1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AODE.java |
---|
19 | * Copyright (C) 2003 |
---|
20 | * Algorithm developed by: Geoff Webb |
---|
21 | * Code written by: Janice Boughton & Zhihai Wang |
---|
22 | */ |
---|
23 | |
---|
24 | package weka.classifiers.bayes; |
---|
25 | |
---|
26 | import weka.classifiers.Classifier; |
---|
27 | import weka.classifiers.AbstractClassifier; |
---|
28 | import weka.classifiers.UpdateableClassifier; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.OptionHandler; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.TechnicalInformation; |
---|
36 | import weka.core.TechnicalInformationHandler; |
---|
37 | import weka.core.Utils; |
---|
38 | import weka.core.WeightedInstancesHandler; |
---|
39 | import weka.core.Capabilities.Capability; |
---|
40 | import weka.core.TechnicalInformation.Field; |
---|
41 | import weka.core.TechnicalInformation.Type; |
---|
42 | |
---|
43 | import java.util.Enumeration; |
---|
44 | import java.util.Vector; |
---|
45 | |
---|
46 | /** |
---|
47 | <!-- globalinfo-start --> |
---|
48 | * AODE achieves highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models that have weaker (and hence less detrimental) independence assumptions than naive Bayes. The resulting algorithm is computationally efficient while delivering highly accurate classification on many learning tasks.<br/> |
---|
49 | * <br/> |
---|
50 | * For more information, see<br/> |
---|
51 | * <br/> |
---|
52 | * G. Webb, J. Boughton, Z. Wang (2005). Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning. 58(1):5-24.<br/> |
---|
53 | * <br/> |
---|
54 | * Further papers are available at<br/> |
---|
55 | * http://www.csse.monash.edu.au/~webb/.<br/> |
---|
56 | * <br/> |
---|
57 | * Can use an m-estimate for smoothing base probability estimates in place of the Laplace correction (via option -M).<br/> |
---|
58 | * Default frequency limit set to 1. |
---|
59 | * <p/> |
---|
60 | <!-- globalinfo-end --> |
---|
61 | * |
---|
62 | <!-- technical-bibtex-start --> |
---|
63 | * BibTeX: |
---|
64 | * <pre> |
---|
65 | * @article{Webb2005, |
---|
66 | * author = {G. Webb and J. Boughton and Z. Wang}, |
---|
67 | * journal = {Machine Learning}, |
---|
68 | * number = {1}, |
---|
69 | * pages = {5-24}, |
---|
70 | * title = {Not So Naive Bayes: Aggregating One-Dependence Estimators}, |
---|
71 | * volume = {58}, |
---|
72 | * year = {2005} |
---|
73 | * } |
---|
74 | * </pre> |
---|
75 | * <p/> |
---|
76 | <!-- technical-bibtex-end --> |
---|
77 | * |
---|
78 | <!-- options-start --> |
---|
79 | * Valid options are: <p/> |
---|
80 | * |
---|
81 | * <pre> -D |
---|
82 | * Output debugging information |
---|
83 | * </pre> |
---|
84 | * |
---|
85 | * <pre> -F <int> |
---|
86 | * Impose a frequency limit for superParents |
---|
87 | * (default is 1)</pre> |
---|
88 | * |
---|
89 | * <pre> -M |
---|
90 | * Use m-estimate instead of laplace correction |
---|
91 | * </pre> |
---|
92 | * |
---|
93 | * <pre> -W <int> |
---|
94 | * Specify a weight to use with m-estimate |
---|
95 | * (default is 1)</pre> |
---|
96 | * |
---|
97 | <!-- options-end --> |
---|
98 | * |
---|
99 | * @author Janice Boughton (jrbought@csse.monash.edu.au) |
---|
100 | * @author Zhihai Wang (zhw@csse.monash.edu.au) |
---|
101 | * @version $Revision: 5928 $ |
---|
102 | */ |
---|
103 | public class AODE |
---|
104 | extends AbstractClassifier |
---|
105 | implements OptionHandler, WeightedInstancesHandler, UpdateableClassifier, |
---|
106 | TechnicalInformationHandler { |
---|
107 | |
---|
108 | /** for serialization */ |
---|
109 | static final long serialVersionUID = 9197439980415113523L; |
---|
110 | |
---|
111 | /** |
---|
