1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * IteratedSingleClassifierEnhancer.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers; |
---|
24 | |
---|
25 | import weka.core.Instances; |
---|
26 | import weka.core.Option; |
---|
27 | import weka.core.Utils; |
---|
28 | |
---|
29 | import java.util.Enumeration; |
---|
30 | import java.util.Vector; |
---|
31 | |
---|
32 | /** |
---|
33 | * Abstract utility class for handling settings common to |
---|
34 | * meta classifiers that build an ensemble from a single base learner. |
---|
35 | * |
---|
36 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
37 | * @version $Revision: 6041 $ |
---|
38 | */ |
---|
39 | public abstract class IteratedSingleClassifierEnhancer |
---|
40 | extends SingleClassifierEnhancer { |
---|
41 | |
---|
42 | /** for serialization */ |
---|
43 | private static final long serialVersionUID = -6217979135443319724L; |
---|
44 | |
---|
45 | /** Array for storing the generated base classifiers. */ |
---|
46 | protected Classifier[] m_Classifiers; |
---|
47 | |
---|
48 | /** The number of iterations. */ |
---|
49 | protected int m_NumIterations = 10; |
---|
50 | |
---|
51 | /** |
---|
52 | * Stump method for building the classifiers. |
---|
53 | * |
---|
54 | * @param data the training data to be used for generating the |
---|
55 | * bagged classifier. |
---|
56 | * @exception Exception if the classifier could not be built successfully |
---|
57 | */ |
---|
58 | public void buildClassifier(Instances data) throws Exception { |
---|
59 | |
---|
60 | if (m_Classifier == null) { |
---|
61 | throw new Exception("A base classifier has not been specified!"); |
---|
62 | } |
---|
63 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations); |
---|
64 | } |
---|
65 | |
---|
66 | /** |
---|
67 | * Returns an enumeration describing the available options. |
---|
68 | * |
---|
69 | * @return an enumeration of all the available options. |
---|
70 | */ |
---|
71 | public Enumeration listOptions() { |
---|
72 | |
---|
73 | Vector newVector = new Vector(2); |
---|
74 | |
---|
75 | newVector.addElement(new Option( |
---|
76 | "\tNumber of iterations.\n" |
---|
77 | + "\t(default 10)", |
---|
78 | "I", 1, "-I <num>")); |
---|
79 | |
---|
80 | Enumeration enu = super.listOptions(); |
---|
81 | while (enu.hasMoreElements()) { |
---|
82 | newVector.addElement(enu.nextElement()); |
---|
83 | } |
---|
84 | return newVector.elements(); |
---|
85 | } |
---|
86 | |
---|
87 | /** |
---|
88 | * Parses a given list of options. Valid options are:<p> |
---|
89 | * |
---|
90 | * -W classname <br> |
---|
91 | * Specify the full class name of the base learner.<p> |
---|
92 | * |
---|
93 | * -I num <br> |
---|
94 | * Set the number of iterations (default 10). <p> |
---|
95 | * |
---|
96 | * Options after -- are passed to the designated classifier.<p> |
---|
97 | * |
---|
98 | * @param options the list of options as an array of strings |
---|
99 | * @exception Exception if an option is not supported |
---|
100 | */ |
---|
101 | public void setOptions(String[] options) throws Exception { |
---|
102 | |
---|
103 | String iterations = Utils.getOption('I', options); |
---|
104 | if (iterations.length() != 0) { |
---|
105 | setNumIterations(Integer.parseInt(iterations)); |
---|
106 | } else { |
---|
107 | setNumIterations(10); |
---|
108 | } |
---|
109 | |
---|
110 | super.setOptions(options); |
---|
111 | } |
---|
112 | |
---|
113 | /** |
---|
114 | * Gets the current settings of the classifier. |
---|
115 | * |
---|
116 | * @return an array of strings suitable for passing to setOptions |
---|
117 | */ |
---|
118 | public String [] getOptions() { |
---|
119 | |
---|
120 | String [] superOptions = super.getOptions(); |
---|
121 | String [] options = new String [superOptions.length + 2]; |
---|
122 | |
---|
123 | int current = 0; |
---|
124 | options[current++] = "-I"; |
---|
125 | options[current++] = "" + getNumIterations(); |
---|
126 | |
---|
127 | System.arraycopy(superOptions, 0, options, current, |
---|
128 | superOptions.length); |
---|
129 | |
---|
130 | return options; |
---|
131 | } |
---|
132 | |
---|
133 | /** |
---|
134 | * Returns the tip text for this property |
---|
135 | * @return tip text for this property suitable for |
---|
136 | * displaying in the explorer/experimenter gui |
---|
137 | */ |
---|
138 | public String numIterationsTipText() { |
---|
139 | return "The number of iterations to be performed."; |
---|
140 | } |
---|
141 | |
---|
142 | /** |
---|
143 | * Sets the number of bagging iterations |
---|
144 | */ |
---|
145 | public void setNumIterations(int numIterations) { |
---|
146 | |
---|
147 | m_NumIterations = numIterations; |
---|
148 | } |
---|
149 | |
---|
150 | /** |
---|
151 | * Gets the number of bagging iterations |
---|
152 | * |
---|
153 | * @return the maximum number of bagging iterations |
---|
154 | */ |
---|
155 | public int getNumIterations() { |
---|
156 | |
---|
157 | return m_NumIterations; |
---|
158 | } |
---|
159 | } |
---|