1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AODEsr.java |
---|
19 | * Copyright (C) 2007 |
---|
20 | * Algorithm developed by: Fei ZHENG and Geoff Webb |
---|
21 | * Code written by: Fei ZHENG and Janice Boughton |
---|
22 | */ |
---|
23 | |
---|
24 | package weka.classifiers.bayes; |
---|
25 | |
---|
26 | import weka.classifiers.Classifier; |
---|
27 | import weka.classifiers.AbstractClassifier; |
---|
28 | import weka.classifiers.UpdateableClassifier; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.OptionHandler; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.TechnicalInformation; |
---|
36 | import weka.core.TechnicalInformationHandler; |
---|
37 | import weka.core.Utils; |
---|
38 | import weka.core.WeightedInstancesHandler; |
---|
39 | import weka.core.Capabilities.Capability; |
---|
40 | import weka.core.TechnicalInformation.Field; |
---|
41 | import weka.core.TechnicalInformation.Type; |
---|
42 | |
---|
43 | import java.util.Enumeration; |
---|
44 | import java.util.Vector; |
---|
45 | |
---|
46 | /** |
---|
47 | * |
---|
48 | <!-- globalinfo-start --> |
---|
49 | * AODEsr augments AODE with Subsumption Resolution.AODEsr detects specializations between two attribute values at classification time and deletes the generalization attribute value.<br/> |
---|
50 | * For more information, see:<br/> |
---|
51 | * Fei Zheng, Geoffrey I. Webb: Efficient Lazy Elimination for Averaged-One Dependence Estimators. In: Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006), 1113-1120, 2006. |
---|
52 | * <p/> |
---|
53 | <!-- globalinfo-end --> |
---|
54 | * |
---|
55 | <!-- technical-bibtex-start --> |
---|
56 | * BibTeX: |
---|
57 | * <pre> |
---|
58 | * @inproceedings{Zheng2006, |
---|
59 | * author = {Fei Zheng and Geoffrey I. Webb}, |
---|
60 | * booktitle = {Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006)}, |
---|
61 | * pages = {1113-1120}, |
---|
62 | * publisher = {ACM Press}, |
---|
63 | * title = {Efficient Lazy Elimination for Averaged-One Dependence Estimators}, |
---|
64 | * year = {2006}, |
---|
65 | * ISBN = {1-59593-383-2} |
---|
66 | * } |
---|
67 | * </pre> |
---|
68 | * <p/> |
---|
69 | <!-- technical-bibtex-end --> |
---|
70 | * |
---|
71 | <!-- options-start --> |
---|
72 | * Valid options are: <p/> |
---|
73 | * |
---|
74 | * <pre> -D |
---|
75 | * Output debugging information |
---|
76 | * </pre> |
---|
77 | * |
---|
78 | * <pre> -C |
---|
79 | * Impose a critcal value for specialization-generalization relationship |
---|
80 | * (default is 50)</pre> |
---|
81 | * |
---|
82 | * <pre> -F |
---|
83 | * Impose a frequency limit for superParents |
---|
84 | * (default is 1)</pre> |
---|
85 | * |
---|
86 | * <pre> -L |
---|
87 | * Using Laplace estimation |
---|
88 | * (default is m-esimation (m=1))</pre> |
---|
89 | * |
---|
90 | * <pre> -M |
---|
91 | * Weight value for m-estimation |
---|
92 | * (default is 1.0)</pre> |
---|
93 | * |
---|
94 | <!-- options-end --> |
---|
95 | * |
---|
96 | * @author Fei Zheng |
---|
97 | * @author Janice Boughton |
---|
98 | * @version $Revision: 5928 $ |
---|
99 | */ |
---|
100 | public class AODEsr extends AbstractClassifier |
---|
101 | implements OptionHandler, WeightedInstancesHandler, UpdateableClassifier, |
---|
102 | TechnicalInformationHandler { |
---|
103 | |
---|
104 | /** for serialization */ |
---|
105 | static final long serialVersionUID = 5602143019183068848L; |
---|
106 | |
---|
107 | /** |
---|
108 | * 3D array (m_NumClasses * m_TotalAttValues * m_TotalAttValues) |
---|
109 | * of attribute counts, i.e. the number of times an attribute value occurs |
---|
110 | * in conjunction with another attribute value and a class value. |
---|
111 | */ |
---|
112 | private double [][][] m_CondiCounts; |
---|
113 | |
---|
114 | /** |
---|
115 | * 2D array (m_TotalAttValues * m_TotalAttValues) of attributes counts. |
---|
116 | * similar to m_CondiCounts, but ignoring class value. |
---|
117 | */ |
---|
118 | private double [][] m_CondiCountsNoClass; |
---|
119 | |
---|
120 | /** The number of times each class value occurs in the dataset */ |
---|
121 | private double [] m_ClassCounts; |
---|
122 | |
---|
123 | /** The sums of attribute-class counts |
---|
124 | * -- if there are no missing values for att, then |
---|
