
---|
| 99 | /** Tolerance criteria for the stopping criterion. */ |
---|
| 100 | public double Tolerance = 0.0005; |
---|
| 101 | |
---|
| 102 | /** Threshold for binary classification of probabilisitic estimate*/ |
---|
| 103 | public double Threshold = 0.5; |
---|
| 104 | |
---|
| 105 | /** Distributions available */ |
---|
| 106 | public static final int GAUSSIAN = 1; |
---|
| 107 | public static final int LAPLACIAN = 2; |
---|
| 108 | |
---|
| 109 | public static final Tag[] TAGS_PRIOR = { |
---|
| 110 | new Tag(GAUSSIAN, "Gaussian"), |
---|
| 111 | new Tag(LAPLACIAN, "Laplacian") |
---|
| 112 | }; |
---|
| 113 | |
---|
| 114 | /** Distribution Prior class */ |
---|
| 115 | public int PriorClass = GAUSSIAN; |
---|
| 116 | |
---|
| 117 | /** NumFolds for CV based Hyperparameters selection*/ |
---|
| 118 | public int NumFolds = 2; |
---|
| 119 | |
---|
| 120 | /** Methods for selecting the hyperparameter value */ |
---|
| 121 | public static final int NORM_BASED = 1; |
---|
| 122 | public static final int CV_BASED = 2; |
---|
| 123 | public static final int SPECIFIC_VALUE = 3; |
---|
| 124 | |
---|
| 125 | public static final Tag[] TAGS_HYPER_METHOD = { |
---|
| 126 | new Tag(NORM_BASED, "Norm-based"), |
---|
| 127 | new Tag(CV_BASED, "CV-based"), |
---|
| 128 | new Tag(SPECIFIC_VALUE, "Specific value") |
---|
| 129 | }; |
---|
| 130 | |
---|
| 131 | /** Hyperparameter selection method */ |
---|
| 132 | public int HyperparameterSelection = NORM_BASED; |
---|
| 133 | |
---|
| 134 | /** The class index from the training data */ |
---|
| 135 | public int ClassIndex = -1; |
---|
| 136 | |
---|
| 137 | /** Best hyperparameter for test phase */ |
---|
| 138 | public double HyperparameterValue = 0.27; |
---|
| 139 | |
---|
| 140 | /** CV Hyperparameter Range */ |
---|
| 141 | public String HyperparameterRange = "R:0.01-316,3.16"; |
---|
| 142 | |
---|
| 143 | /** Maximum number of iterations */ |
---|
| 144 | public int maxIterations = 100; |
---|
| 145 | |
---|
| 146 | /**Iteration counter */ |
---|
| 147 | public int iterationCounter = 0; |
---|
| 148 | |
---|
| 149 | /** Array for storing coefficients of Bayesian regression model. */ |
---|
| 150 | public double[] BetaVector; |
---|
| 151 | |
---|
| 152 | /** Array to store Regression Coefficient updates. */ |
---|
| 153 | public double[] DeltaBeta; |
---|
| 154 | |
---|
| 155 | /** Trust Region Radius Update*/ |
---|
| 156 | public double[] DeltaUpdate; |
---|
| 157 | |
---|
| 158 | /** Trust Region Radius*/ |
---|
| 159 | public double[] Delta; |
---|
| 160 | |
---|
| 161 | /** Array to store Hyperparameter values for each feature. */ |
---|
| 162 | public double[] Hyperparameters; |
---|
| 163 | |
---|
| 164 | /** R(i)= BetaVector X x(i) X y(i). |
---|
| 165 | * This an intermediate value with respect to vector BETA, input values and corresponding class labels*/ |
---|
| 166 | public double[] R; |
---|
| 167 | |
---|
| 168 | /** This vector is used to store the increments on the R(i). It is also used to determining the stopping criterion.*/ |
---|
| 169 | public double[] DeltaR; |
---|
| 170 | |
---|
| 171 | /** |
---|
| 172 | * This variable is used to keep track of change in |
---|
| 173 | * the value of delta summation of r(i). |
---|
| 174 | */ |
---|
| 175 | public double Change; |
---|
| 176 | |
---|
| 177 | /** |
---|
| 178 | * Bayesian Logistic Regression returns the probability of a given instance will belong to a certain |
---|
| 179 | * class (p(y=+1|Beta,X). To obtain a binary value the Threshold value is used. |
---|
| 180 | * <pre> |
---|
| 181 | * p(y=+1|Beta,X)>Threshold ? 1 : -1 |
---|
| 182 | * </pre> |
---|
| 183 | */ |
---|
| 184 | |
---|
| 185 | /** Filter interface used to point to weka.filters.unsupervised.attribute.Normalize object |
---|
| 186 | * |
---|
| 187 | */ |
---|
| 188 | public Filter m_Filter; |
---|
| 189 | |
---|
| 190 | /** Dataset provided to do Training/Test set.*/ |
---|
| 191 | protected Instances m_Instances; |
---|
| 192 | |
---|
| 193 | /** Prior class object interface*/ |
---|
| 194 | protected Prior m_PriorUpdate; |
---|
| 195 | |
---|
| 196 | public String globalInfo() { |
---|
| 197 | return "Implements Bayesian Logistic Regression " |
---|
| 198 | + "for both Gaussian and Laplace Priors.\n\n" |
---|
| 199 | + "For more information, see\n\n" |
---|
| 200 | + getTechnicalInformation(); |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | /** |
---|
| 204 | * <pre> |
---|
| 205 | * (1)Initialize m_Beta[j] to 0. |
---|
| 206 | * (2)Initialize m_DeltaUpdate[j]. |
---|
| 207 | * </pre> |
---|
| 208 | * |
---|
| 209 | * */ |
---|
| 210 | public void initialize() throws Exception { |
---|
| 211 | int numOfAttributes; |
---|
| 212 | int numOfInstances; |
---|
| 213 | int i; |
---|
| 214 | int j; |
---|
| 215 | |
---|
| 216 | Change = 0.0; |
---|
| 217 | |
---|
| 218 | //Manipulate Data |
---|
| 219 | if (NormalizeData) { |
---|
| 220 | m_Filter = new Normalize(); |
---|
| 221 | m_Filter.setInputFormat(m_Instances); |
---|
| 222 | m_Instances = Filter.useFilter(m_Instances, m_Filter); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | //Set the intecept coefficient. |
---|
| 226 | Attribute att = new Attribute("(intercept)"); |
---|
| 227 | Instance instance; |
---|
| 228 | |
---|
| 229 | m_Instances.insertAttributeAt(att, 0); |
---|
| 230 | |
---|
| 231 | for (i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 232 | instance = m_Instances.instance(i); |
---|
| 233 | instance.setValue(0, 1.0); |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | //Get the number of attributes |