112 | * 3D array (m_NumClasses * m_TotalAttValues * m_TotalAttValues) |
---|
113 | * of attribute counts, i.e., the number of times an attribute value occurs |
---|
114 | * in conjunction with another attribute value and a class value. |
---|
115 | */ |
---|
116 | private double [][][] m_CondiCounts; |
---|
117 | |
---|
118 | /** The number of times each class value occurs in the dataset */ |
---|
119 | private double [] m_ClassCounts; |
---|
120 | |
---|
121 | /** The sums of attribute-class counts |
---|
122 | * -- if there are no missing values for att, then |
---|
123 | * m_SumForCounts[classVal][att] will be the same as |
---|
124 | * m_ClassCounts[classVal] |
---|
125 | */ |
---|
126 | private double [][] m_SumForCounts; |
---|
127 | |
---|
128 | /** The number of classes */ |
---|
129 | private int m_NumClasses; |
---|
130 | |
---|
131 | /** The number of attributes in dataset, including class */ |
---|
132 | private int m_NumAttributes; |
---|
133 | |
---|
134 | /** The number of instances in the dataset */ |
---|
135 | private int m_NumInstances; |
---|
136 | |
---|
137 | /** The index of the class attribute */ |
---|
138 | private int m_ClassIndex; |
---|
139 | |
---|
140 | /** The dataset */ |
---|
141 | private Instances m_Instances; |
---|
142 | |
---|
143 | /** |
---|
144 | * The total number of values (including an extra for each attribute's |
---|
145 | * missing value, which are included in m_CondiCounts) for all attributes |
---|
146 | * (not including class). E.g., for three atts each with two possible values, |
---|
147 | * m_TotalAttValues would be 9 (6 values + 3 missing). |
---|
148 | * This variable is used when allocating space for m_CondiCounts matrix. |
---|
149 | */ |
---|
150 | private int m_TotalAttValues; |
---|
151 | |
---|
152 | /** The starting index (in the m_CondiCounts matrix) of the values for each |
---|
153 | * attribute */ |
---|
154 | private int [] m_StartAttIndex; |
---|
155 | |
---|
156 | /** The number of values for each attribute */ |
---|
157 | private int [] m_NumAttValues; |
---|
158 | |
---|
159 | /** The frequency of each attribute value for the dataset */ |
---|
160 | private double [] m_Frequencies; |
---|
161 | |
---|
162 | /** The number of valid class values observed in dataset |
---|
163 | * -- with no missing classes, this number is the same as m_NumInstances. |
---|
164 | */ |
---|
165 | private double m_SumInstances; |
---|
166 | |
---|
167 | /** An att's frequency must be this value or more to be a superParent */ |
---|
168 | private int m_Limit = 1; |
---|
169 | |
---|
170 | /** If true, outputs debugging info */ |
---|
171 | private boolean m_Debug = false; |
---|
172 | |
---|
173 | /** flag for using m-estimates */ |
---|
174 | private boolean m_MEstimates = false; |
---|
175 | |
---|
176 | /** value for m in m-estimate */ |
---|
177 | private int m_Weight = 1; |
---|
178 | |
---|
179 | |
---|
180 | /** |
---|
181 | * Returns a string describing this classifier |
---|
182 | * @return a description of the classifier suitable for |
---|
183 | * displaying in the explorer/experimenter gui |
---|
184 | */ |
---|
185 | public String globalInfo() { |
---|
186 | |
---|
187 | return "AODE achieves highly accurate classification by averaging over " |
---|
188 | +"all of a small space of alternative naive-Bayes-like models that have " |
---|
189 | +"weaker (and hence less detrimental) independence assumptions than " |
---|
190 | +"naive Bayes. The resulting algorithm is computationally efficient " |
---|
191 | +"while delivering highly accurate classification on many learning " |
---|
192 | +"tasks.\n\n" |
---|
193 | +"For more information, see\n\n" |
---|
194 | + getTechnicalInformation().toString() + "\n\n" |
---|