125 | * m_SumForCounts[classVal][att] will be the same as |
---|
126 | * m_ClassCounts[classVal] |
---|
127 | */ |
---|
128 | private double [][] m_SumForCounts; |
---|
129 | |
---|
130 | /** The number of classes */ |
---|
131 | private int m_NumClasses; |
---|
132 | |
---|
133 | /** The number of attributes in dataset, including class */ |
---|
134 | private int m_NumAttributes; |
---|
135 | |
---|
136 | /** The number of instances in the dataset */ |
---|
137 | private int m_NumInstances; |
---|
138 | |
---|
139 | /** The index of the class attribute */ |
---|
140 | private int m_ClassIndex; |
---|
141 | |
---|
142 | /** The dataset */ |
---|
143 | private Instances m_Instances; |
---|
144 | |
---|
145 | /** |
---|
146 | * The total number of values (including an extra for each attribute's |
---|
147 | * missing value, which are included in m_CondiCounts) for all attributes |
---|
148 | * (not including class). Eg. for three atts each with two possible values, |
---|
149 | * m_TotalAttValues would be 9 (6 values + 3 missing). |
---|
150 | * This variable is used when allocating space for m_CondiCounts matrix. |
---|
151 | */ |
---|
152 | private int m_TotalAttValues; |
---|
153 | |
---|
154 | /** The starting index (in the m_CondiCounts matrix) of the values for each attribute */ |
---|
155 | private int [] m_StartAttIndex; |
---|
156 | |
---|
157 | /** The number of values for each attribute */ |
---|
158 | private int [] m_NumAttValues; |
---|
159 | |
---|
160 | /** The frequency of each attribute value for the dataset */ |
---|
161 | private double [] m_Frequencies; |
---|
162 | |
---|
163 | /** The number of valid class values observed in dataset |
---|
164 | * -- with no missing classes, this number is the same as m_NumInstances. |
---|
165 | */ |
---|
166 | private double m_SumInstances; |
---|
167 | |
---|
168 | /** An att's frequency must be this value or more to be a superParent */ |
---|
169 | private int m_Limit = 1; |
---|
170 | |
---|
171 | /** If true, outputs debugging info */ |
---|
172 | private boolean m_Debug = false; |
---|
173 | |
---|
174 | /** m value for m-estimation */ |
---|
175 | protected double m_MWeight = 1.0; |
---|
176 | |
---|
177 | /** Using LapLace estimation or not*/ |
---|
178 | private boolean m_Laplace = false; |
---|
179 | |
---|
180 | /** the critical value for the specialization-generalization */ |
---|
181 | private int m_Critical = 50; |
---|
182 | |
---|
183 | |
---|
184 | /** |
---|
185 | * Returns a string describing this classifier |
---|
186 | * @return a description of the classifier suitable for |
---|
187 | * displaying in the explorer/experimenter gui |
---|
188 | */ |
---|
189 | public String globalInfo() { |
---|
190 | |
---|
191 | return "AODEsr augments AODE with Subsumption Resolution." |
---|
192 | +"AODEsr detects specializations between two attribute " |
---|
193 | +"values at classification time and deletes the generalization " |
---|
194 | +"attribute value.\n" |
---|
195 | +"For more information, see:\n" |
---|
196 | + getTechnicalInformation().toString(); |
---|
197 | } |
---|
198 | |
---|
199 | /** |
---|
200 | * Returns an instance of a TechnicalInformation object, containing |
---|
201 | * detailed information about the technical background of this class, |
---|
202 | * e.g., paper reference or book this class is based on. |
---|
203 | * |
---|
204 | * @return the technical information about this class |
---|
205 | */ |
---|
206 | public TechnicalInformation getTechnicalInformation() { |
---|
207 | TechnicalInformation result; |
---|
208 | |
---|
209 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
210 | result.setValue(Field.AUTHOR, "Fei Zheng and Geoffrey I. Webb"); |
---|
211 | result.setValue(Field.YEAR, "2006"); |
---|
212 | result.setValue(Field.TITLE, "Efficient Lazy Elimination for Averaged-One Dependence Estimators"); |
---|
213 | result.setValue(Field.PAGES, "1113-1120"); |
---|
214 | result.setValue(Field.BOOKTITLE, "Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006)"); |
---|
215 | result.setValue(Field.PUBLISHER, "ACM Press"); |
---|
216 | result.setValue(Field.ISBN, "1-59593-383-2"); |
---|
217 | |
---|
218 | return result; |
---|
219 | } |
---|
220 | |
---|
221 | /** |
---|
222 | * Returns default capabilities of the classifier. |
---|