---|
| 237 | numOfAttributes = m_Instances.numAttributes(); |
---|
| 238 | numOfInstances = m_Instances.numInstances(); |
---|
| 239 | ClassIndex = m_Instances.classIndex(); |
---|
| 240 | iterationCounter = 0; |
---|
| 241 | |
---|
| 242 | //Initialize Arrays. |
---|
| 243 | switch (HyperparameterSelection) { |
---|
| 244 | case 1: |
---|
| 245 | HyperparameterValue = normBasedHyperParameter(); |
---|
| 246 | |
---|
| 247 | if (debug) { |
---|
| 248 | System.out.println("Norm-based Hyperparameter: " + HyperparameterValue); |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | break; |
---|
| 252 | |
---|
| 253 | case 2: |
---|
| 254 | HyperparameterValue = CVBasedHyperparameter(); |
---|
| 255 | |
---|
| 256 | if (debug) { |
---|
| 257 | System.out.println("CV-based Hyperparameter: " + HyperparameterValue); |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | break; |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | BetaVector = new double[numOfAttributes]; |
---|
| 264 | Delta = new double[numOfAttributes]; |
---|
| 265 | DeltaBeta = new double[numOfAttributes]; |
---|
| 266 | Hyperparameters = new double[numOfAttributes]; |
---|
| 267 | DeltaUpdate = new double[numOfAttributes]; |
---|
| 268 | |
---|
| 269 | for (j = 0; j < numOfAttributes; j++) { |
---|
| 270 | BetaVector[j] = 0.0; |
---|
| 271 | Delta[j] = 1.0; |
---|
| 272 | DeltaBeta[j] = 0.0; |
---|
| 273 | DeltaUpdate[j] = 0.0; |
---|
| 274 | |
---|
| 275 | //TODO: Change the way it takes values. |
---|
| 276 | Hyperparameters[j] = HyperparameterValue; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | DeltaR = new double[numOfInstances]; |
---|
| 280 | R = new double[numOfInstances]; |
---|
| 281 | |
---|
| 282 | for (i = 0; i < numOfInstances; i++) { |
---|
| 283 | DeltaR[i] = 0.0; |
---|
| 284 | R[i] = 0.0; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | //Set the Prior interface to the appropriate prior implementation. |
---|
| 288 | if (PriorClass == GAUSSIAN) { |
---|
| 289 | m_PriorUpdate = new GaussianPriorImpl(); |
---|
| 290 | } else { |
---|
| 291 | m_PriorUpdate = new LaplacePriorImpl(); |
---|
| 292 | } |
---|
| 293 | } |
---|
| 294 | |
---|
| 295 | /** |
---|
| 296 | * This method tests what kind of data this classifier can handle. |
---|
| 297 | * return Capabilities |
---|
| 298 | */ |
---|
| 299 | public Capabilities getCapabilities() { |
---|
| 300 | Capabilities result = super.getCapabilities(); |
---|
| 301 | result.disableAll(); |
---|
| 302 | |
---|
| 303 | // attributes |
---|
| 304 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 305 | |
---|
| 306 | result.enable(Capability.BINARY_ATTRIBUTES); |
---|
| 307 | |
---|
| 308 | // class |
---|
| 309 | result.enable(Capability.BINARY_CLASS); |
---|
| 310 | |
---|
| 311 | // instances |
---|
| 312 | result.setMinimumNumberInstances(0); |
---|
| 313 | |
---|
| 314 | return result; |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | /** |
---|
| 318 | * <ul> |
---|
| 319 | * <li>(1) Set the data to the class attribute m_Instances.</li> |
---|
| 320 | * <li>(2)Call the method initialize() to initialize the values.</li> |
---|
| 321 | * </ul> |
---|
| 322 | * @param data training data |
---|
| 323 | * @exception Exception if classifier can't be built successfully. |
---|
| 324 | */ |
---|
| 325 | public void buildClassifier(Instances data) throws Exception { |
---|
| 326 | Instance instance; |
---|
| 327 | int i; |
---|
| 328 | int j; |
---|
| 329 | |
---|
| 330 | // can classifier handle the data? |
---|
| 331 | getCapabilities().testWithFail(data); |
---|
| 332 | |
---|
| 333 | //(1) Set the data to the class attribute m_Instances. |
---|
| 334 | m_Instances = new Instances(data); |
---|
| 335 | |
---|
| 336 | //(2)Call the method initialize() to initialize the values. |
---|
| 337 | initialize(); |
---|
| 338 | |
---|
| 339 | do { |
---|
| 340 | //Compute the prior Trust Region Radius Update; |
---|
| 341 | for (j = 0; j < m_Instances.numAttributes(); j++) { |
---|
| 342 | if (j != ClassIndex) { |
---|
| 343 | DeltaUpdate[j] = m_PriorUpdate.update(j, m_Instances, BetaVector[j], |
---|
| 344 | Hyperparameters[j], R, Delta[j]); |
---|
| 345 | //limit step to trust region. |
---|
| 346 | DeltaBeta[j] = Math.min(Math.max(DeltaUpdate[j], 0 - Delta[j]), |
---|
| 347 | Delta[j]); |
---|
| 348 | |
---|
| 349 | //Update the |
---|
| 350 | for (i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 351 | instance = m_Instances.instance(i); |
---|
| 352 | |
---|
| 353 | if (instance.value(j) != 0) { |
---|
| 354 | DeltaR[i] = DeltaBeta[j] * instance.value(j) * classSgn(instance.classValue()); |
---|
| 355 | R[i] += DeltaR[i]; |
---|
| 356 | } |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | //Updated Beta values. |
---|
| 360 | BetaVector[j] += DeltaBeta[j]; |
---|
| 361 | |
---|
| 362 | //Update size of trust region. |
---|
| 363 | Delta[j] = Math.max(2 * Math.abs(DeltaBeta[j]), Delta[j] / 2.0); |
---|
| 364 | } |
---|
| 365 | } |
---|
| 366 | } while (!stoppingCriterion()); |
---|
| 367 | |
---|
| 368 | m_PriorUpdate.computelogLikelihood(BetaVector, m_Instances); |
---|
| 369 | m_PriorUpdate.computePenalty(BetaVector, Hyperparameters); |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | /** |
---|
| 373 | * This class is used to mask the internal class labels. |
---|
| 374 | * |
---|
| 375 | * @param value internal class label |
---|
| 376 | * @return |
---|
| 377 | * <pre> |
---|
| 378 | * <ul><li> |
---|
| 379 | * -1 for internal class label 0 |
---|
| 380 | * </li> |
---|
| 381 | * <li> |
---|
