/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * IteratedSingleClassifierEnhancer.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers; import weka.core.Instances; import weka.core.Option; import weka.core.Utils; import java.util.Enumeration; import java.util.Vector; /** * Abstract utility class for handling settings common to * meta classifiers that build an ensemble from a single base learner. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 6041 $ */ public abstract class IteratedSingleClassifierEnhancer extends SingleClassifierEnhancer { /** for serialization */ private static final long serialVersionUID = -6217979135443319724L; /** Array for storing the generated base classifiers. */ protected Classifier[] m_Classifiers; /** The number of iterations. */ protected int m_NumIterations = 10; /** * Stump method for building the classifiers. * * @param data the training data to be used for generating the * bagged classifier. * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { if (m_Classifier == null) { throw new Exception("A base classifier has not been specified!"); } m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(2); newVector.addElement(new Option( "\tNumber of iterations.\n" + "\t(default 10)", "I", 1, "-I ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options. Valid options are:

* * -W classname
* Specify the full class name of the base learner.

* * -I num
* Set the number of iterations (default 10).

* * Options after -- are passed to the designated classifier.

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String iterations = Utils.getOption('I', options); if (iterations.length() != 0) { setNumIterations(Integer.parseInt(iterations)); } else { setNumIterations(10); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 2]; int current = 0; options[current++] = "-I"; options[current++] = "" + getNumIterations(); System.arraycopy(superOptions, 0, options, current, superOptions.length); return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numIterationsTipText() { return "The number of iterations to be performed."; } /** * Sets the number of bagging iterations */ public void setNumIterations(int numIterations) { m_NumIterations = numIterations; } /** * Gets the number of bagging iterations * * @return the maximum number of bagging iterations */ public int getNumIterations() { return m_NumIterations; } }