/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* AODE.java
* Copyright (C) 2003
* Algorithm developed by: Geoff Webb
* Code written by: Janice Boughton & Zhihai Wang
*/
package weka.classifiers.bayes;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.UpdateableClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import java.util.Enumeration;
import java.util.Vector;
/**
* AODE achieves highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models that have weaker (and hence less detrimental) independence assumptions than naive Bayes. The resulting algorithm is computationally efficient while delivering highly accurate classification on many learning tasks.
*
* For more information, see
*
* G. Webb, J. Boughton, Z. Wang (2005). Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning. 58(1):5-24.
*
* Further papers are available at
* http://www.csse.monash.edu.au/~webb/.
*
* Can use an m-estimate for smoothing base probability estimates in place of the Laplace correction (via option -M).
* Default frequency limit set to 1.
*
* @article{Webb2005, * author = {G. Webb and J. Boughton and Z. Wang}, * journal = {Machine Learning}, * number = {1}, * pages = {5-24}, * title = {Not So Naive Bayes: Aggregating One-Dependence Estimators}, * volume = {58}, * year = {2005} * } ** * * Valid options are: * *
-D * Output debugging information ** *
-F <int> * Impose a frequency limit for superParents * (default is 1)* *
-M * Use m-estimate instead of laplace correction ** *
-W <int> * Specify a weight to use with m-estimate * (default is 1)* * * @author Janice Boughton (jrbought@csse.monash.edu.au) * @author Zhihai Wang (zhw@csse.monash.edu.au) * @version $Revision: 5928 $ */ public class AODE extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, UpdateableClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 9197439980415113523L; /** * 3D array (m_NumClasses * m_TotalAttValues * m_TotalAttValues) * of attribute counts, i.e., the number of times an attribute value occurs * in conjunction with another attribute value and a class value. */ private double [][][] m_CondiCounts; /** The number of times each class value occurs in the dataset */ private double [] m_ClassCounts; /** The sums of attribute-class counts * -- if there are no missing values for att, then * m_SumForCounts[classVal][att] will be the same as * m_ClassCounts[classVal] */ private double [][] m_SumForCounts; /** The number of classes */ private int m_NumClasses; /** The number of attributes in dataset, including class */ private int m_NumAttributes; /** The number of instances in the dataset */ private int m_NumInstances; /** The index of the class attribute */ private int m_ClassIndex; /** The dataset */ private Instances m_Instances; /** * The total number of values (including an extra for each attribute's * missing value, which are included in m_CondiCounts) for all attributes * (not including class). E.g., for three atts each with two possible values, * m_TotalAttValues would be 9 (6 values + 3 missing). * This variable is used when allocating space for m_CondiCounts matrix. */ private int m_TotalAttValues; /** The starting index (in the m_CondiCounts matrix) of the values for each * attribute */ private int [] m_StartAttIndex; /** The number of values for each attribute */ private int [] m_NumAttValues; /** The frequency of each attribute value for the dataset */ private double [] m_Frequencies; /** The number of valid class values observed in dataset * -- with no missing classes, this number is the same as m_NumInstances. */ private double m_SumInstances; /** An att's frequency must be this value or more to be a superParent */ private int m_Limit = 1; /** If true, outputs debugging info */ private boolean m_Debug = false; /** flag for using m-estimates */ private boolean m_MEstimates = false; /** value for m in m-estimate */ private int m_Weight = 1; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "AODE achieves highly accurate classification by averaging over " +"all of a small space of alternative naive-Bayes-like models that have " +"weaker (and hence less detrimental) independence assumptions than " +"naive Bayes. The resulting algorithm is computationally efficient " +"while delivering highly accurate classification on many learning " +"tasks.\n\n" +"For more information, see\n\n" + getTechnicalInformation().toString() + "\n\n" +"Further papers are available at\n" +" http://www.csse.monash.edu.au/~webb/.\n\n" + "Can use an m-estimate for smoothing base probability estimates " + "in place of the Laplace correction (via option -M).\n" + "Default frequency limit set to 1."