195 | +"Further papers are available at\n" |
---|
196 | +" http://www.csse.monash.edu.au/~webb/.\n\n" |
---|
197 | + "Can use an m-estimate for smoothing base probability estimates " |
---|
198 | + "in place of the Laplace correction (via option -M).\n" |
---|
199 | + "Default frequency limit set to 1."; |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * Returns an instance of a TechnicalInformation object, containing |
---|
204 | * detailed information about the technical background of this class, |
---|
205 | * e.g., paper reference or book this class is based on. |
---|
206 | * |
---|
207 | * @return the technical information about this class |
---|
208 | */ |
---|
209 | public TechnicalInformation getTechnicalInformation() { |
---|
210 | TechnicalInformation result; |
---|
211 | |
---|
212 | result = new TechnicalInformation(Type.ARTICLE); |
---|
213 | result.setValue(Field.AUTHOR, "G. Webb and J. Boughton and Z. Wang"); |
---|
214 | result.setValue(Field.YEAR, "2005"); |
---|
215 | result.setValue(Field.TITLE, "Not So Naive Bayes: Aggregating One-Dependence Estimators"); |
---|
216 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
217 | result.setValue(Field.VOLUME, "58"); |
---|
218 | result.setValue(Field.NUMBER, "1"); |
---|
219 | result.setValue(Field.PAGES, "5-24"); |
---|
220 | |
---|
221 | return result; |
---|
222 | } |
---|
223 | |
---|
224 | /** |
---|
225 | * Returns default capabilities of the classifier. |
---|
226 | * |
---|
227 | * @return the capabilities of this classifier |
---|
228 | */ |
---|
229 | public Capabilities getCapabilities() { |
---|
230 | Capabilities result = super.getCapabilities(); |
---|
231 | result.disableAll(); |
---|
232 | |
---|
233 | // attributes |
---|
234 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
235 | result.enable(Capability.MISSING_VALUES); |
---|
236 | |
---|
237 | // class |
---|
238 | result.enable(Capability.NOMINAL_CLASS); |
---|
239 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
240 | |
---|
241 | // instances |
---|
242 | result.setMinimumNumberInstances(0); |
---|
243 | |
---|
244 | return result; |
---|
245 | } |
---|
246 | |
---|
247 | /** |
---|
248 | * Generates the classifier. |
---|
249 | * |
---|
250 | * @param instances set of instances serving as training data |
---|
251 | * @throws Exception if the classifier has not been generated |
---|
252 | * successfully |
---|
253 | */ |
---|
254 | public void buildClassifier(Instances instances) throws Exception { |
---|
255 | |
---|
256 | // can classifier handle the data? |
---|
257 | getCapabilities().testWithFail(instances); |
---|
258 | |
---|
259 | // remove instances with missing class |
---|
260 | m_Instances = new Instances(instances); |
---|
261 | m_Instances.deleteWithMissingClass(); |
---|
262 | |
---|
263 | // reset variable for this fold |
---|
264 | m_SumInstances = 0; |
---|
265 | m_ClassIndex = instances.classIndex(); |
---|
266 | m_NumInstances = m_Instances.numInstances(); |
---|
267 | m_NumAttributes = m_Instances.numAttributes(); |
---|
268 | m_NumClasses = m_Instances.numClasses(); |
---|
269 | |
---|
270 | // allocate space for attribute reference arrays |
---|
271 | m_StartAttIndex = new int[m_NumAttributes]; |
---|
272 | m_NumAttValues = new int[m_NumAttributes]; |
---|
273 | |
---|
274 | m_TotalAttValues = 0; |
---|
275 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
276 | if(i != m_ClassIndex) { |
---|
277 | m_StartAttIndex[i] = m_TotalAttValues; |
---|
278 | m_NumAttValues[i] = m_Instances.attribute(i).numValues(); |
---|
279 | m_TotalAttValues += m_NumAttValues[i] + 1; |
---|
280 | // + 1 so room for missing value count |
---|
281 | } else { |
---|
282 | // m_StartAttIndex[i] = -1; // class isn't included |