223 | * |
---|
224 | * @return the capabilities of this classifier |
---|
225 | */ |
---|
226 | public Capabilities getCapabilities() { |
---|
227 | Capabilities result = super.getCapabilities(); |
---|
228 | result.disableAll(); |
---|
229 | |
---|
230 | // attributes |
---|
231 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
232 | result.enable(Capability.MISSING_VALUES); |
---|
233 | |
---|
234 | // class |
---|
235 | result.enable(Capability.NOMINAL_CLASS); |
---|
236 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
237 | |
---|
238 | // instances |
---|
239 | result.setMinimumNumberInstances(0); |
---|
240 | |
---|
241 | return result; |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Generates the classifier. |
---|
246 | * |
---|
247 | * @param instances set of instances serving as training data |
---|
248 | * @throws Exception if the classifier has not been generated |
---|
249 | * successfully |
---|
250 | */ |
---|
251 | public void buildClassifier(Instances instances) throws Exception { |
---|
252 | |
---|
253 | // can classifier handle the data? |
---|
254 | getCapabilities().testWithFail(instances); |
---|
255 | |
---|
256 | // remove instances with missing class |
---|
257 | m_Instances = new Instances(instances); |
---|
258 | m_Instances.deleteWithMissingClass(); |
---|
259 | |
---|
260 | // reset variable for this fold |
---|
261 | m_SumInstances = 0; |
---|
262 | m_ClassIndex = instances.classIndex(); |
---|
263 | m_NumInstances = m_Instances.numInstances(); |
---|
264 | m_NumAttributes = instances.numAttributes(); |
---|
265 | m_NumClasses = instances.numClasses(); |
---|
266 | |
---|
267 | // allocate space for attribute reference arrays |
---|
268 | m_StartAttIndex = new int[m_NumAttributes]; |
---|
269 | m_NumAttValues = new int[m_NumAttributes]; |
---|
270 | |
---|
271 | m_TotalAttValues = 0; |
---|
272 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
273 | if(i != m_ClassIndex) { |
---|
274 | m_StartAttIndex[i] = m_TotalAttValues; |
---|
275 | m_NumAttValues[i] = m_Instances.attribute(i).numValues(); |
---|
276 | m_TotalAttValues += m_NumAttValues[i] + 1; |
---|
277 | // + 1 so room for missing value count |
---|
278 | } else { |
---|
279 | // m_StartAttIndex[i] = -1; // class isn't included |
---|
280 | m_NumAttValues[i] = m_NumClasses; |
---|
281 | } |
---|
282 | } |
---|
283 | |
---|
284 | // allocate space for counts and frequencies |
---|
285 | m_CondiCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; |
---|
286 | m_ClassCounts = new double[m_NumClasses]; |
---|
287 | m_SumForCounts = new double[m_NumClasses][m_NumAttributes]; |
---|
288 | m_Frequencies = new double[m_TotalAttValues]; |
---|
289 | m_CondiCountsNoClass = new double[m_TotalAttValues][m_TotalAttValues]; |
---|
290 | |
---|
291 | // calculate the counts |
---|
292 | for(int k = 0; k < m_NumInstances; k++) { |
---|
293 | addToCounts((Instance)m_Instances.instance(k)); |
---|
294 | } |
---|
295 | |
---|
296 | // free up some space |
---|
297 | m_Instances = new Instances(m_Instances, 0); |
---|
298 | } |
---|
299 | |
---|
300 | |
---|
301 | /** |
---|
302 | * Updates the classifier with the given instance. |
---|
303 | * |
---|
304 | * @param instance the new training instance to include in the model |
---|
305 | * @throws Exception if the instance could not be incorporated in |
---|
306 | * the model. |
---|
307 | */ |
---|
308 | public void updateClassifier(Instance instance) { |
---|
309 | this.addToCounts(instance); |
---|
310 | } |
---|
311 | |
---|
312 | /** |
---|
313 | * Puts an instance's values into m_CondiCounts, m_ClassCounts and |
---|
314 | * m_SumInstances. |
---|
315 | * |
---|
316 | * @param instance the instance whose values are to be put into the |
---|
317 | * counts variables |
---|
318 | */ |
---|
319 | private void addToCounts(Instance instance) { |
---|
320 | |
---|
321 | double [] countsPointer; |
---|
322 | double [] countsNoClassPointer; |
---|
323 | |
---|
324 | if(instance.classIsMissing()) |
---|
325 | return; // ignore instances with missing class |
---|
326 | |
---|
327 | int classVal = (int)instance.classValue(); |
---|
328 | double weight = instance.weight(); |
---|
329 | |
---|
330 | m_ClassCounts[classVal] += weight; |
---|
331 | m_SumInstances += weight; |
---|
332 | |
---|
