/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * AODEsr.java * Copyright (C) 2007 * Algorithm developed by: Fei ZHENG and Geoff Webb * Code written by: Fei ZHENG and Janice Boughton */ package weka.classifiers.bayes; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.UpdateableClassifier; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.util.Enumeration; import java.util.Vector; /** * * AODEsr augments AODE with Subsumption Resolution.AODEsr detects specializations between two attribute values at classification time and deletes the generalization attribute value.
* For more information, see:
* Fei Zheng, Geoffrey I. Webb: Efficient Lazy Elimination for Averaged-One Dependence Estimators. In: Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006), 1113-1120, 2006. *

* * BibTeX: *

 * @inproceedings{Zheng2006,
 *    author = {Fei Zheng and Geoffrey I. Webb},
 *    booktitle = {Proceedings of the Twenty-third International Conference on Machine  Learning (ICML 2006)},
 *    pages = {1113-1120},
 *    publisher = {ACM Press},
 *    title = {Efficient Lazy Elimination for Averaged-One Dependence Estimators},
 *    year = {2006},
 *    ISBN = {1-59593-383-2}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  Output debugging information
 * 
* *
 -C
 *  Impose a critcal value for specialization-generalization relationship
 *  (default is 50)
* *
 -F
 *  Impose a frequency limit for superParents
 *  (default is 1)
* *
 -L
 *  Using Laplace estimation
 *  (default is m-esimation (m=1))
* *
 -M
 *  Weight value for m-estimation
 *  (default is 1.0)
* * * @author Fei Zheng * @author Janice Boughton * @version $Revision: 5928 $ */ public class AODEsr extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, UpdateableClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5602143019183068848L; /** * 3D array (m_NumClasses * m_TotalAttValues * m_TotalAttValues) * of attribute counts, i.e. the number of times an attribute value occurs * in conjunction with another attribute value and a class value. */ private double [][][] m_CondiCounts; /** * 2D array (m_TotalAttValues * m_TotalAttValues) of attributes counts. * similar to m_CondiCounts, but ignoring class value. */ private double [][] m_CondiCountsNoClass; /** The number of times each class value occurs in the dataset */ private double [] m_ClassCounts; /** The sums of attribute-class counts * -- if there are no missing values for att, then * m_SumForCounts[classVal][att] will be the same as * m_ClassCounts[classVal] */ private double [][] m_SumForCounts; /** The number of classes */ private int m_NumClasses; /** The number of attributes in dataset, including class */ private int m_NumAttributes; /** The number of instances in the dataset */ private int m_NumInstances; /** The index of the class attribute */ private int m_ClassIndex; /** The dataset */ private Instances m_Instances; /** * The total number of values (including an extra for each attribute's * missing value, which are included in m_CondiCounts) for all attributes * (not including class). Eg. for three atts each with two possible values, * m_TotalAttValues would be 9 (6 values + 3 missing). * This variable is used when allocating space for m_CondiCounts matrix. */ private int m_TotalAttValues; /** The starting index (in the m_CondiCounts matrix) of the values for each attribute */ private int [] m_StartAttIndex; /** The number of values for each attribute */ private int [] m_NumAttValues; /** The frequency of each attribute value for the dataset */ private double [] m_Frequencies; /** The number of valid class values observed in dataset * -- with no missing classes, this number is the same as m_NumInstances. */ private double m_SumInstances; /** An att's frequency must be this value or more to be a superParent */ private int m_Limit = 1; /** If true, outputs debugging info */ private boolean m_Debug = false; /** m value for m-estimation */ protected double m_MWeight = 1.0; /** Using LapLace estimation or not*/ private boolean m_Laplace = false; /** the critical value for the specialization-generalization */ private int m_Critical = 50; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "AODEsr augments AODE with Subsumption Resolution." +"AODEsr detects specializations between two attribute " +"values at classification time and deletes the generalization " +"attribute value.