---|
283 | m_NumAttValues[i] = m_NumClasses; |
---|
284 | } |
---|
285 | } |
---|
286 | |
---|
287 | // allocate space for counts and frequencies |
---|
288 | m_CondiCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; |
---|
289 | m_ClassCounts = new double[m_NumClasses]; |
---|
290 | m_SumForCounts = new double[m_NumClasses][m_NumAttributes]; |
---|
291 | m_Frequencies = new double[m_TotalAttValues]; |
---|
292 | |
---|
293 | // calculate the counts |
---|
294 | for(int k = 0; k < m_NumInstances; k++) { |
---|
295 | addToCounts((Instance)m_Instances.instance(k)); |
---|
296 | } |
---|
297 | |
---|
298 | // free up some space |
---|
299 | m_Instances = new Instances(m_Instances, 0); |
---|
300 | } |
---|
301 | |
---|
302 | |
---|
303 | /** |
---|
304 | * Updates the classifier with the given instance. |
---|
305 | * |
---|
306 | * @param instance the new training instance to include in the model |
---|
307 | */ |
---|
308 | public void updateClassifier(Instance instance) { |
---|
309 | this.addToCounts(instance); |
---|
310 | } |
---|
311 | |
---|
312 | /** |
---|
313 | * Puts an instance's values into m_CondiCounts, m_ClassCounts and |
---|
314 | * m_SumInstances. |
---|
315 | * |
---|
316 | * @param instance the instance whose values are to be put into the counts |
---|
317 | * variables |
---|
318 | */ |
---|
319 | private void addToCounts(Instance instance) { |
---|
320 | |
---|
321 | double [] countsPointer; |
---|
322 | |
---|
323 | if(instance.classIsMissing()) |
---|
324 | return; // ignore instances with missing class |
---|
325 | |
---|
326 | int classVal = (int)instance.classValue(); |
---|
327 | double weight = instance.weight(); |
---|
328 | |
---|
329 | m_ClassCounts[classVal] += weight; |
---|
330 | m_SumInstances += weight; |
---|
331 | |
---|
332 | // store instance's att val indexes in an array, b/c accessing it |
---|
333 | // in loop(s) is more efficient |
---|
334 | int [] attIndex = new int[m_NumAttributes]; |
---|
335 | for(int i = 0; i < m_NumAttributes; i++) { |
---|
336 | if(i == m_ClassIndex) |
---|
337 | attIndex[i] = -1; // we don't use the class attribute in counts |
---|
338 | else { |
---|
339 | if(instance.isMissing(i)) |
---|
340 | attIndex[i] = m_StartAttIndex[i] + m_NumAttValues[i]; |
---|
341 | else |
---|
342 | attIndex[i] = m_StartAttIndex[i] + (int)instance.value(i); |
---|
343 | } |
---|
344 | } |
---|
345 | |
---|
346 | for(int Att1 = 0; Att1 < m_NumAttributes; Att1++) { |
---|
347 | if(attIndex[Att1] == -1) |
---|
348 | continue; // avoid pointless looping as Att1 is currently the class attribute |
---|
349 | |
---|
350 | m_Frequencies[attIndex[Att1]] += weight; |
---|
351 | |
---|
352 | // if this is a missing value, we don't want to increase sumforcounts |
---|
353 | if(!instance.isMissing(Att1)) |
---|
354 | m_SumForCounts[classVal][Att1] += weight; |
---|
355 | |
---|
356 | // save time by referencing this now, rather than do it repeatedly in the loop |
---|
357 | countsPointer = m_CondiCounts[classVal][attIndex[Att1]]; |
---|
358 | |
---|
359 | for(int Att2 = 0; Att2 < m_NumAttributes; Att2++) { |
---|
360 | if(attIndex[Att2] != -1) { |
---|
361 | countsPointer[attIndex[Att2]] += weight; |
---|
362 | } |
---|
363 | } |
---|
364 | } |
---|
365 | } |
---|
366 | |
---|
367 | |
---|
368 | /** |
---|
369 | * Calculates the class membership probabilities for the given test |
---|
370 | * instance. |
---|
371 | * |
---|
372 | * @param instance the instance to be classified |
---|
373 | * @return predicted class probability distribution |
---|
374 | * @throws Exception if there is a problem generating the prediction |
---|
375 | */ |
---|
376 | public double [] distributionForInstance(Instance instance) throws Exception { |