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "G. Webb and J. Boughton and Z. Wang"); result.setValue(Field.YEAR, "2005"); result.setValue(Field.TITLE, "Not So Naive Bayes: Aggregating One-Dependence Estimators"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "58"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "5-24"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated * successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class m_Instances = new Instances(instances); m_Instances.deleteWithMissingClass(); // reset variable for this fold m_SumInstances = 0; m_ClassIndex = instances.classIndex(); m_NumInstances = m_Instances.numInstances(); m_NumAttributes = m_Instances.numAttributes(); m_NumClasses = m_Instances.numClasses(); // allocate space for attribute reference arrays m_StartAttIndex = new int[m_NumAttributes]; m_NumAttValues = new int[m_NumAttributes]; m_TotalAttValues = 0; for(int i = 0; i < m_NumAttributes; i++) { if(i != m_ClassIndex) { m_StartAttIndex[i] = m_TotalAttValues; m_NumAttValues[i] = m_Instances.attribute(i).numValues(); m_TotalAttValues += m_NumAttValues[i] + 1; // + 1 so room for missing value count } else { // m_StartAttIndex[i] = -1; // class isn't included m_NumAttValues[i] = m_NumClasses; } } // allocate space for counts and frequencies m_CondiCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; m_ClassCounts = new double[m_NumClasses]; m_SumForCounts = new double[m_NumClasses][m_NumAttributes]; m_Frequencies = new double[m_TotalAttValues]; // calculate the counts for(int k = 0; k < m_NumInstances; k++) { addToCounts((Instance)m_Instances.instance(k)); } // free up some space m_Instances = new Instances(m_Instances, 0); } /** * Updates the classifier with the given instance. * * @param instance the new training instance to include in the model */ public void updateClassifier(Instance instance) { this.addToCounts(instance); } /** * Puts an instance's values into m_CondiCounts, m_ClassCounts and * m_SumInstances. * * @param instance the instance whose values are to be put into the counts * variables */ private void addToCounts(Instance instance) { double [] countsPointer; if(instance.classIsMissing()) return; // ignore instances with missing class int classVal = (int)instance.classValue(); double weight = instance.weight(); m_ClassCounts[classVal] += weight; m_SumInstances += weight; // store instance's att val indexes in an array, b/c accessing it // in loop(s) is more efficient int [] attIndex = new int[m_NumAttributes]; for(int i = 0; i < m_NumAttributes; i++) { if(i == m_ClassIndex) attIndex[i] = -1; // we don't use the class attribute in counts else { if(instance.isMissing(i)) attIndex[i] = m_StartAttIndex[i] + m_NumAttValues[i]; else attIndex[i] = m_StartAttIndex[i] + (int)instance.value(i); } } for(int Att1 = 0; Att1 < m_NumAttributes; Att1++) { if(attIndex[Att1] == -1) continue; // avoid pointless looping as Att1 is currently the class attribute m_Frequencies[attIndex[Att1]] += weight; // if this is a missing value, we don't want to increase sumforcounts if(!instance.isMissing(Att1)) m_SumForCounts[classVal][Att1] += weight; // save time by referencing this now, rather than do it repeatedly in the loop countsPointer = m_CondiCounts[classVal][attIndex[Att1]]; for(int Att2 = 0; Att2 < m_NumAttributes; Att2++) { if(attIndex[Att2] != -1) { countsPointer[attIndex[Att2]] += weight; } } } } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if there is a problem generating the prediction */ public double [] distributionForInstance(Instance instance) throws Exception { // accumulates posterior probabilities for each class double [] probs = new double[m_NumClasses]; // index for parent attribute value, and a count of parents used int pIndex, parentCount; // pointers for efficiency // for current class, point to joint frequency for any pair of att values double [][] countsForClass; // for current class & parent, point to joint frequency for any att value double [] countsForClassParent; // store instance's att indexes in an int array, so accessing them // is more efficient in loop(s). int [] attIndex = new int[m_NumAttributes]; for(int att = 0; att < m_NumAttributes; att++) { if(instance.isMissing(att) || att == m_ClassIndex) attIndex[att] = -1; // can't use class or missing values in calculations else attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); } // calculate probabilities for each possible class value for(int classVal = 0; classVal < m_NumClasses; classVal++) { probs[classVal] = 0; double spodeP = 0; // P(X,y) for current parent and class parentCount = 0; countsForClass = m_CondiCounts[classVal]; // each attribute has a turn of being the parent for(int parent = 0; parent < m_NumAttributes; parent++) { if(attIndex[parent] == -1) continue; // skip class attribute or missing value // determine correct index for the parent in m_CondiCounts matrix pIndex = attIndex[parent]; // check that the att value has a frequency of m_Limit or greater if(m_Frequencies[pIndex] < m_Limit) continue; countsForClassParent = countsForClass[pIndex]; // block the parent from being its own child attIndex[parent] = -1; parentCount++; // joint frequency of class and parent double classparentfreq = countsForClassParent[pIndex]; // find the number of missing values for parent's attribute double missing4ParentAtt = m_Frequencies[m_StartAttIndex[parent] + m_NumAttValues[parent]]; // calculate the prior probability -- P(parent & classVal) if (!m_MEstimates) { spodeP = (classparentfreq + 1.0) / ((m_SumInstances - missing4ParentAtt) + m_NumClasses * m_NumAttValues[parent]); } else { spodeP = (classparentfreq + ((double)m_Weight / (double)(m_NumClasses * m_NumAttValues[parent]))) / ((m_SumInstances - missing4ParentAtt) + m_Weight); } // take into account the value of each attribute for(int att = 0; att < m_NumAttributes; att++) { if(attIndex[att] == -1) continue; double missingForParentandChildAtt = countsForClassParent[m_StartAttIndex[att] + m_NumAttValues[att]]; if(!m_MEstimates) { spodeP *= (countsForClassParent[attIndex[att]] + 1.0) / ((classparentfreq - missingForParentandChildAtt) + m_NumAttValues[att]); } else { spodeP *= (countsForClassParent[attIndex[att]] + ((double)m_Weight / (double)m_NumAttValues[att])) / ((classparentfreq - missingForParentandChildAtt) + m_Weight); } } // add this probability to the overall probability probs[classVal] += spodeP; // unblock the parent attIndex[parent] = pIndex; } // check that at least one att was a parent if(parentCount < 1) { // do plain naive bayes conditional prob probs[classVal] = NBconditionalProb(instance, classVal); } else { // divide by number of parent atts to get the mean probs[classVal] /= (double)(parentCount); } } Utils.normalize(probs); return probs; } /** * Calculates the probability of the specified class for the given test * instance, using naive Bayes. * * @param instance the instance to be classified * @param classVal the class for which to calculate the probability * @return predicted class probability */ public double NBconditionalProb(Instance instance, int classVal) { double prob; double [][] pointer; // calculate the prior probability if(!m_MEstimates) { prob = (m_ClassCounts[classVal] + 1.0) / (m_SumInstances + m_NumClasses); } else { prob = (m_ClassCounts[classVal] + ((double)m_Weight / (double)m_NumClasses)) / (m_SumInstances + m_Weight); } pointer = m_CondiCounts[classVal]; // consider effect of each att value for(int att = 0; att < m_NumAttributes; att++) { if(att == m_ClassIndex || instance.isMissing(att)) continue; // determine correct index for att in m_CondiCounts int aIndex = m_StartAttIndex[att] + (int)instance.value(att); if(!m_MEstimates) { prob *= (double)(pointer[aIndex][aIndex] + 1.0) / ((double)m_SumForCounts[classVal][att] + m_NumAttValues[att]); } else { prob *= (double)(pointer[aIndex][aIndex] + ((double)m_Weight / (double)m_NumAttValues[att])) / (double)(m_SumForCounts[classVal][att] + m_Weight); } } return prob; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement( new Option("\tOutput debugging information\n", "D", 0,"-D")); newVector.addElement( new Option("\tImpose a frequency limit for superParents\n" + "\t(default is 1)", "F", 1,"-F
-D * Output debugging information ** *
-F <int> * Impose a frequency limit for superParents * (default is 1)* *
-M * Use m-estimate instead of laplace correction ** *
-W <int> * Specify a weight to use with m-estimate * (default is 1)* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { m_Debug = Utils.getFlag('D', options); String Freq = Utils.getOption('F', options); if (Freq.length() != 0) m_Limit = Integer.parseInt(Freq); else m_Limit = 1; m_MEstimates = Utils.getFlag('M', options); String weight = Utils.getOption('W', options); if (weight.length() != 0) { if (!m_MEstimates) throw new Exception("Can't use Laplace AND m-estimate weight. Choose one."); m_Weight = Integer.parseInt(weight); } else { if (m_MEstimates) m_Weight = 1; } Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { Vector result = new Vector(); if (m_Debug) result.add("-D"); result.add("-F"); result.add("" + m_Limit); if (m_MEstimates) { result.add("-M"); result.add("-W"); result.add("" + m_Weight); } return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String weightTipText() { return "Set the weight for m-estimate."; } /** * Sets the weight for m-estimate * * @param w the weight */ public void setWeight(int w) { if (!getUseMEstimates()) { System.out.println( "Weight is only used in conjunction with m-estimate - ignored!"); } else { if (w > 0) m_Weight = w; else System.out.println("Weight must be greater than 0!"); } } /** * Gets the weight used in m-estimate * * @return the frequency limit */ public int getWeight() { return m_Weight; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useMEstimatesTipText() { return "Use m-estimate instead of laplace correction."; } /** * Gets if m-estimaces is being used. * * @return Value of m_MEstimates. */ public boolean getUseMEstimates() { return m_MEstimates; } /** * Sets if m-estimates is to be used. * * @param value Value to assign to m_MEstimates. */ public void setUseMEstimates(boolean value) { m_MEstimates = value; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String frequencyLimitTipText() { return "Attributes with a frequency in the train set below " + "this value aren't used as parents."; } /** * Sets the frequency limit * * @param f the frequency limit */ public void setFrequencyLimit(int f) { m_Limit = f; } /** * Gets the frequency limit. * * @return the frequency limit */ public int getFrequencyLimit() { return m_Limit; } /** * Returns a description of the classifier. * * @return a description of the classifier as a string. */ public String toString() { StringBuffer text = new StringBuffer(); text.append("The AODE Classifier"); if (m_Instances == null) { text.append(": No model built yet."); } else { try { for (int i = 0; i < m_NumClasses; i++) { // print to string, the prior probabilities of class values text.append("\nClass " + m_Instances.classAttribute().value(i) + ": Prior probability = " + Utils. doubleToString(((m_ClassCounts[i] + 1) /(m_SumInstances + m_NumClasses)), 4, 2)+"\n\n"); } text.append("Dataset: " + m_Instances.relationName() + "\n" + "Instances: " + m_NumInstances + "\n" + "Attributes: " + m_NumAttributes + "\n" + "Frequency limit for superParents: " + m_Limit + "\n"); text.append("Correction: "); if (!m_MEstimates) text.append("laplace\n"); else text.append("m-estimate (m=" + m_Weight + ")\n"); } catch (Exception ex) { text.append(ex.getMessage()); } } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new AODE(), argv); } }