333 | // store instance's att val indexes in an array, b/c accessing it |
---|
334 | // in loop(s) is more efficient |
---|
335 | int [] attIndex = new int[m_NumAttributes]; |
---|
336 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
337 | if(i == m_ClassIndex) |
---|
338 | attIndex[i] = -1; // we don't use the class attribute in counts |
---|
339 | else { |
---|
340 | if(instance.isMissing(i)) |
---|
341 | attIndex[i] = m_StartAttIndex[i] + m_NumAttValues[i]; |
---|
342 | else |
---|
343 | attIndex[i] = m_StartAttIndex[i] + (int)instance.value(i); |
---|
344 | } |
---|
345 | } |
---|
346 | |
---|
347 | for(int Att1 = 0; Att1 < m_NumAttributes; Att1++) { |
---|
348 | if(attIndex[Att1] == -1) |
---|
349 | continue; // avoid pointless looping as Att1 is currently the class attribute |
---|
350 | |
---|
351 | m_Frequencies[attIndex[Att1]] += weight; |
---|
352 | |
---|
353 | // if this is a missing value, we don't want to increase sumforcounts |
---|
354 | if(!instance.isMissing(Att1)) |
---|
355 | m_SumForCounts[classVal][Att1] += weight; |
---|
356 | |
---|
357 | // save time by referencing this now, rather than repeatedly in the loop |
---|
358 | countsPointer = m_CondiCounts[classVal][attIndex[Att1]]; |
---|
359 | countsNoClassPointer = m_CondiCountsNoClass[attIndex[Att1]]; |
---|
360 | |
---|
361 | for(int Att2 = 0; Att2 < m_NumAttributes; Att2++) { |
---|
362 | if(attIndex[Att2] != -1) { |
---|
363 | countsPointer[attIndex[Att2]] += weight; |
---|
364 | countsNoClassPointer[attIndex[Att2]] += weight; |
---|
365 | } |
---|
366 | } |
---|
367 | } |
---|
368 | } |
---|
369 | |
---|
370 | |
---|
371 | /** |
---|
372 | * Calculates the class membership probabilities for the given test |
---|
373 | * instance. |
---|
374 | * |
---|
375 | * @param instance the instance to be classified |
---|
376 | * @return predicted class probability distribution |
---|
377 | * @throws Exception if there is a problem generating the prediction |
---|
378 | */ |
---|
379 | public double [] distributionForInstance(Instance instance) throws Exception { |
---|
380 | |
---|
381 | // accumulates posterior probabilities for each class |
---|
382 | double [] probs = new double[m_NumClasses]; |
---|
383 | |
---|
384 | // index for parent attribute value, and a count of parents used |
---|
385 | int pIndex, parentCount; |
---|
386 | |
---|
387 | int [] SpecialGeneralArray = new int[m_NumAttributes]; |
---|
388 | |
---|
389 | // pointers for efficiency |
---|
390 | double [][] countsForClass; |
---|
391 | double [] countsForClassParent; |
---|
392 | double [] countsForAtti; |
---|
393 | double [] countsForAttj; |
---|
394 | |
---|
395 | // store instance's att values in an int array, so accessing them |
---|
396 | // is more efficient in loop(s). |
---|
397 | int [] attIndex = new int[m_NumAttributes]; |
---|
398 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
399 | if(instance.isMissing(att) || att == m_ClassIndex) |
---|
400 | attIndex[att] = -1; // can't use class & missing vals in calculations |
---|
401 | else |
---|
402 | attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); |
---|
403 | } |
---|
404 | // -1 indicates attribute is not a generalization of any other attributes |
---|
405 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
406 | SpecialGeneralArray[i] = -1; |
---|
407 | } |
---|
408 | |
---|
409 | // calculate the specialization-generalization array |
---|
410 | for(int i = 0; i < m_NumAttributes; i++){ |
---|
411 | // skip i if it's the class or is missing |
---|
412 | if(attIndex[i] == -1) continue; |
---|
413 | countsForAtti = m_CondiCountsNoClass[attIndex[i]]; |
---|
414 | |
---|
415 | for(int j = 0; j < m_NumAttributes; j++) { |
---|
416 | // skip j if it's the class, missing, is i or a generalization of i |
---|
417 | if((attIndex[j] == -1) || (i == j) || (SpecialGeneralArray[j] == i)) |
---|
418 | continue; |
---|
419 | |
---|
420 | countsForAttj = m_CondiCountsNoClass[attIndex[j]]; |
---|
421 | |
---|
422 | // check j's frequency is above critical value |
---|
423 | if(countsForAttj[attIndex[j]] > m_Critical) { |
---|
424 | |
---|
425 | // skip j if the frequency of i and j together is not equivalent |
---|
426 | // to the frequency of j alone |
---|
427 | if(countsForAttj[attIndex[j]] == countsForAtti[attIndex[j]]) { |