| 382 | * +1 for internal class label 1 |
---|
| 383 | * </li> |
---|
| 384 | * </ul> |
---|
| 385 | * </pre> |
---|
| 386 | */ |
---|
| 387 | public static double classSgn(double value) { |
---|
| 388 | if (value == 0.0) { |
---|
| 389 | return -1.0; |
---|
| 390 | } else { |
---|
| 391 | return 1.0; |
---|
| 392 | } |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | /** |
---|
| 396 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 397 | * detailed information about the technical background of this class, |
---|
| 398 | * e.g., paper reference or book this class is based on. |
---|
| 399 | * |
---|
| 400 | * @return the technical information about this class |
---|
| 401 | */ |
---|
| 402 | public TechnicalInformation getTechnicalInformation() { |
---|
| 403 | TechnicalInformation result = null; |
---|
| 404 | |
---|
| 405 | result = new TechnicalInformation(Type.TECHREPORT); |
---|
| 406 | result.setValue(Field.AUTHOR, "Alexander Genkin and David D. Lewis and David Madigan"); |
---|
| 407 | result.setValue(Field.YEAR, "2004"); |
---|
| 408 | result.setValue(Field.TITLE, "Large-scale bayesian logistic regression for text categorization"); |
---|
| 409 | result.setValue(Field.INSTITUTION, "DIMACS"); |
---|
| 410 | result.setValue(Field.URL, "http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf"); |
---|
| 411 | return result; |
---|
| 412 | } |
---|
| 413 | |
---|
| 414 | /** |
---|
| 415 | * This is a convient function that defines and upper bound |
---|
| 416 | * (Delta>0) for values of r(i) reachable by updates in the |
---|
| 417 | * trust region. |
---|
| 418 | * |
---|
| 419 | * r BetaVector X x(i)y(i). |
---|
| 420 | * delta A parameter where sigma > 0 |
---|
| 421 | * @return double function value |
---|
| 422 | */ |
---|
| 423 | public static double bigF(double r, double sigma) { |
---|
| 424 | double funcValue = 0.25; |
---|
| 425 | double absR = Math.abs(r); |
---|
| 426 | |
---|
| 427 | if (absR > sigma) { |
---|
| 428 | funcValue = 1.0 / (2.0 + Math.exp(absR - sigma) + Math.exp(sigma - absR)); |
---|
| 429 | } |
---|
| 430 | |
---|
| 431 | return funcValue; |
---|
| 432 | } |
---|
| 433 | |
---|
| 434 | /** |
---|
| 435 | * This method implements the stopping criterion |
---|
| 436 | * function. |
---|
| 437 | * |
---|
| 438 | * @return boolean whether to stop or not. |
---|
| 439 | */ |
---|
| 440 | public boolean stoppingCriterion() { |
---|
| 441 | int i; |
---|
| 442 | double sum_deltaR = 0.0; |
---|
| 443 | double sum_R = 1.0; |
---|
| 444 | boolean shouldStop; |
---|
| 445 | double value = 0.0; |
---|
| 446 | double delta; |
---|
| 447 | |
---|
| 448 | //Summation of changes in R(i) vector. |
---|
| 449 | for (i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 450 | sum_deltaR += Math.abs(DeltaR[i]); //Numerator (deltaR(i)) |
---|
| 451 | sum_R += Math.abs(R[i]); // Denominator (1+sum(R(i)) |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | delta = Math.abs(sum_deltaR - Change); |
---|
| 455 | Change = delta / sum_R; |
---|
| 456 | |
---|
| 457 | if (debug) { |
---|
| 458 | System.out.println(Change + " <= " + Tolerance); |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | shouldStop = ((Change <= Tolerance) || (iterationCounter >= maxIterations)) |
---|
| 462 | ? true : false; |
---|
| 463 | iterationCounter++; |
---|
| 464 | Change = sum_deltaR; |
---|
| 465 | |
---|
| 466 | return shouldStop; |
---|
| 467 | } |
---|
| 468 | |
---|
| 469 | /** |
---|
| 470 | * This method computes the values for the logistic link function. |
---|
| 471 | * <pre>f(r)=exp(r)/(1+exp(r))</pre> |
---|
| 472 | * |
---|
| 473 | * @return output value |
---|
| 474 | */ |
---|
| 475 | public static double logisticLinkFunction(double r) { |
---|
| 476 | return Math.exp(r) / (1.0 + Math.exp(r)); |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | /** |
---|
| 480 | * Sign for a given value. |
---|
| 481 | * @param r |
---|
| 482 | * @return double +1 if r>0, -1 if r<0 |
---|
| 483 | */ |
---|
| 484 | public static double sgn(double r) { |
---|
| 485 | double sgn = 0.0; |
---|
| 486 | |
---|
| 487 | if (r > 0) { |
---|
| 488 | sgn = 1.0; |
---|
| 489 | } else if (r < 0) { |
---|
| 490 | sgn = -1.0; |
---|
| 491 | } |
---|
| 492 | |
---|
| 493 | return sgn; |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | /** |
---|
| 497 | * This function computes the norm-based hyperparameters |
---|
| 498 | * and stores them in the m_Hyperparameters. |
---|
| 499 | */ |
---|
| 500 | public double normBasedHyperParameter() { |
---|
| 501 | //TODO: Implement this method. |
---|
| 502 | Instance instance; |
---|
| 503 | |
---|
| 504 | double mean = 0.0; |
---|
| 505 | |
---|
| 506 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 507 | instance = m_Instances.instance(i); |
---|
| 508 | |
---|
| 509 | double sqr_sum = 0.0; |
---|
| 510 | |
---|
| 511 | for (int j = 0; j < m_Instances.numAttributes(); j++) { |
---|
| 512 | if (j != ClassIndex) { |
---|
| 513 | sqr_sum += (instance.value(j) * instance.value(j)); |
---|
| 514 | } |
---|
| 515 | } |
---|
| 516 | |
---|
| 517 | //sqr_sum=Math.sqrt(sqr_sum); |
---|
| 518 | mean += sqr_sum; |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | mean = mean / (double) m_Instances.numInstances(); |
---|
| 522 | |
---|
| 523 | return ((double) m_Instances.numAttributes()) / mean; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * Classifies the given instance using the Bayesian Logistic Regression function. |
---|
| 528 | * |
---|
| 529 | * @param instance the test instance |
---|
| 530 | * @return the classification |
