1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Classifier.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.CapabilitiesHandler; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.OptionHandler; |
---|
32 | import weka.core.RevisionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.SerializedObject; |
---|
35 | import weka.core.Utils; |
---|
36 | |
---|
37 | import java.io.Serializable; |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Set; |
---|
40 | import java.util.Vector; |
---|
41 | |
---|
42 | /** |
---|
43 | * Classifier interface. All schemes for numeric or nominal prediction in |
---|
44 | * Weka implement this interface. Note that a classifier MUST either implement |
---|
45 | * distributionForInstance() or classifyInstance(). |
---|
46 | * |
---|
47 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
48 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
49 | * @version $Revision: 6041 $ |
---|
50 | */ |
---|
51 | public interface Classifier { |
---|
52 | |
---|
53 | /** |
---|
54 | * Generates a classifier. Must initialize all fields of the classifier |
---|
55 | * that are not being set via options (ie. multiple calls of buildClassifier |
---|
56 | * must always lead to the same result). Must not change the dataset |
---|
57 | * in any way. |
---|
58 | * |
---|
59 | * @param data set of instances serving as training data |
---|
60 | * @exception Exception if the classifier has not been |
---|
61 | * generated successfully |
---|
62 | */ |
---|
63 | public abstract void buildClassifier(Instances data) throws Exception; |
---|
64 | |
---|
65 | /** |
---|
66 | * Classifies the given test instance. The instance has to belong to a |
---|
67 | * dataset when it's being classified. Note that a classifier MUST |
---|
68 | * implement either this or distributionForInstance(). |
---|
69 | * |
---|
70 | * @param instance the instance to be classified |
---|
71 | * @return the predicted most likely class for the instance or |
---|
72 | * Utils.missingValue() if no prediction is made |
---|
73 | * @exception Exception if an error occurred during the prediction |
---|
74 | */ |
---|
75 | public double classifyInstance(Instance instance) throws Exception; |
---|
76 | |
---|
77 | /** |
---|
78 | * Predicts the class memberships for a given instance. If |
---|
79 | * an instance is unclassified, the returned array elements |
---|
80 | * must be all zero. If the class is numeric, the array |
---|
81 | * must consist of only one element, which contains the |
---|
82 | * predicted value. Note that a classifier MUST implement |
---|
83 | * either this or classifyInstance(). |
---|
84 | * |
---|
85 | * @param instance the instance to be classified |
---|
86 | * @return an array containing the estimated membership |
---|
87 | * probabilities of the test instance in each class |
---|
88 | * or the numeric prediction |
---|
89 | * @exception Exception if distribution could not be |
---|
90 | * computed successfully |
---|
91 | */ |
---|
92 | public double[] distributionForInstance(Instance instance) throws Exception; |
---|
93 | |
---|
94 | /** |
---|
95 | * Returns the Capabilities of this classifier. Maximally permissive |
---|
96 | * capabilities are allowed by default. Derived classifiers should |
---|
97 | * override this method and first disable all capabilities and then |
---|
98 | * enable just those capabilities that make sense for the scheme. |
---|
99 | * |
---|
100 | * @return the capabilities of this object |
---|
101 | * @see Capabilities |
---|
102 | */ |
---|
103 | public Capabilities getCapabilities(); |
---|
104 | } |
---|
105 | |
---|