---|
377 | |
---|
378 | // accumulates posterior probabilities for each class |
---|
379 | double [] probs = new double[m_NumClasses]; |
---|
380 | |
---|
381 | // index for parent attribute value, and a count of parents used |
---|
382 | int pIndex, parentCount; |
---|
383 | |
---|
384 | // pointers for efficiency |
---|
385 | // for current class, point to joint frequency for any pair of att values |
---|
386 | double [][] countsForClass; |
---|
387 | // for current class & parent, point to joint frequency for any att value |
---|
388 | double [] countsForClassParent; |
---|
389 | |
---|
390 | // store instance's att indexes in an int array, so accessing them |
---|
391 | // is more efficient in loop(s). |
---|
392 | int [] attIndex = new int[m_NumAttributes]; |
---|
393 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
394 | if(instance.isMissing(att) || att == m_ClassIndex) |
---|
395 | attIndex[att] = -1; // can't use class or missing values in calculations |
---|
396 | else |
---|
397 | attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); |
---|
398 | } |
---|
399 | |
---|
400 | // calculate probabilities for each possible class value |
---|
401 | for(int classVal = 0; classVal < m_NumClasses; classVal++) { |
---|
402 | |
---|
403 | probs[classVal] = 0; |
---|
404 | double spodeP = 0; // P(X,y) for current parent and class |
---|
405 | parentCount = 0; |
---|
406 | |
---|
407 | countsForClass = m_CondiCounts[classVal]; |
---|
408 | |
---|
409 | // each attribute has a turn of being the parent |
---|
410 | for(int parent = 0; parent < m_NumAttributes; parent++) { |
---|
411 | if(attIndex[parent] == -1) |
---|
412 | continue; // skip class attribute or missing value |
---|
413 | |
---|
414 | // determine correct index for the parent in m_CondiCounts matrix |
---|
415 | pIndex = attIndex[parent]; |
---|
416 | |
---|
417 | // check that the att value has a frequency of m_Limit or greater |
---|
418 | if(m_Frequencies[pIndex] < m_Limit) |
---|
419 | continue; |
---|
420 | |
---|
421 | countsForClassParent = countsForClass[pIndex]; |
---|
422 | |
---|
423 | // block the parent from being its own child |
---|
424 | attIndex[parent] = -1; |
---|
425 | |
---|
426 | parentCount++; |
---|
427 | |
---|
428 | // joint frequency of class and parent |
---|
429 | double classparentfreq = countsForClassParent[pIndex]; |
---|
430 | |
---|
431 | // find the number of missing values for parent's attribute |
---|
432 | double missing4ParentAtt = |
---|
433 | m_Frequencies[m_StartAttIndex[parent] + m_NumAttValues[parent]]; |
---|
434 | |
---|
435 | // calculate the prior probability -- P(parent & classVal) |
---|
436 | if (!m_MEstimates) { |
---|
437 | spodeP = (classparentfreq + 1.0) |
---|
438 | / ((m_SumInstances - missing4ParentAtt) + m_NumClasses |
---|
439 | * m_NumAttValues[parent]); |
---|
440 | } else { |
---|
441 | spodeP = (classparentfreq + ((double)m_Weight |
---|
442 | / (double)(m_NumClasses * m_NumAttValues[parent]))) |
---|
443 | / ((m_SumInstances - missing4ParentAtt) + m_Weight); |
---|
444 | } |
---|
445 | |
---|
446 | // take into account the value of each attribute |
---|
447 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
448 | if(attIndex[att] == -1) |
---|
449 | continue; |
---|
450 | |
---|
451 | double missingForParentandChildAtt = |
---|
452 | countsForClassParent[m_StartAttIndex[att] + m_NumAttValues[att]]; |
---|
453 | |
---|
454 | if(!m_MEstimates) { |
---|
455 | spodeP *= (countsForClassParent[attIndex[att]] + 1.0) |
---|
456 | / ((classparentfreq - missingForParentandChildAtt) |
---|
457 | + m_NumAttValues[att]); |
---|
458 | } else { |
---|
459 | spodeP *= (countsForClassParent[attIndex[att]] |