---|
| 531 | * @throws Exception if classification can't be done successfully |
---|
| 532 | */ |
---|
| 533 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 534 | //TODO: Implement |
---|
| 535 | double sum_R = 0.0; |
---|
| 536 | double classification = 0.0; |
---|
| 537 | |
---|
| 538 | sum_R = BetaVector[0]; |
---|
| 539 | |
---|
| 540 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
| 541 | if (j != (ClassIndex - 1)) { |
---|
| 542 | sum_R += (BetaVector[j + 1] * instance.value(j)); |
---|
| 543 | } |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | sum_R = logisticLinkFunction(sum_R); |
---|
| 547 | |
---|
| 548 | if (sum_R > Threshold) { |
---|
| 549 | classification = 1.0; |
---|
| 550 | } else { |
---|
| 551 | classification = 0.0; |
---|
| 552 | } |
---|
| 553 | |
---|
| 554 | return classification; |
---|
| 555 | } |
---|
| 556 | |
---|
| 557 | /** |
---|
| 558 | * Outputs the linear regression model as a string. |
---|
| 559 | * |
---|
| 560 | * @return the model as string |
---|
| 561 | */ |
---|
| 562 | public String toString() { |
---|
| 563 | |
---|
| 564 | if (m_Instances == null) { |
---|
| 565 | return "Bayesian logistic regression: No model built yet."; |
---|
| 566 | } |
---|
| 567 | |
---|
| 568 | StringBuffer buf = new StringBuffer(); |
---|
| 569 | String text = ""; |
---|
| 570 | |
---|
| 571 | switch (HyperparameterSelection) { |
---|
| 572 | case 1: |
---|
| 573 | text = "Norm-Based Hyperparameter Selection: "; |
---|
| 574 | |
---|
| 575 | break; |
---|
| 576 | |
---|
| 577 | case 2: |
---|
| 578 | text = "Cross-Validation Based Hyperparameter Selection: "; |
---|
| 579 | |
---|
| 580 | break; |
---|
| 581 | |
---|
| 582 | case 3: |
---|
| 583 | text = "Specified Hyperparameter: "; |
---|
| 584 | |
---|
| 585 | break; |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | buf.append(text).append(HyperparameterValue).append("\n\n"); |
---|
| 589 | |
---|
| 590 | buf.append("Regression Coefficients\n"); |
---|
| 591 | buf.append("=========================\n\n"); |
---|
| 592 | |
---|
| 593 | for (int j = 0; j < m_Instances.numAttributes(); j++) { |
---|
| 594 | if (j != ClassIndex) { |
---|
| 595 | if (BetaVector[j] != 0.0) { |
---|
| 596 | buf.append(m_Instances.attribute(j).name()).append(" : ") |
---|
| 597 | .append(BetaVector[j]).append("\n"); |
---|
| 598 | } |
---|
| 599 | } |
---|
| 600 | } |
---|
| 601 | |
---|
| 602 | buf.append("===========================\n\n"); |
---|
| 603 | buf.append("Likelihood: " + m_PriorUpdate.getLoglikelihood() + "\n\n"); |
---|
| 604 | buf.append("Penalty: " + m_PriorUpdate.getPenalty() + "\n\n"); |
---|
| 605 | buf.append("Regularized Log Posterior: " + m_PriorUpdate.getLogPosterior() + |
---|
| 606 | "\n"); |
---|
| 607 | buf.append("===========================\n\n"); |
---|
| 608 | |
---|
| 609 | return buf.toString(); |
---|
| 610 | } |
---|
| 611 | |
---|
| 612 | /** |
---|
| 613 | * Method computes the best hyperparameter value by doing cross |
---|
| 614 | * -validation on the training data and compute the likelihood. |
---|
| 615 | * The method can parse a range of values or a list of values. |
---|
| 616 | * @return Best hyperparameter value with the max likelihood value on the training data. |
---|
| 617 | * @throws Exception |
---|
| 618 | */ |
---|
| 619 | public double CVBasedHyperparameter() throws Exception { |
---|
| 620 | //TODO: Method incomplete. |
---|
| 621 | double start; |
---|
| 622 | |
---|
| 623 | //TODO: Method incomplete. |
---|
| 624 | double end; |
---|
| 625 | |
---|
| 626 | //TODO: Method incomplete. |
---|
| 627 | double multiplier; |
---|
| 628 | int size = 0; |
---|
| 629 | double[] list = null; |
---|
| 630 | double MaxHypeValue = 0.0; |
---|
| 631 | double MaxLikelihood = 0.0; |
---|
| 632 | StringTokenizer tokenizer = new StringTokenizer(HyperparameterRange); |
---|
| 633 | String rangeType = tokenizer.nextToken(":"); |
---|
| 634 | |
---|
| 635 | if (rangeType.equals("R")) { |
---|
| 636 | String temp = tokenizer.nextToken(); |
---|
| 637 | tokenizer = new StringTokenizer(temp); |
---|
| 638 | start = Double.parseDouble(tokenizer.nextToken("-")); |
---|
| 639 | tokenizer = new StringTokenizer(tokenizer.nextToken()); |
---|
| 640 | end = Double.parseDouble(tokenizer.nextToken(",")); |
---|
| 641 | multiplier = Double.parseDouble(tokenizer.nextToken()); |
---|
| 642 | |
---|
| 643 | int steps = (int) (((Math.log10(end) - Math.log10(start)) / Math.log10(multiplier)) + |
---|
| 644 | 1); |
---|
| 645 | list = new double[steps]; |
---|
| 646 | |
---|
| 647 | int count = 0; |
---|
| 648 | |
---|
| 649 | for (double i = start; i <= end; i *= multiplier) { |
---|
| 650 | list[count++] = i; |
---|
| 651 | } |
---|
| 652 | } else if (rangeType.equals("L")) { |
---|
| 653 | Vector vec = new Vector(); |
---|
| 654 | |
---|
| 655 | while (tokenizer.hasMoreTokens()) { |
---|
| 656 | vec.add(tokenizer.nextToken(",")); |
---|
| 657 | } |
---|
| 658 | |
---|
| 659 | list = new double[vec.size()]; |
---|
| 660 | |
---|
| 661 | for (int i = 0; i < vec.size(); i++) { |
---|
| 662 | list[i] = Double.parseDouble((String) vec.get(i)); |
---|
| 663 | } |
---|
| 664 | } else { |
---|
| 665 | //throw exception. |
---|
| 666 | } |
---|
| 667 | |
---|
| 668 | // Perform two-fold cross-validation to collect |
---|
| 669 | // unbiased predictions |
---|
| 670 | if (list != null) { |
---|
| 671 | int numFolds = (int) NumFolds; |
---|
| 672 | Random random = new Random(); |
---|
| 673 | m_Instances.randomize(random); |
---|
| 674 | m_Instances.stratify(numFolds); |
---|