\n" +"For more information, see:\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Fei Zheng and Geoffrey I. Webb"); result.setValue(Field.YEAR, "2006"); result.setValue(Field.TITLE, "Efficient Lazy Elimination for Averaged-One Dependence Estimators"); result.setValue(Field.PAGES, "1113-1120"); result.setValue(Field.BOOKTITLE, "Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006)"); result.setValue(Field.PUBLISHER, "ACM Press"); result.setValue(Field.ISBN, "1-59593-383-2"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated * successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class m_Instances = new Instances(instances); m_Instances.deleteWithMissingClass(); // reset variable for this fold m_SumInstances = 0; m_ClassIndex = instances.classIndex(); m_NumInstances = m_Instances.numInstances(); m_NumAttributes = instances.numAttributes(); m_NumClasses = instances.numClasses(); // allocate space for attribute reference arrays m_StartAttIndex = new int[m_NumAttributes]; m_NumAttValues = new int[m_NumAttributes]; m_TotalAttValues = 0; for(int i = 0; i < m_NumAttributes; i++) { if(i != m_ClassIndex) { m_StartAttIndex[i] = m_TotalAttValues; m_NumAttValues[i] = m_Instances.attribute(i).numValues(); m_TotalAttValues += m_NumAttValues[i] + 1; // + 1 so room for missing value count } else { // m_StartAttIndex[i] = -1; // class isn't included m_NumAttValues[i] = m_NumClasses; } } // allocate space for counts and frequencies m_CondiCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; m_ClassCounts = new double[m_NumClasses]; m_SumForCounts = new double[m_NumClasses][m_NumAttributes]; m_Frequencies = new double[m_TotalAttValues]; m_CondiCountsNoClass = new double[m_TotalAttValues][m_TotalAttValues]; // calculate the counts for(int k = 0; k < m_NumInstances; k++) { addToCounts((Instance)m_Instances.instance(k)); } // free up some space m_Instances = new Instances(m_Instances, 0); } /** * Updates the classifier with the given instance. * * @param instance the new training instance to include in the model * @throws Exception if the instance could not be incorporated in * the model. */ public void updateClassifier(Instance instance) { this.addToCounts(instance); } /** * Puts an instance's values into m_CondiCounts, m_ClassCounts and * m_SumInstances. * * @param instance the instance whose values are to be put into the * counts variables */ private void addToCounts(Instance instance) { double [] countsPointer; double [] countsNoClassPointer; if(instance.classIsMissing()) return; // ignore instances with missing class int classVal = (int)instance.classValue(); double weight = instance.weight(); m_ClassCounts[classVal] += weight; m_SumInstances += weight; // store instance's att val indexes in an array, b/c accessing it // in loop(s) is more efficient int [] attIndex = new int[m_NumAttributes]; for(int i = 0; i < m_NumAttributes; i++) { if(i == m_ClassIndex) attIndex[i] = -1; // we don't use the class attribute in counts else { if(instance.isMissing(i)) attIndex[i] = m_StartAttIndex[i] + m_NumAttValues[i]; else attIndex[i] = m_StartAttIndex[i] + (int)instance.value(i); } } for(int Att1 = 0; Att1 < m_NumAttributes; Att1++) { if(attIndex[Att1] == -1) continue; // avoid pointless looping as Att1 is currently the class attribute m_Frequencies[attIndex[Att1]] += weight; // if this is a missing value, we don't want to increase sumforcounts if(!instance.isMissing(Att1)) m_SumForCounts[classVal][Att1] += weight; // save time by referencing this now, rather than repeatedly in the loop countsPointer = m_CondiCounts[classVal][attIndex[Att1]]; countsNoClassPointer = m_CondiCountsNoClass[attIndex[Att1]]; for(int Att2 = 0; Att2 < m_NumAttributes; Att2++) { if(attIndex[Att2] != -1) { countsPointer[attIndex[Att2]] += weight; countsNoClassPointer[attIndex[Att2]] += weight; } } } } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if there is a problem generating the prediction */ public double [] distributionForInstance(Instance instance) throws Exception { // accumulates posterior probabilities for each class double [] probs = new double[m_NumClasses]; // index for parent attribute value, and a count of parents used int pIndex, parentCount; int [] SpecialGeneralArray = new int[m_NumAttributes]; // pointers for efficiency double [][] countsForClass; double [] countsForClassParent; double [] countsForAtti; double [] countsForAttj; // store instance's att values in an int array, so accessing them // is more efficient in loop(s). int [] attIndex = new int[m_NumAttributes]; for(int att = 0; att < m_NumAttributes; att++) { if(instance.isMissing(att) || att == m_ClassIndex) attIndex[att] = -1; // can't use class & missing vals in calculations else attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); } // -1 indicates attribute is not a generalization of any other attributes for(int i = 0; i < m_NumAttributes; i++) { SpecialGeneralArray[i] = -1; } // calculate the specialization-generalization array for(int i = 0; i < m_NumAttributes; i++){ // skip i if it's the class or is missing if(attIndex[i] == -1) continue; countsForAtti = m_CondiCountsNoClass[attIndex[i]]; for(int j = 0; j < m_NumAttributes; j++) { // skip j if it's the class, missing, is i or a generalization of i if((attIndex[j] == -1) || (i == j) || (SpecialGeneralArray[j] == i)) continue; countsForAttj = m_CondiCountsNoClass[attIndex[j]]; // check j's frequency is above critical value if(countsForAttj[attIndex[j]] > m_Critical) { // skip j if the frequency