---|
460 | + ((double)m_Weight / (double)m_NumAttValues[att])) |
---|
461 | / ((classparentfreq - missingForParentandChildAtt) |
---|
462 | + m_Weight); |
---|
463 | } |
---|
464 | } |
---|
465 | |
---|
466 | // add this probability to the overall probability |
---|
467 | probs[classVal] += spodeP; |
---|
468 | |
---|
469 | // unblock the parent |
---|
470 | attIndex[parent] = pIndex; |
---|
471 | } |
---|
472 | |
---|
473 | // check that at least one att was a parent |
---|
474 | if(parentCount < 1) { |
---|
475 | |
---|
476 | // do plain naive bayes conditional prob |
---|
477 | probs[classVal] = NBconditionalProb(instance, classVal); |
---|
478 | |
---|
479 | } else { |
---|
480 | |
---|
481 | // divide by number of parent atts to get the mean |
---|
482 | probs[classVal] /= (double)(parentCount); |
---|
483 | } |
---|
484 | } |
---|
485 | |
---|
486 | Utils.normalize(probs); |
---|
487 | return probs; |
---|
488 | } |
---|
489 | |
---|
490 | |
---|
491 | /** |
---|
492 | * Calculates the probability of the specified class for the given test |
---|
493 | * instance, using naive Bayes. |
---|
494 | * |
---|
495 | * @param instance the instance to be classified |
---|
496 | * @param classVal the class for which to calculate the probability |
---|
497 | * @return predicted class probability |
---|
498 | */ |
---|
499 | public double NBconditionalProb(Instance instance, int classVal) { |
---|
500 | |
---|
501 | double prob; |
---|
502 | double [][] pointer; |
---|
503 | |
---|
504 | // calculate the prior probability |
---|
505 | if(!m_MEstimates) { |
---|
506 | prob = (m_ClassCounts[classVal] + 1.0) / (m_SumInstances + m_NumClasses); |
---|
507 | } else { |
---|
508 | prob = (m_ClassCounts[classVal] |
---|
509 | + ((double)m_Weight / (double)m_NumClasses)) |
---|
510 | / (m_SumInstances + m_Weight); |
---|
511 | } |
---|
512 | pointer = m_CondiCounts[classVal]; |
---|
513 | |
---|
514 | // consider effect of each att value |
---|
515 | for(int att = 0; att < m_NumAttributes; att++) { |
---|
516 | if(att == m_ClassIndex || instance.isMissing(att)) |
---|
517 | continue; |
---|
518 | |
---|
519 | // determine correct index for att in m_CondiCounts |
---|
520 | int aIndex = m_StartAttIndex[att] + (int)instance.value(att); |
---|
521 | |
---|
522 | if(!m_MEstimates) { |
---|
523 | prob *= (double)(pointer[aIndex][aIndex] + 1.0) |
---|
524 | / ((double)m_SumForCounts[classVal][att] + m_NumAttValues[att]); |
---|
525 | } else { |
---|
526 | prob *= (double)(pointer[aIndex][aIndex] |
---|
527 | + ((double)m_Weight / (double)m_NumAttValues[att])) |
---|
528 | / (double)(m_SumForCounts[classVal][att] + m_Weight); |
---|
529 | } |
---|
530 | } |
---|
531 | return prob; |
---|
532 | } |
---|
533 | |
---|
534 | |
---|
535 | /** |
---|
536 | * Returns an enumeration describing the available options |
---|
537 | * |
---|
538 | * @return an enumeration of all the available options |
---|
539 | */ |
---|
540 | public Enumeration listOptions() { |
---|
541 | |
---|
542 | Vector newVector = new Vector(4); |
---|
543 | |
---|
544 | newVector.addElement( |
---|
545 | new Option("\tOutput debugging information\n", |
---|
546 | "D", 0,"-D")); |
---|
547 | newVector.addElement( |
---|
548 | new Option("\tImpose a frequency limit for superParents\n" |
---|
549 | + "\t(default is 1)", "F", 1,"-F <int>")); |
---|
550 | newVector.addElement( |
---|
551 | new Option("\tUse m-estimate instead of laplace correction\n", |
---|
552 | "M", 0,"-M")); |
---|
553 | newVector.addElement( |
---|
554 | new Option("\tSpecify a weight to use with m-estimate\n" |
---|
555 | + "\t(default is 1)", "W", 1,"-W <int>")); |
---|
556 | return newVector.elements(); |
---|