---|
428 | |
---|
429 | // if attributes i and j are both a specialization of each other |
---|
430 | // avoid deleting both by skipping j |
---|
431 | if((countsForAttj[attIndex[j]] == countsForAtti[attIndex[i]]) |
---|
432 | && (i < j)){ |
---|
433 | continue; |
---|
434 | } else { |
---|
435 | // set the specialization relationship |
---|
436 | SpecialGeneralArray[i] = j; |
---|
437 | break; // break out of j loop because a specialization has been found |
---|
438 | } |
---|
439 | } |
---|
440 | } |
---|
441 | } |
---|
442 | } |
---|
443 | |
---|
444 | // calculate probabilities for each possible class value |
---|
445 | for(int classVal = 0; classVal < m_NumClasses; classVal++) { |
---|
446 | |
---|
447 | probs[classVal] = 0; |
---|
448 | double x = 0; |
---|
449 | parentCount = 0; |
---|
450 | |
---|
451 | countsForClass = m_CondiCounts[classVal]; |
---|
452 | |
---|
453 | // each attribute has a turn of being the parent |
---|
454 | for(int parent = 0; parent < m_NumAttributes; parent++) { |
---|
455 | if(attIndex[parent] == -1) |
---|
456 | continue; // skip class attribute or missing value |
---|
457 | |
---|
458 | // determine correct index for the parent in m_CondiCounts matrix |
---|
459 | pIndex = attIndex[parent]; |
---|
460 | |
---|
461 | // check that the att value has a frequency of m_Limit or greater |
---|
462 | if(m_Frequencies[pIndex] < m_Limit) |
---|
463 | continue; |
---|
464 | |
---|
465 | // delete the generalization attributes. |
---|
466 | if(SpecialGeneralArray[parent] != -1) |
---|
467 | continue; |
---|
468 | |
---|
469 | countsForClassParent = countsForClass[pIndex]; |
---|
470 | |
---|
471 | // block the parent from being its own child |
---|
472 | attIndex[parent] = -1; |
---|
473 | |
---|
474 | parentCount++; |
---|
475 | |
---|
476 | double classparentfreq = countsForClassParent[pIndex]; |
---|
477 | |
---|
478 | // find the number of missing values for parent's attribute |
---|
479 | double missing4ParentAtt = |
---|
480 | m_Frequencies[m_StartAttIndex[parent] + m_NumAttValues[parent]]; |
---|
481 | |
---|
482 | // calculate the prior probability -- P(parent & classVal) |
---|
483 | if (m_Laplace){ |
---|
484 | x = LaplaceEstimate(classparentfreq, m_SumInstances - missing4ParentAtt, |
---|
485 | m_NumClasses * m_NumAttValues[parent]); |
---|
486 | } else { |
---|
487 | |
---|
488 | x = MEstimate(classparentfreq, m_SumInstances - missing4ParentAtt, |
---|
489 | m_NumClasses * m_NumAttValues[parent]); |
---|
490 | } |
---|
491 | |
---|
492 | |
---|
493 | |
---|
494 | // take into account the value of each attribute |
---|
495 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
496 | if(attIndex[att] == -1) // skip class attribute or missing value |
---|
497 | continue; |
---|
498 | // delete the generalization attributes. |
---|
499 | if(SpecialGeneralArray[att] != -1) |
---|
500 | continue; |
---|
501 | |
---|
502 | |
---|
503 | double missingForParentandChildAtt = |
---|
504 | countsForClassParent[m_StartAttIndex[att] + m_NumAttValues[att]]; |
---|
505 | |
---|
506 | if (m_Laplace){ |
---|
507 | x *= LaplaceEstimate(countsForClassParent[attIndex[att]], |
---|
508 | classparentfreq - missingForParentandChildAtt, m_NumAttValues[att]); |
---|
509 | } else { |
---|
510 | x *= MEstimate(countsForClassParent[attIndex[att]], |
---|
511 | classparentfreq - missingForParentandChildAtt, m_NumAttValues[att]); |
---|
512 | } |
---|
513 | } |
---|
514 | |
---|
515 | // add this probability to the overall probability |
---|
516 | probs[classVal] += x; |
---|
517 | |
---|
518 | // unblock the parent |
---|
519 | attIndex[parent] = pIndex; |
---|
520 | } |
---|
521 | |
---|
522 | // check that at least one att was a parent |
---|
523 | if(parentCount < 1) { |
---|
524 | |
---|
525 | // do plain naive bayes conditional prob |
---|
526 | probs[classVal] = NBconditionalProb(instance, classVal); |
---|
527 | //probs[classVal] = Double.NaN; |
---|
528 | |
---|
529 | } else { |
---|
530 | |
---|
531 | // divide by number of parent atts to get the mean |
---|
532 | probs[classVal] /= (double)(parentCount); |
---|
533 | } |
---|
534 | } |
---|
535 | Utils.normalize(probs); |
---|
536 | return probs; |
---|
537 | } |
---|
538 | |
---|
539 | |
---|
540 | /** |
---|