of i and j together is not equivalent // to the frequency of j alone if(countsForAttj[attIndex[j]] == countsForAtti[attIndex[j]]) { // if attributes i and j are both a specialization of each other // avoid deleting both by skipping j if((countsForAttj[attIndex[j]] == countsForAtti[attIndex[i]]) && (i < j)){ continue; } else { // set the specialization relationship SpecialGeneralArray[i] = j; break; // break out of j loop because a specialization has been found } } } } } // calculate probabilities for each possible class value for(int classVal = 0; classVal < m_NumClasses; classVal++) { probs[classVal] = 0; double x = 0; parentCount = 0; countsForClass = m_CondiCounts[classVal]; // each attribute has a turn of being the parent for(int parent = 0; parent < m_NumAttributes; parent++) { if(attIndex[parent] == -1) continue; // skip class attribute or missing value // determine correct index for the parent in m_CondiCounts matrix pIndex = attIndex[parent]; // check that the att value has a frequency of m_Limit or greater if(m_Frequencies[pIndex] < m_Limit) continue; // delete the generalization attributes. if(SpecialGeneralArray[parent] != -1) continue; countsForClassParent = countsForClass[pIndex]; // block the parent from being its own child attIndex[parent] = -1; parentCount++; double classparentfreq = countsForClassParent[pIndex]; // find the number of missing values for parent's attribute double missing4ParentAtt = m_Frequencies[m_StartAttIndex[parent] + m_NumAttValues[parent]]; // calculate the prior probability -- P(parent & classVal) if (m_Laplace){ x = LaplaceEstimate(classparentfreq, m_SumInstances - missing4ParentAtt, m_NumClasses * m_NumAttValues[parent]); } else { x = MEstimate(classparentfreq, m_SumInstances - missing4ParentAtt, m_NumClasses * m_NumAttValues[parent]); } // take into account the value of each attribute for(int att = 0; att < m_NumAttributes; att++) { if(attIndex[att] == -1) // skip class attribute or missing value continue; // delete the generalization attributes. if(SpecialGeneralArray[att] != -1) continue; double missingForParentandChildAtt = countsForClassParent[m_StartAttIndex[att] + m_NumAttValues[att]]; if (m_Laplace){ x *= LaplaceEstimate(countsForClassParent[attIndex[att]], classparentfreq - missingForParentandChildAtt, m_NumAttValues[att]); } else { x *= MEstimate(countsForClassParent[attIndex[att]], classparentfreq - missingForParentandChildAtt, m_NumAttValues[att]); } } // add this probability to the overall probability probs[classVal] += x; // unblock the parent attIndex[parent] = pIndex; } // check that at least one att was a parent if(parentCount < 1) { // do plain naive bayes conditional prob probs[classVal] = NBconditionalProb(instance, classVal); //probs[classVal] = Double.NaN; } else { // divide by number of parent atts to get the mean probs[classVal] /= (double)(parentCount); } } Utils.normalize(probs); return probs; } /** * Calculates the probability of the specified class for the given test * instance, using naive Bayes. * * @param instance the instance to be classified * @param classVal the class for which to calculate the probability * @return predicted class probability * @throws Exception if there is a problem generating the prediction */ public double NBconditionalProb(Instance instance, int classVal) throws Exception { double prob; int attIndex; double [][] pointer; // calculate the prior probability if(m_Laplace) { prob = LaplaceEstimate(m_ClassCounts[classVal],m_SumInstances,m_NumClasses); } else { prob = MEstimate(m_ClassCounts[classVal], m_SumInstances, m_NumClasses); } pointer = m_CondiCounts[classVal]; // consider effect of each att value for(int att = 0; att < m_NumAttributes; att++) { if(att == m_ClassIndex || instance.isMissing(att)) continue; // determine correct index for att in m_CondiCounts attIndex = m_StartAttIndex[att] + (int)instance.value(att); if (m_Laplace){ prob *= LaplaceEstimate((double)pointer[attIndex][attIndex], (double)m_SumForCounts[classVal][att], m_NumAttValues[att]); } else { prob *= MEstimate((double)pointer[attIndex][attIndex], (double)m_SumForCounts[classVal][att], m_NumAttValues[att]); } } return prob; } /** * Returns the probability estimate, using m-estimate * * @param frequency frequency of value of interest * @param total count of all values * @param numValues number of different values * @return the probability estimate */ public double MEstimate(double frequency, double total, double numValues) { return (frequency + m_MWeight / numValues) / (total + m_MWeight); } /** * Returns the probability estimate, using laplace correction * * @param frequency frequency of value of interest * @param total count of all values * @param numValues number of different values * @return the probability estimate */ public double LaplaceEstimate(double frequency, double total, double numValues) { return (frequency + 1.0) / (total + numValues); } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(5); newVector.addElement( new Option("\tOutput debugging information\n", "D", 0,"-D")); newVector.addElement( new Option("\tImpose a critcal value for specialization-generalization relationship\n" + "\t(default is 50)", "C", 1,"-C")); newVector.addElement( new Option("\tImpose a frequency limit for superParents\n" + "\t(default is 1)", "F", 2,"-F")); newVector.addElement( new Option("\tUsing Laplace estimation\n" + "\t(default is m-esimation (m=1))", "L", 3,"-L")); newVector.addElement( new Option("\tWeight value for m-estimation\n" + "\t(default is 1.0)", "M", 4,"-M")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Output debugging information