557 | } |
---|
558 | |
---|
559 | |
---|
560 | /** |
---|
561 | * Parses a given list of options. <p/> |
---|
562 | * |
---|
563 | <!-- options-start --> |
---|
564 | * Valid options are: <p/> |
---|
565 | * |
---|
566 | * <pre> -D |
---|
567 | * Output debugging information |
---|
568 | * </pre> |
---|
569 | * |
---|
570 | * <pre> -F <int> |
---|
571 | * Impose a frequency limit for superParents |
---|
572 | * (default is 1)</pre> |
---|
573 | * |
---|
574 | * <pre> -M |
---|
575 | * Use m-estimate instead of laplace correction |
---|
576 | * </pre> |
---|
577 | * |
---|
578 | * <pre> -W <int> |
---|
579 | * Specify a weight to use with m-estimate |
---|
580 | * (default is 1)</pre> |
---|
581 | * |
---|
582 | <!-- options-end --> |
---|
583 | * |
---|
584 | * @param options the list of options as an array of strings |
---|
585 | * @throws Exception if an option is not supported |
---|
586 | */ |
---|
587 | public void setOptions(String[] options) throws Exception { |
---|
588 | |
---|
589 | m_Debug = Utils.getFlag('D', options); |
---|
590 | |
---|
591 | String Freq = Utils.getOption('F', options); |
---|
592 | if (Freq.length() != 0) |
---|
593 | m_Limit = Integer.parseInt(Freq); |
---|
594 | else |
---|
595 | m_Limit = 1; |
---|
596 | |
---|
597 | m_MEstimates = Utils.getFlag('M', options); |
---|
598 | String weight = Utils.getOption('W', options); |
---|
599 | if (weight.length() != 0) { |
---|
600 | if (!m_MEstimates) |
---|
601 | throw new Exception("Can't use Laplace AND m-estimate weight. Choose one."); |
---|
602 | m_Weight = Integer.parseInt(weight); |
---|
603 | } |
---|
604 | else { |
---|
605 | if (m_MEstimates) |
---|
606 | m_Weight = 1; |
---|
607 | } |
---|
608 | |
---|
609 | Utils.checkForRemainingOptions(options); |
---|
610 | } |
---|
611 | |
---|
612 | /** |
---|
613 | * Gets the current settings of the classifier. |
---|
614 | * |
---|
615 | * @return an array of strings suitable for passing to setOptions |
---|
616 | */ |
---|
617 | public String [] getOptions() { |
---|
618 | Vector result = new Vector(); |
---|
619 | |
---|
620 | if (m_Debug) |
---|
621 | result.add("-D"); |
---|
622 | |
---|
623 | result.add("-F"); |
---|
624 | result.add("" + m_Limit); |
---|
625 | |
---|
626 | if (m_MEstimates) { |
---|
627 | result.add("-M"); |
---|
628 | result.add("-W"); |
---|
629 | result.add("" + m_Weight); |
---|
630 | } |
---|
631 | |
---|
632 | return (String[]) result.toArray(new String[result.size()]); |
---|
633 | } |
---|
634 | |
---|
635 | /** |
---|
636 | * Returns the tip text for this property |
---|
637 | * @return tip text for this property suitable for |
---|
638 | * displaying in the explorer/experimenter gui |
---|
639 | */ |
---|
640 | public String weightTipText() { |
---|
641 | return "Set the weight for m-estimate."; |
---|
642 | } |
---|
643 | |
---|
644 | /** |
---|
645 | * Sets the weight for m-estimate |
---|
646 | * |
---|
647 | * @param w the weight |
---|
648 | */ |
---|
649 | public void setWeight(int w) { |
---|
650 | if (!getUseMEstimates()) { |
---|
651 | System.out.println( |
---|
652 | "Weight is only used in conjunction with m-estimate - ignored!"); |
---|
653 | } |
---|
654 | else { |
---|
655 | if (w > 0) |
---|
656 | m_Weight = w; |
---|
657 | else |
---|
658 | System.out.println("Weight must be greater than 0!"); |
---|
659 | } |
---|
660 | } |
---|
661 | |
---|
662 | /** |
---|
663 | * Gets the weight used in m-estimate |
---|
664 | * |
---|
665 | * @return the frequency limit |
---|
666 | */ |
---|
667 | public int getWeight() { |
---|
668 | return m_Weight; |
---|
669 | } |
---|
670 | |
---|
671 | /** |
---|
672 | * Returns the tip text for this property |
---|
673 | * @return tip text for this property suitable for |