541 | * Calculates the probability of the specified class for the given test |
---|
542 | * instance, using naive Bayes. |
---|
543 | * |
---|
544 | * @param instance the instance to be classified |
---|
545 | * @param classVal the class for which to calculate the probability |
---|
546 | * @return predicted class probability |
---|
547 | * @throws Exception if there is a problem generating the prediction |
---|
548 | */ |
---|
549 | public double NBconditionalProb(Instance instance, int classVal) |
---|
550 | throws Exception { |
---|
551 | double prob; |
---|
552 | int attIndex; |
---|
553 | double [][] pointer; |
---|
554 | |
---|
555 | // calculate the prior probability |
---|
556 | if(m_Laplace) { |
---|
557 | prob = LaplaceEstimate(m_ClassCounts[classVal],m_SumInstances,m_NumClasses); |
---|
558 | } else { |
---|
559 | prob = MEstimate(m_ClassCounts[classVal], m_SumInstances, m_NumClasses); |
---|
560 | } |
---|
561 | pointer = m_CondiCounts[classVal]; |
---|
562 | |
---|
563 | // consider effect of each att value |
---|
564 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
565 | if(att == m_ClassIndex || instance.isMissing(att)) |
---|
566 | continue; |
---|
567 | |
---|
568 | // determine correct index for att in m_CondiCounts |
---|
569 | attIndex = m_StartAttIndex[att] + (int)instance.value(att); |
---|
570 | if (m_Laplace){ |
---|
571 | prob *= LaplaceEstimate((double)pointer[attIndex][attIndex], |
---|
572 | (double)m_SumForCounts[classVal][att], m_NumAttValues[att]); |
---|
573 | } else { |
---|
574 | prob *= MEstimate((double)pointer[attIndex][attIndex], |
---|
575 | (double)m_SumForCounts[classVal][att], m_NumAttValues[att]); |
---|
576 | } |
---|
577 | } |
---|
578 | return prob; |
---|
579 | } |
---|
580 | |
---|
581 | |
---|
582 | /** |
---|
583 | * Returns the probability estimate, using m-estimate |
---|
584 | * |
---|
585 | * @param frequency frequency of value of interest |
---|
586 | * @param total count of all values |
---|
587 | * @param numValues number of different values |
---|
588 | * @return the probability estimate |
---|
589 | */ |
---|
590 | public double MEstimate(double frequency, double total, |
---|
591 | double numValues) { |
---|
592 | |
---|
593 | return (frequency + m_MWeight / numValues) / (total + m_MWeight); |
---|
594 | } |
---|
595 | |
---|
596 | /** |
---|
597 | * Returns the probability estimate, using laplace correction |
---|
598 | * |
---|
599 | * @param frequency frequency of value of interest |
---|
600 | * @param total count of all values |
---|
601 | * @param numValues number of different values |
---|
602 | * @return the probability estimate |
---|
603 | */ |
---|
604 | public double LaplaceEstimate(double frequency, double total, |
---|
605 | double numValues) { |
---|
606 | |
---|
607 | return (frequency + 1.0) / (total + numValues); |
---|
608 | } |
---|
609 | |
---|
610 | |
---|
611 | /** |
---|
612 | * Returns an enumeration describing the available options |
---|
613 | * |
---|
614 | * @return an enumeration of all the available options |
---|
615 | */ |
---|
616 | public Enumeration listOptions() { |
---|
617 | |
---|
618 | Vector newVector = new Vector(5); |
---|
619 | |
---|
620 | newVector.addElement( |
---|
621 | new Option("\tOutput debugging information\n", |
---|
622 | "D", 0,"-D")); |
---|
623 | newVector.addElement( |
---|
624 | new Option("\tImpose a critcal value for specialization-generalization relationship\n" |
---|
625 | + "\t(default is 50)", "C", 1,"-C")); |
---|
626 | newVector.addElement( |
---|
627 | new Option("\tImpose a frequency limit for superParents\n" |
---|
628 | + "\t(default is 1)", "F", 2,"-F")); |
---|
629 | newVector.addElement( |
---|
630 | new Option("\tUsing Laplace estimation\n" |
---|
631 | + "\t(default is m-esimation (m=1))", |
---|
632 | "L", 3,"-L")); |
---|
633 | newVector.addElement( |
---|
634 | new Option("\tWeight value for m-estimation\n" |
---|
635 | + "\t(default is 1.0)", "M", 4,"-M")); |
---|
636 | |
---|
637 | return newVector.elements(); |
---|
638 | } |
---|
639 | |
---|
640 | |
---|
641 | /** |
---|
642 | * Parses a given list of options. <p/> |
---|
643 | * |
---|
644 | <!-- options-start --> |
---|
645 | * Valid options are: <p/> |
---|
646 | * |
---|
647 | * <pre> -D |
---|
648 | * Output debugging information |
---|