| 675 | |
---|
| 676 | for (int k = 0; k < list.length; k++) { |
---|
| 677 | for (int i = 0; i < numFolds; i++) { |
---|
| 678 | Instances train = m_Instances.trainCV(numFolds, i, random); |
---|
| 679 | SerializedObject so = new SerializedObject(this); |
---|
| 680 | BayesianLogisticRegression blr = (BayesianLogisticRegression) so.getObject(); |
---|
| 681 | // blr.setHyperparameterSelection(3); |
---|
| 682 | blr.setHyperparameterSelection(new SelectedTag(SPECIFIC_VALUE, |
---|
| 683 | TAGS_HYPER_METHOD)); |
---|
| 684 | blr.setHyperparameterValue(list[k]); |
---|
| 685 | // blr.setPriorClass(PriorClass); |
---|
| 686 | blr.setPriorClass(new SelectedTag(PriorClass, |
---|
| 687 | TAGS_PRIOR)); |
---|
| 688 | blr.setThreshold(Threshold); |
---|
| 689 | blr.setTolerance(Tolerance); |
---|
| 690 | blr.buildClassifier(train); |
---|
| 691 | |
---|
| 692 | Instances test = m_Instances.testCV(numFolds, i); |
---|
| 693 | double val = blr.getLoglikeliHood(blr.BetaVector, test); |
---|
| 694 | |
---|
| 695 | if (debug) { |
---|
| 696 | System.out.println("Fold " + i + "Hyperparameter: " + list[k]); |
---|
| 697 | System.out.println("==================================="); |
---|
| 698 | System.out.println(" Likelihood: " + val); |
---|
| 699 | } |
---|
| 700 | |
---|
| 701 | if ((k == 0) | (val > MaxLikelihood)) { |
---|
| 702 | MaxLikelihood = val; |
---|
| 703 | MaxHypeValue = list[k]; |
---|
| 704 | } |
---|
| 705 | } |
---|
| 706 | } |
---|
| 707 | } else { |
---|
| 708 | return HyperparameterValue; |
---|
| 709 | } |
---|
| 710 | |
---|
| 711 | return MaxHypeValue; |
---|
| 712 | } |
---|
| 713 | |
---|
| 714 | /** |
---|
| 715 | * |
---|
| 716 | * @return likelihood for a given set of betas and instances |
---|
| 717 | */ |
---|
| 718 | public double getLoglikeliHood(double[] betas, Instances instances) { |
---|
| 719 | m_PriorUpdate.computelogLikelihood(betas, instances); |
---|
| 720 | |
---|
| 721 | return m_PriorUpdate.getLoglikelihood(); |
---|
| 722 | } |
---|
| 723 | |
---|
| 724 | /** |
---|
| 725 | * Returns an enumeration describing the available options. |
---|
| 726 | * |
---|
| 727 | * @return an enumeration of all the available options. |
---|
| 728 | */ |
---|
| 729 | public Enumeration listOptions() { |
---|
| 730 | Vector newVector = new Vector(); |
---|
| 731 | |
---|
| 732 | newVector.addElement(new Option("\tShow Debugging Output\n", "D", 0, "-D")); |
---|
| 733 | newVector.addElement(new Option("\tDistribution of the Prior " |
---|
| 734 | +"(1=Gaussian, 2=Laplacian)" |
---|
| 735 | +"\n\t(default: 1=Gaussian)" |
---|
| 736 | , "P", 1, |
---|
| 737 | "-P <integer>")); |
---|
| 738 | newVector.addElement(new Option("\tHyperparameter Selection Method " |
---|
| 739 | +"(1=Norm-based, 2=CV-based, 3=specific value)\n" |
---|
| 740 | +"\t(default: 1=Norm-based)", |
---|
| 741 | "H", |
---|
| 742 | 1, |
---|
| 743 | "-H <integer>")); |
---|
| 744 | newVector.addElement(new Option("\tSpecified Hyperparameter Value (use in conjunction with -H 3)\n" |
---|
| 745 | +"\t(default: 0.27)", |
---|
| 746 | "V", |
---|
| 747 | 1, |
---|
| 748 | "-V <double>")); |
---|
| 749 | newVector.addElement(new Option( |
---|
| 750 | "\tHyperparameter Range (use in conjunction with -H 2)\n" |
---|
| 751 | +"\t(format: R:start-end,multiplier OR L:val(1), val(2), ..., val(n))\n" |
---|
| 752 | +"\t(default: R:0.01-316,3.16)", |
---|
| 753 | "R", |
---|
| 754 | 1, |
---|
| 755 | "-R <string>")); |
---|
| 756 | newVector.addElement(new Option("\tTolerance Value\n\t(default: 0.0005)", |
---|
| 757 | "Tl", |
---|
| 758 | 1, |
---|
| 759 | "-Tl <double>")); |
---|
| 760 | newVector.addElement(new Option("\tThreshold Value\n\t(default: 0.5)", |
---|
| 761 | "S", |
---|
| 762 | 1, |
---|
| 763 | "-S <double>")); |
---|
| 764 | newVector.addElement(new Option("\tNumber Of Folds (use in conjuction with -H 2)\n" |
---|
| 765 | +"\t(default: 2)", |
---|
| 766 | "F", |
---|
| 767 | 1, |
---|
| 768 | "-F <integer>")); |
---|
| 769 | newVector.addElement(new Option("\tMax Number of Iterations\n\t(default: 100)", |
---|
| 770 | "I", |
---|
| 771 | 1, |
---|
| 772 | "-I <integer>")); |
---|
| 773 | newVector.addElement(new Option("\tNormalize the data", |
---|
| 774 | "N", 0, "-N")); |
---|
| 775 | |
---|
| 776 | return newVector.elements(); |
---|
| 777 | } |
---|
| 778 | |
---|
| 779 | /** |
---|
| 780 | * Parses a given list of options. <p/> |
---|
| 781 | * |
---|
| 782 | <!-- options-start --> |
---|
| 783 | * Valid options are: <p/> |
---|
| 784 | * |
---|
| 785 | * <pre> -D |
---|
| 786 | * Show Debugging Output |
---|
| 787 | * </pre> |
---|
| 788 | * |
---|
| 789 | * <pre> -P <integer> |
---|
| 790 | * Distribution of the Prior (1=Gaussian, 2=Laplacian) |
---|
| 791 | * (default: 1=Gaussian)</pre> |
---|
| 792 | * |
---|
| 793 | * <pre> -H <integer> |
---|
| 794 | * Hyperparameter Selection Method (1=Norm-based, 2=CV-based, 3=specific value) |
---|
| 795 | * (default: 1=Norm-based)</pre> |
---|
| 796 | * |
---|
| 797 | * <pre> -V <double> |
---|
| 798 | * Specified Hyperparameter Value (use in conjunction with -H 3) |
---|
| 799 | * (default: 0.27)</pre> |
---|
| 800 | * |
---|
| 801 | * <pre> -R <string> |
---|
| 802 | * Hyperparameter Range (use in conjunction with -H 2) |
---|
| 803 | * (format: R:start-end,multiplier OR L:val(1), val(2), ..., val(n)) |
---|
| 804 | * (default: R:0.01-316,3.16)</pre> |
---|
| 805 | * |
---|
| 806 | * <pre> -Tl <double> |
---|
| 807 | * Tolerance Value |
---|
| 808 | * (default: 0.0005)</pre> |
---|
| 809 | * |
---|
| 810 | * <pre> -S <double> |