   * 
* *
 -C
   *  Impose a critcal value for specialization-generalization relationship
   *  (default is 50)
* *
 -F
   *  Impose a frequency limit for superParents
   *  (default is 1)
* *
 -L
   *  Using Laplace estimation
   *  (default is m-esimation (m=1))
* *
 -M
   *  Weight value for m-estimation
   *  (default is 1.0)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { m_Debug = Utils.getFlag('D', options); String Critical = Utils.getOption('C', options); if(Critical.length() != 0) m_Critical = Integer.parseInt(Critical); else m_Critical = 50; String Freq = Utils.getOption('F', options); if(Freq.length() != 0) m_Limit = Integer.parseInt(Freq); else m_Limit = 1; m_Laplace = Utils.getFlag('L', options); String MWeight = Utils.getOption('M', options); if(MWeight.length() != 0) { if(m_Laplace) throw new Exception("weight for m-estimate is pointless if using laplace estimation!"); m_MWeight = Double.parseDouble(MWeight); } else m_MWeight = 1.0; Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { Vector result = new Vector(); if (m_Debug) result.add("-D"); result.add("-F"); result.add("" + m_Limit); if (m_Laplace) { result.add("-L"); } else { result.add("-M"); result.add("" + m_MWeight); } result.add("-C"); result.add("" + m_Critical); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String mestWeightTipText() { return "Set the weight for m-estimate."; } /** * Sets the weight for m-estimate * * @param w the weight */ public void setMestWeight(double w) { if (getUseLaplace()) { System.out.println( "Weight is only used in conjunction with m-estimate - ignored!"); } else { if(w > 0) m_MWeight = w; else System.out.println("M-Estimate Weight must be greater than 0!"); } } /** * Gets the weight used in m-estimate * * @return the weight for m-estimation */ public double getMestWeight() { return m_MWeight; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useLaplaceTipText() { return "Use Laplace correction instead of m-estimation."; } /** * Gets if laplace correction is being used. * * @return Value of m_Laplace. */ public boolean getUseLaplace() { return m_Laplace; } /** * Sets if laplace correction is to be used. * * @param value Value to assign to m_Laplace. */ public void setUseLaplace(boolean value) { m_Laplace = value; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String frequencyLimitTipText() { return "Attributes with a frequency in the train set below " + "this value aren't used as parents."; } /** * Sets the frequency limit * * @param f the frequency limit */ public void setFrequencyLimit(int f) { m_Limit = f; } /** * Gets the frequency limit. * * @return the frequency limit */ public int getFrequencyLimit() { return m_Limit; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String criticalValueTipText() { return "Specify critical value for specialization-generalization " + "relationship (default 50)."; } /** * Sets the critical value * * @param c the critical value */ public void setCriticalValue(int c) { m_Critical = c; } /** * Gets the critical value. * * @return the critical value */ public int getCriticalValue() { return m_Critical; } /** * Returns a description of the classifier. * * @return a description of the classifier as a string. */ public String toString() { StringBuffer text = new StringBuffer(); text.append("The AODEsr Classifier"); if (m_Instances == null) { text.append(": No model built yet."); } else { try { for (int i = 0; i < m_NumClasses; i++) { // print to string, the prior probabilities of class values text.append("\nClass " + m_Instances.classAttribute().value(i) + ": Prior probability = " + Utils. doubleToString(((m_ClassCounts[i] + 1) /(m_SumInstances + m_NumClasses)), 4, 2)+"\n\n"); } text.append("Dataset: " + m_Instances.relationName() + "\n" + "Instances: " + m_NumInstances + "\n" + "Attributes: " + m_NumAttributes + "\n" + "Frequency limit for superParents: " + m_Limit + "\n" + "Critical value for the specializtion-generalization " + "relationship: " + m_Critical + "\n"); if(m_Laplace) { text.append("Using LapLace estimation."); } else { text.append("Using m-estimation, m = " + m_MWeight); } } catch (Exception ex) { text.append(ex.getMessage()); } } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new AODEsr(), argv); } }