649 | * </pre> |
---|
650 | * |
---|
651 | * <pre> -C |
---|
652 | * Impose a critcal value for specialization-generalization relationship |
---|
653 | * (default is 50)</pre> |
---|
654 | * |
---|
655 | * <pre> -F |
---|
656 | * Impose a frequency limit for superParents |
---|
657 | * (default is 1)</pre> |
---|
658 | * |
---|
659 | * <pre> -L |
---|
660 | * Using Laplace estimation |
---|
661 | * (default is m-esimation (m=1))</pre> |
---|
662 | * |
---|
663 | * <pre> -M |
---|
664 | * Weight value for m-estimation |
---|
665 | * (default is 1.0)</pre> |
---|
666 | * |
---|
667 | <!-- options-end --> |
---|
668 | * |
---|
669 | * @param options the list of options as an array of strings |
---|
670 | * @throws Exception if an option is not supported |
---|
671 | */ |
---|
672 | public void setOptions(String[] options) throws Exception { |
---|
673 | |
---|
674 | m_Debug = Utils.getFlag('D', options); |
---|
675 | |
---|
676 | String Critical = Utils.getOption('C', options); |
---|
677 | if(Critical.length() != 0) |
---|
678 | m_Critical = Integer.parseInt(Critical); |
---|
679 | else |
---|
680 | m_Critical = 50; |
---|
681 | |
---|
682 | String Freq = Utils.getOption('F', options); |
---|
683 | if(Freq.length() != 0) |
---|
684 | m_Limit = Integer.parseInt(Freq); |
---|
685 | else |
---|
686 | m_Limit = 1; |
---|
687 | |
---|
688 | m_Laplace = Utils.getFlag('L', options); |
---|
689 | String MWeight = Utils.getOption('M', options); |
---|
690 | if(MWeight.length() != 0) { |
---|
691 | if(m_Laplace) |
---|
692 | throw new Exception("weight for m-estimate is pointless if using laplace estimation!"); |
---|
693 | m_MWeight = Double.parseDouble(MWeight); |
---|
694 | } else |
---|
695 | m_MWeight = 1.0; |
---|
696 | |
---|
697 | Utils.checkForRemainingOptions(options); |
---|
698 | } |
---|
699 | |
---|
700 | /** |
---|
701 | * Gets the current settings of the classifier. |
---|
702 | * |
---|
703 | * @return an array of strings suitable for passing to setOptions |
---|
704 | */ |
---|
705 | public String [] getOptions() { |
---|
706 | |
---|
707 | Vector result = new Vector(); |
---|
708 | |
---|
709 | if (m_Debug) |
---|
710 | result.add("-D"); |
---|
711 | |
---|
712 | result.add("-F"); |
---|
713 | result.add("" + m_Limit); |
---|
714 | |
---|
715 | if (m_Laplace) { |
---|
716 | result.add("-L"); |
---|
717 | } else { |
---|
718 | result.add("-M"); |
---|
719 | result.add("" + m_MWeight); |
---|
720 | } |
---|
721 | |
---|
722 | result.add("-C"); |
---|
723 | result.add("" + m_Critical); |
---|
724 | |
---|
725 | return (String[]) result.toArray(new String[result.size()]); |
---|
726 | } |
---|
727 | |
---|
728 | /** |
---|
729 | * Returns the tip text for this property |
---|
730 | * @return tip text for this property suitable for |
---|
731 | * displaying in the explorer/experimenter gui |
---|
732 | */ |
---|
733 | public String mestWeightTipText() { |
---|
734 | return "Set the weight for m-estimate."; |
---|
735 | } |
---|
736 | |
---|
737 | /** |
---|
738 | * Sets the weight for m-estimate |
---|
739 | * |
---|
740 | * @param w the weight |
---|
741 | */ |
---|
742 | public void setMestWeight(double w) { |
---|
743 | if (getUseLaplace()) { |
---|
744 | System.out.println( |
---|
745 | "Weight is only used in conjunction with m-estimate - ignored!"); |
---|
746 | } else { |
---|
747 | if(w > 0) |
---|
748 | m_MWeight = w; |
---|
749 | else |
---|
750 | System.out.println("M-Estimate Weight must be greater than 0!"); |
---|
751 | } |
---|
752 | } |
---|
753 | |
---|
754 | /** |
---|
755 | * Gets the weight used in m-estimate |
---|
756 | * |
---|
757 | * @return the weight for m-estimation |
---|
758 | */ |
---|
759 | public double getMestWeight() { |
---|
760 | return m_MWeight; |
---|
761 | } |
---|
762 | |
---|
763 | /** |
---|
764 | * Returns the tip text for this property |
---|
765 | * @return tip text for this property suitable for |
---|
766 | * displaying in the explorer/experimenter gui |
---|
767 | */ |
---|
768 | public String useLaplaceTipText() { |
---|
769 | return "Use Laplace correction instead of m-estimation."; |
---|
770 | } |
---|
771 | |
---|
772 | /** |
---|
773 | * Gets if laplace correction is being used. |
---|
774 | * |
---|
775 | * @return Value of m_Laplace. |
---|
776 | */ |
---|