---|
| 811 | * Threshold Value |
---|
| 812 | * (default: 0.5)</pre> |
---|
| 813 | * |
---|
| 814 | * <pre> -F <integer> |
---|
| 815 | * Number Of Folds (use in conjuction with -H 2) |
---|
| 816 | * (default: 2)</pre> |
---|
| 817 | * |
---|
| 818 | * <pre> -I <integer> |
---|
| 819 | * Max Number of Iterations |
---|
| 820 | * (default: 100)</pre> |
---|
| 821 | * |
---|
| 822 | * <pre> -N |
---|
| 823 | * Normalize the data</pre> |
---|
| 824 | * |
---|
| 825 | <!-- options-end --> |
---|
| 826 | * |
---|
| 827 | * @param options the list of options as an array of strings |
---|
| 828 | * @throws Exception if an option is not supported |
---|
| 829 | */ |
---|
| 830 | public void setOptions(String[] options) throws Exception { |
---|
| 831 | //Debug Option |
---|
| 832 | debug = Utils.getFlag('D', options); |
---|
| 833 | |
---|
| 834 | // Set Tolerance. |
---|
| 835 | String Tol = Utils.getOption("Tl", options); |
---|
| 836 | |
---|
| 837 | if (Tol.length() != 0) { |
---|
| 838 | Tolerance = Double.parseDouble(Tol); |
---|
| 839 | } |
---|
| 840 | |
---|
| 841 | //Set Threshold |
---|
| 842 | String Thres = Utils.getOption('S', options); |
---|
| 843 | |
---|
| 844 | if (Thres.length() != 0) { |
---|
| 845 | Threshold = Double.parseDouble(Thres); |
---|
| 846 | } |
---|
| 847 | |
---|
| 848 | //Set Hyperparameter Type |
---|
| 849 | String Hype = Utils.getOption('H', options); |
---|
| 850 | |
---|
| 851 | if (Hype.length() != 0) { |
---|
| 852 | HyperparameterSelection = Integer.parseInt(Hype); |
---|
| 853 | } |
---|
| 854 | |
---|
| 855 | //Set Hyperparameter Value |
---|
| 856 | String HyperValue = Utils.getOption('V', options); |
---|
| 857 | |
---|
| 858 | if (HyperValue.length() != 0) { |
---|
| 859 | HyperparameterValue = Double.parseDouble(HyperValue); |
---|
| 860 | } |
---|
| 861 | |
---|
| 862 | // Set hyper parameter range or list. |
---|
| 863 | String HyperparameterRange = Utils.getOption("R", options); |
---|
| 864 | |
---|
| 865 | //Set Prior class. |
---|
| 866 | String strPrior = Utils.getOption('P', options); |
---|
| 867 | |
---|
| 868 | if (strPrior.length() != 0) { |
---|
| 869 | PriorClass = Integer.parseInt(strPrior); |
---|
| 870 | } |
---|
| 871 | |
---|
| 872 | String folds = Utils.getOption('F', options); |
---|
| 873 | |
---|
| 874 | if (folds.length() != 0) { |
---|
| 875 | NumFolds = Integer.parseInt(folds); |
---|
| 876 | } |
---|
| 877 | |
---|
| 878 | String iterations = Utils.getOption('I', options); |
---|
| 879 | |
---|
| 880 | if (iterations.length() != 0) { |
---|
| 881 | maxIterations = Integer.parseInt(iterations); |
---|
| 882 | } |
---|
| 883 | |
---|
| 884 | NormalizeData = Utils.getFlag('N', options); |
---|
| 885 | |
---|
| 886 | //TODO: Implement this method for other options. |
---|
| 887 | Utils.checkForRemainingOptions(options); |
---|
| 888 | } |
---|
| 889 | |
---|
| 890 | /** |
---|
| 891 | * |
---|
| 892 | */ |
---|
| 893 | public String[] getOptions() { |
---|
| 894 | Vector result = new Vector(); |
---|
| 895 | |
---|
| 896 | //Add Debug Mode to options. |
---|
| 897 | result.add("-D"); |
---|
| 898 | |
---|
| 899 | //Add Tolerance value to options |
---|
| 900 | result.add("-Tl"); |
---|
| 901 | result.add("" + Tolerance); |
---|
| 902 | |
---|
| 903 | //Add Threshold value to options |
---|
| 904 | result.add("-S"); |
---|
| 905 | result.add("" + Threshold); |
---|
| 906 | |
---|
| 907 | //Add Hyperparameter value to options |
---|
| 908 | result.add("-H"); |
---|
| 909 | result.add("" + HyperparameterSelection); |
---|
| 910 | |
---|
| 911 | result.add("-V"); |
---|
| 912 | result.add("" + HyperparameterValue); |
---|
| 913 | |
---|
| 914 | result.add("-R"); |
---|
| 915 | result.add("" + HyperparameterRange); |
---|
| 916 | |
---|
| 917 | //Add Prior Class to options |
---|
| 918 | result.add("-P"); |
---|
| 919 | result.add("" + PriorClass); |
---|
| 920 | |
---|
| 921 | result.add("-F"); |
---|
| 922 | result.add("" + NumFolds); |
---|
| 923 | |
---|
| 924 | result.add("-I"); |
---|
| 925 | result.add("" + maxIterations); |
---|
| 926 | |
---|
| 927 | result.add("-N"); |
---|
| 928 | |
---|
| 929 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 930 | } |
---|
| 931 | |
---|
| 932 | /** |
---|
| 933 | * Main method for testing this class. |
---|
| 934 | * |
---|
| 935 | * @param argv the options |
---|
| 936 | */ |
---|
| 937 | public static void main(String[] argv) { |
---|
| 938 | runClassifier(new BayesianLogisticRegression(), argv); |
---|
| 939 | } |
---|
| 940 | |
---|
| 941 | /** |
---|
| 942 | * Returns the tip text for this property |
---|
| 943 | * |
---|
| 944 | * @return tip text for this property suitable for |
---|
| 945 | * displaying in the explorer/experimenter gui |
---|
| 946 | */ |
---|
| 947 | public String debugTipText() { |
---|
| 948 | return "Turns on debugging mode."; |
---|
| 949 | } |
---|
| 950 | |
---|
| 951 | /** |
---|
| 952 | * |
---|
| 953 | */ |
---|
| 954 | public void setDebug(boolean debugMode) { |
---|
| 955 | debug = debugMode; |
---|
| 956 | } |
---|
| 957 | |
---|
| 958 | /** |
---|
| 959 | * Returns the tip text for this property |
---|
| 960 | * |
---|
| 961 | * @return tip text for this property suitable for |
---|
| 962 | * displaying in the explorer/experimenter gui |
---|
| 963 | */ |
---|
| 964 | public String hyperparameterSelectionTipText() { |
---|
| 965 | return "Select the type of Hyperparameter to be used."; |
---|
| 966 | } |
---|
| 967 | |
---|
| 968 | /** |
---|
| 969 | * Get the method used to select the hyperparameter |
---|
| 970 | * |