---|
674 | * displaying in the explorer/experimenter gui |
---|
675 | */ |
---|
676 | public String useMEstimatesTipText() { |
---|
677 | return "Use m-estimate instead of laplace correction."; |
---|
678 | } |
---|
679 | |
---|
680 | /** |
---|
681 | * Gets if m-estimaces is being used. |
---|
682 | * |
---|
683 | * @return Value of m_MEstimates. |
---|
684 | */ |
---|
685 | public boolean getUseMEstimates() { |
---|
686 | return m_MEstimates; |
---|
687 | } |
---|
688 | |
---|
689 | /** |
---|
690 | * Sets if m-estimates is to be used. |
---|
691 | * |
---|
692 | * @param value Value to assign to m_MEstimates. |
---|
693 | */ |
---|
694 | public void setUseMEstimates(boolean value) { |
---|
695 | m_MEstimates = value; |
---|
696 | } |
---|
697 | |
---|
698 | /** |
---|
699 | * Returns the tip text for this property |
---|
700 | * @return tip text for this property suitable for |
---|
701 | * displaying in the explorer/experimenter gui |
---|
702 | */ |
---|
703 | public String frequencyLimitTipText() { |
---|
704 | return "Attributes with a frequency in the train set below " |
---|
705 | + "this value aren't used as parents."; |
---|
706 | } |
---|
707 | |
---|
708 | /** |
---|
709 | * Sets the frequency limit |
---|
710 | * |
---|
711 | * @param f the frequency limit |
---|
712 | */ |
---|
713 | public void setFrequencyLimit(int f) { |
---|
714 | m_Limit = f; |
---|
715 | } |
---|
716 | |
---|
717 | /** |
---|
718 | * Gets the frequency limit. |
---|
719 | * |
---|
720 | * @return the frequency limit |
---|
721 | */ |
---|
722 | public int getFrequencyLimit() { |
---|
723 | return m_Limit; |
---|
724 | } |
---|
725 | |
---|
726 | /** |
---|
727 | * Returns a description of the classifier. |
---|
728 | * |
---|
729 | * @return a description of the classifier as a string. |
---|
730 | */ |
---|
731 | public String toString() { |
---|
732 | |
---|
733 | StringBuffer text = new StringBuffer(); |
---|
734 | |
---|
735 | text.append("The AODE Classifier"); |
---|
736 | if (m_Instances == null) { |
---|
737 | text.append(": No model built yet."); |
---|
738 | } else { |
---|
739 | try { |
---|
740 | for (int i = 0; i < m_NumClasses; i++) { |
---|
741 | // print to string, the prior probabilities of class values |
---|
742 | text.append("\nClass " + m_Instances.classAttribute().value(i) + |
---|
743 | ": Prior probability = " + Utils. |
---|
744 | doubleToString(((m_ClassCounts[i] + 1) |
---|
745 | /(m_SumInstances + m_NumClasses)), 4, 2)+"\n\n"); |
---|
746 | } |
---|
747 | |
---|
748 | text.append("Dataset: " + m_Instances.relationName() + "\n" |
---|
749 | + "Instances: " + m_NumInstances + "\n" |
---|
750 | + "Attributes: " + m_NumAttributes + "\n" |
---|
751 | + "Frequency limit for superParents: " + m_Limit + "\n"); |
---|
752 | text.append("Correction: "); |
---|
753 | if (!m_MEstimates) |
---|
754 | text.append("laplace\n"); |
---|
755 | else |
---|
756 | text.append("m-estimate (m=" + m_Weight + ")\n"); |
---|
757 | |
---|
758 | } catch (Exception ex) { |
---|
759 | text.append(ex.getMessage()); |
---|
760 | } |
---|
761 | } |
---|
762 | |
---|
763 | return text.toString(); |
---|
764 | } |
---|
765 | |
---|
766 | /** |
---|
767 | * Returns the revision string. |
---|
768 | * |
---|
769 | * @return the revision |
---|
770 | */ |
---|
771 | public String getRevision() { |
---|
772 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
773 | } |
---|
774 | |
---|
775 | /** |
---|
776 | * Main method for testing this class. |
---|
777 | * |
---|
778 | * @param argv the options |
---|
779 | */ |
---|
780 | public static void main(String [] argv) { |
---|
781 | runClassifier(new AODE(), argv); |
---|
782 | } |
---|
783 | } |
---|