777 | public boolean getUseLaplace() { |
---|
778 | return m_Laplace; |
---|
779 | } |
---|
780 | |
---|
781 | /** |
---|
782 | * Sets if laplace correction is to be used. |
---|
783 | * |
---|
784 | * @param value Value to assign to m_Laplace. |
---|
785 | */ |
---|
786 | public void setUseLaplace(boolean value) { |
---|
787 | m_Laplace = value; |
---|
788 | } |
---|
789 | |
---|
790 | /** |
---|
791 | * Returns the tip text for this property |
---|
792 | * @return tip text for this property suitable for |
---|
793 | * displaying in the explorer/experimenter gui |
---|
794 | */ |
---|
795 | public String frequencyLimitTipText() { |
---|
796 | return "Attributes with a frequency in the train set below " |
---|
797 | + "this value aren't used as parents."; |
---|
798 | } |
---|
799 | |
---|
800 | /** |
---|
801 | * Sets the frequency limit |
---|
802 | * |
---|
803 | * @param f the frequency limit |
---|
804 | */ |
---|
805 | public void setFrequencyLimit(int f) { |
---|
806 | m_Limit = f; |
---|
807 | } |
---|
808 | |
---|
809 | /** |
---|
810 | * Gets the frequency limit. |
---|
811 | * |
---|
812 | * @return the frequency limit |
---|
813 | */ |
---|
814 | public int getFrequencyLimit() { |
---|
815 | return m_Limit; |
---|
816 | } |
---|
817 | |
---|
818 | /** |
---|
819 | * Returns the tip text for this property |
---|
820 | * @return tip text for this property suitable for |
---|
821 | * displaying in the explorer/experimenter gui |
---|
822 | */ |
---|
823 | public String criticalValueTipText() { |
---|
824 | return "Specify critical value for specialization-generalization " |
---|
825 | + "relationship (default 50)."; |
---|
826 | } |
---|
827 | |
---|
828 | /** |
---|
829 | * Sets the critical value |
---|
830 | * |
---|
831 | * @param c the critical value |
---|
832 | */ |
---|
833 | public void setCriticalValue(int c) { |
---|
834 | m_Critical = c; |
---|
835 | } |
---|
836 | |
---|
837 | /** |
---|
838 | * Gets the critical value. |
---|
839 | * |
---|
840 | * @return the critical value |
---|
841 | */ |
---|
842 | public int getCriticalValue() { |
---|
843 | return m_Critical; |
---|
844 | } |
---|
845 | |
---|
846 | /** |
---|
847 | * Returns a description of the classifier. |
---|
848 | * |
---|
849 | * @return a description of the classifier as a string. |
---|
850 | */ |
---|
851 | public String toString() { |
---|
852 | |
---|
853 | StringBuffer text = new StringBuffer(); |
---|
854 | |
---|
855 | text.append("The AODEsr Classifier"); |
---|
856 | if (m_Instances == null) { |
---|
857 | text.append(": No model built yet."); |
---|
858 | } else { |
---|
859 | try { |
---|
860 | for (int i = 0; i < m_NumClasses; i++) { |
---|
861 | // print to string, the prior probabilities of class values |
---|
862 | text.append("\nClass " + m_Instances.classAttribute().value(i) + |
---|
863 | ": Prior probability = " + Utils. |
---|
864 | doubleToString(((m_ClassCounts[i] + 1) |
---|
865 | /(m_SumInstances + m_NumClasses)), 4, 2)+"\n\n"); |
---|
866 | } |
---|
867 | |
---|
868 | text.append("Dataset: " + m_Instances.relationName() + "\n" |
---|
869 | + "Instances: " + m_NumInstances + "\n" |
---|
870 | + "Attributes: " + m_NumAttributes + "\n" |
---|
871 | + "Frequency limit for superParents: " + m_Limit + "\n" |
---|
872 | + "Critical value for the specializtion-generalization " |
---|
873 | + "relationship: " + m_Critical + "\n"); |
---|
874 | if(m_Laplace) { |
---|
875 | text.append("Using LapLace estimation."); |
---|
876 | } else { |
---|
877 | text.append("Using m-estimation, m = " + m_MWeight); |
---|
878 | } |
---|
879 | } catch (Exception ex) { |
---|
880 | text.append(ex.getMessage()); |
---|
881 | } |
---|
882 | } |
---|
883 | return text.toString(); |
---|
884 | } |
---|
885 | |
---|
886 | /** |
---|
887 | * Returns the revision string. |
---|
888 | * |
---|
889 | * @return the revision |
---|
890 | */ |
---|
891 | public String getRevision() { |
---|
892 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
893 | } |
---|
894 | |
---|
895 | /** |
---|
896 | * Main method for testing this class. |
---|
897 | * |
---|
898 | * @param argv the options |
---|
899 | */ |
---|
900 | public static void main(String [] argv) { |
---|
901 | runClassifier(new AODEsr(), argv); |
---|
902 | } |
---|
903 | } |
---|
904 | |
---|