---|
| 971 | * @return the method used to select the hyperparameter |
---|
| 972 | */ |
---|
| 973 | public SelectedTag getHyperparameterSelection() { |
---|
| 974 | return new SelectedTag(HyperparameterSelection, |
---|
| 975 | TAGS_HYPER_METHOD); |
---|
| 976 | } |
---|
| 977 | |
---|
| 978 | /** |
---|
| 979 | * Set the method used to select the hyperparameter |
---|
| 980 | * |
---|
| 981 | * @param newMethod the method used to set the hyperparameter |
---|
| 982 | */ |
---|
| 983 | public void setHyperparameterSelection(SelectedTag newMethod) { |
---|
| 984 | if (newMethod.getTags() == TAGS_HYPER_METHOD) { |
---|
| 985 | int c = newMethod.getSelectedTag().getID(); |
---|
| 986 | if (c >= 1 && c <= 3) { |
---|
| 987 | HyperparameterSelection = c; |
---|
| 988 | } else { |
---|
| 989 | throw new IllegalArgumentException("Wrong selection type, -H value should be: " |
---|
| 990 | + "1 for norm-based, 2 for CV-based and " |
---|
| 991 | + "3 for specific value"); |
---|
| 992 | } |
---|
| 993 | } |
---|
| 994 | } |
---|
| 995 | |
---|
| 996 | /** |
---|
| 997 | * Returns the tip text for this property |
---|
| 998 | * |
---|
| 999 | * @return tip text for this property suitable for |
---|
| 1000 | * displaying in the explorer/experimenter gui |
---|
| 1001 | */ |
---|
| 1002 | public String priorClassTipText() { |
---|
| 1003 | return "The type of prior to be used."; |
---|
| 1004 | } |
---|
| 1005 | |
---|
| 1006 | /** |
---|
| 1007 | * Set the type of prior to use. |
---|
| 1008 | * |
---|
| 1009 | * @param newMethod the type of prior to use. |
---|
| 1010 | */ |
---|
| 1011 | public void setPriorClass(SelectedTag newMethod) { |
---|
| 1012 | if (newMethod.getTags() == TAGS_PRIOR) { |
---|
| 1013 | int c = newMethod.getSelectedTag().getID(); |
---|
| 1014 | if (c == GAUSSIAN || c == LAPLACIAN) { |
---|
| 1015 | PriorClass = c; |
---|
| 1016 | } else { |
---|
| 1017 | throw new IllegalArgumentException("Wrong selection type, -P value should be: " |
---|
| 1018 | + "1 for Gaussian or 2 for Laplacian"); |
---|
| 1019 | } |
---|
| 1020 | } |
---|
| 1021 | } |
---|
| 1022 | |
---|
| 1023 | /** |
---|
| 1024 | * Get the type of prior to use. |
---|
| 1025 | * |
---|
| 1026 | * @return the type of prior to use |
---|
| 1027 | */ |
---|
| 1028 | public SelectedTag getPriorClass() { |
---|
| 1029 | return new SelectedTag(PriorClass, |
---|
| 1030 | TAGS_PRIOR); |
---|
| 1031 | } |
---|
| 1032 | |
---|
| 1033 | /** |
---|
| 1034 | * Returns the tip text for this property |
---|
| 1035 | * |
---|
| 1036 | * @return tip text for this property suitable for |
---|
| 1037 | * displaying in the explorer/experimenter gui |
---|
| 1038 | */ |
---|
| 1039 | public String thresholdTipText() { |
---|
| 1040 | return "Set the threshold for classifiction. The logistic function doesn't " |
---|
| 1041 | + "return a class label but an estimate of p(y=+1|B,x(i)). " |
---|
| 1042 | + "These estimates need to be converted to binary class label predictions. " |
---|
| 1043 | + "values above the threshold are assigned class +1."; |
---|
| 1044 | } |
---|
| 1045 | |
---|
| 1046 | /** |
---|
| 1047 | * Return the threshold being used. |
---|
| 1048 | * |
---|
| 1049 | * @return the threshold |
---|
| 1050 | */ |
---|
| 1051 | public double getThreshold() { |
---|
| 1052 | return Threshold; |
---|
| 1053 | } |
---|
| 1054 | |
---|
| 1055 | /** |
---|
| 1056 | * Set the threshold to use. |
---|
| 1057 | * |
---|
| 1058 | * @param threshold the threshold to use |
---|
| 1059 | */ |
---|
| 1060 | public void setThreshold(double threshold) { |
---|
| 1061 | Threshold = threshold; |
---|
| 1062 | } |
---|
| 1063 | |
---|
| 1064 | /** |
---|
| 1065 | * Returns the tip text for this property |
---|
| 1066 | * |
---|
| 1067 | * @return tip text for this property suitable for |
---|
| 1068 | * displaying in the explorer/experimenter gui |
---|
| 1069 | */ |
---|
| 1070 | public String toleranceTipText() { |
---|
| 1071 | return "This value decides the stopping criterion."; |
---|
| 1072 | } |
---|
| 1073 | |
---|
| 1074 | /** |
---|
| 1075 | * Get the tolerance value |
---|
| 1076 | * |
---|
| 1077 | * @return the tolerance value |
---|
| 1078 | */ |
---|
| 1079 | public double getTolerance() { |
---|
| 1080 | return Tolerance; |
---|
| 1081 | } |
---|
| 1082 | |
---|
| 1083 | /** |
---|
| 1084 | * Set the tolerance value |
---|
| 1085 | * |
---|
| 1086 | * @param tolerance the tolerance value to use |
---|
| 1087 | */ |
---|
| 1088 | public void setTolerance(double tolerance) { |
---|
| 1089 | Tolerance = tolerance; |
---|
| 1090 | } |
---|
| 1091 | |
---|
| 1092 | /** |
---|
| 1093 | * Returns the tip text for this property |
---|
| 1094 | * |
---|
| 1095 | * @return tip text for this property suitable for |
---|
| 1096 | * displaying in the explorer/experimenter gui |
---|
| 1097 | */ |
---|
| 1098 | public String hyperparameterValueTipText() { |
---|
| 1099 | return "Specific hyperparameter value. Used when the hyperparameter " |
---|
| 1100 | + "selection method is set to specific value"; |
---|
| 1101 | } |
---|
| 1102 | |
---|
| 1103 | /** |
---|
| 1104 | * Get the hyperparameter value. Used when the hyperparameter |
---|
| 1105 | * selection method is set to specific value |
---|
| 1106 | * |
---|
| 1107 | * @return the hyperparameter value |
---|
| 1108 | */ |
---|
| 1109 | public double getHyperparameterValue() { |
---|
| 1110 | return HyperparameterValue; |
---|
| 1111 | } |
---|
| 1112 | |
---|
| 1113 | /** |
---|
| 1114 | * Set the hyperparameter value. Used when the hyperparameter |
---|
| 1115 | * selection method is set to specific value |
---|
| 1116 | * |
---|
| 1117 | * @param hyperparameterValue the value of the hyperparameter |
---|
| 1118 | */ |
---|
| 1119 | public void setHyperparameterValue(double hyperparameterValue) { |
---|
| 1120 | HyperparameterValue = hyperparameterValue; |
---|
| 1121 | } |
---|
| 1122 | |
---|
| 1123 | /** |
---|
| 1124 | * Returns the tip text for this property |
---|
| 1125 | * |
---|
| 1126 | * @return tip text for this property suitable for |
---|
| 1127 | * displaying in the explorer/experimenter gui |
---|
| 1128 | */ |
---|
| 1129 | public String numFoldsTipText() { |
---|
| 1130 | return "The number of folds to use for CV-based hyperparameter selection."; |
---|
| 1131 | } |
---|
| 1132 | |
---|
| 1133 | /** |
---|
| 1134 | * Return the number of folds for CV-based hyperparameter selection |
---|
| 1135 | * |
---|
| 1136 | * @return the number of CV folds |
---|
| 1137 | */ |
---|
| 1138 | public int getNumFolds() { |
---|
| 1139 | return NumFolds; |
---|
| 1140 | } |
---|
| 1141 | |
---|
| 1142 | /** |
---|
| 1143 | * Set the number of folds to use for CV-based hyperparameter |
---|
| 1144 | * selection |
---|
| 1145 | * |
---|
| 1146 | * @param numFolds number of folds to select |
---|
| 1147 | */ |
---|
| 1148 | public void setNumFolds(int numFolds) { |
---|
| 1149 | NumFolds = numFolds; |
---|
| 1150 | } |
---|
| 1151 | |
---|
| 1152 | /** |
---|
| 1153 | * Returns the tip text for this property |
---|
| 1154 | * |
---|
| 1155 | * @return tip text for this property suitable for |
---|
| 1156 | * displaying in the explorer/experimenter gui |
---|
| 1157 | */ |
---|
| 1158 | public String maxIterationsTipText() { |
---|
| 1159 | return "The maximum number of iterations to perform."; |
---|
| 1160 | } |
---|
| 1161 | |
---|
| 1162 | /** |
---|
| 1163 | * Get the maximum number of iterations to perform |
---|
| 1164 | * |
---|
| 1165 | * @return the maximum number of iterations |
---|
| 1166 | */ |
---|
| 1167 | public int getMaxIterations() { |
---|
| 1168 | return maxIterations; |
---|
| 1169 | } |
---|
| 1170 | |
---|
| 1171 | /** |
---|
| 1172 | * Set the maximum number of iterations to perform |
---|
| 1173 | * |
---|
| 1174 | * @param maxIterations maximum number of iterations |
---|
| 1175 | */ |
---|
| 1176 | public void setMaxIterations(int maxIterations) { |
---|
| 1177 | this.maxIterations = maxIterations; |
---|
| 1178 | } |
---|
| 1179 | |
---|
| 1180 | /** |
---|
| 1181 | * Returns the tip text for this property |
---|
| 1182 | * |
---|
| 1183 | * @return tip text for this property suitable for |
---|
| 1184 | * displaying in the explorer/experimenter gui |
---|
| 1185 | */ |
---|
| 1186 | public String normalizeDataTipText() { |
---|
| 1187 | return "Normalize the data."; |
---|
| 1188 | } |
---|
| 1189 | |
---|
| 1190 | /** |
---|
| 1191 | * Returns true if the data is to be normalized first |
---|
| 1192 | * |
---|
| 1193 | * @return true if the data is to be normalized |
---|
| 1194 | */ |
---|
| 1195 | public boolean isNormalizeData() { |
---|
| 1196 | return NormalizeData; |
---|
| 1197 | } |
---|
| 1198 | |
---|
| 1199 | /** |
---|
| 1200 | * Set whether to normalize the data or not |
---|
| 1201 | * |
---|
| 1202 | * @param normalizeData true if data is to be normalized |
---|
| 1203 | */ |
---|
| 1204 | public void setNormalizeData(boolean normalizeData) { |
---|
| 1205 | NormalizeData = normalizeData; |
---|
| 1206 | } |
---|
| 1207 | |
---|
| 1208 | /** |
---|
| 1209 | * Returns the tip text for this property |
---|
| 1210 | * |
---|
| 1211 | * @return tip text for this property suitable for |
---|
| 1212 | * displaying in the explorer/experimenter gui |
---|
| 1213 | */ |
---|
| 1214 | public String hyperparameterRangeTipText() { |
---|
| 1215 | return "Hyperparameter value range. In case of CV-based Hyperparameters, " |
---|
| 1216 | + "you can specify the range in two ways: \n" |
---|
| 1217 | + "Comma-Separated: L: 3,5,6 (This will be a list of possible values.)\n" |
---|
| 1218 | + "Range: R:0.01-316,3.16 (This will take values from 0.01-316 (inclusive) " |
---|
| 1219 | + "in multiplications of 3.16"; |
---|
| 1220 | } |
---|
| 1221 | |
---|
| 1222 | /** |
---|
| 1223 | * Get the range of hyperparameter values to consider |
---|
| 1224 | * during CV-based selection. |
---|
| 1225 | * |
---|
| 1226 | * @return the range of hyperparameters as a Stringe |
---|
| 1227 | */ |
---|
| 1228 | public String getHyperparameterRange() { |
---|
| 1229 | return HyperparameterRange; |
---|
| 1230 | } |
---|
| 1231 | |
---|
| 1232 | /** |
---|
| 1233 | * Set the range of hyperparameter values to consider |
---|
| 1234 | * during CV-based selection |
---|
| 1235 | * |
---|
| 1236 | * @param hyperparameterRange the range of hyperparameter values |
---|
| 1237 | */ |
---|
| 1238 | public void setHyperparameterRange(String hyperparameterRange) { |
---|
| 1239 | HyperparameterRange = hyperparameterRange; |
---|
| 1240 | } |
---|
| 1241 | |
---|
| 1242 | /** |
---|
| 1243 | * Returns true if debug is turned on. |
---|
| 1244 | * |
---|
| 1245 | * @return true if debug is turned on |
---|
| 1246 | */ |
---|
| 1247 | public boolean isDebug() { |
---|
| 1248 | return debug; |
---|
| 1249 | } |
---|
| 1250 | |
---|
| 1251 | /** |
---|
| 1252 | * Returns the revision string. |
---|
| 1253 | * |
---|
| 1254 | * @return the revision |
---|
| 1255 | */ |
---|
| 1256 | public String getRevision() { |
---|
| 1257 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 1258 | } |
---|
| 1259 | } |
---|
| 1260 | |
---|