[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Classifier.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers; |
---|
| 24 | |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.CapabilitiesHandler; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.SerializedObject; |
---|
| 35 | import weka.core.Utils; |
---|
| 36 | |
---|
| 37 | import java.io.Serializable; |
---|
| 38 | import java.util.Enumeration; |
---|
| 39 | import java.util.Set; |
---|
| 40 | import java.util.Vector; |
---|
| 41 | |
---|
| 42 | /** |
---|
| 43 | * Classifier interface. All schemes for numeric or nominal prediction in |
---|
| 44 | * Weka implement this interface. Note that a classifier MUST either implement |
---|
| 45 | * distributionForInstance() or classifyInstance(). |
---|
| 46 | * |
---|
| 47 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 48 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 49 | * @version $Revision: 6041 $ |
---|
| 50 | */ |
---|
| 51 | public interface Classifier { |
---|
| 52 | |
---|
| 53 | /** |
---|
| 54 | * Generates a classifier. Must initialize all fields of the classifier |
---|
| 55 | * that are not being set via options (ie. multiple calls of buildClassifier |
---|
| 56 | * must always lead to the same result). Must not change the dataset |
---|
| 57 | * in any way. |
---|
| 58 | * |
---|
| 59 | * @param data set of instances serving as training data |
---|
| 60 | * @exception Exception if the classifier has not been |
---|
| 61 | * generated successfully |
---|
| 62 | */ |
---|
| 63 | public abstract void buildClassifier(Instances data) throws Exception; |
---|
| 64 | |
---|
| 65 | /** |
---|
| 66 | * Classifies the given test instance. The instance has to belong to a |
---|
| 67 | * dataset when it's being classified. Note that a classifier MUST |
---|
| 68 | * implement either this or distributionForInstance(). |
---|
| 69 | * |
---|
| 70 | * @param instance the instance to be classified |
---|
| 71 | * @return the predicted most likely class for the instance or |
---|
| 72 | * Utils.missingValue() if no prediction is made |
---|
| 73 | * @exception Exception if an error occurred during the prediction |
---|
| 74 | */ |
---|
| 75 | public double classifyInstance(Instance instance) throws Exception; |
---|
| 76 | |
---|
| 77 | /** |
---|
| 78 | * Predicts the class memberships for a given instance. If |
---|
| 79 | * an instance is unclassified, the returned array elements |
---|
| 80 | * must be all zero. If the class is numeric, the array |
---|
| 81 | * must consist of only one element, which contains the |
---|
| 82 | * predicted value. Note that a classifier MUST implement |
---|
| 83 | * either this or classifyInstance(). |
---|
| 84 | * |
---|
| 85 | * @param instance the instance to be classified |
---|
| 86 | * @return an array containing the estimated membership |
---|
| 87 | * probabilities of the test instance in each class |
---|
| 88 | * or the numeric prediction |
---|
| 89 | * @exception Exception if distribution could not be |
---|
| 90 | * computed successfully |
---|
| 91 | */ |
---|
| 92 | public double[] distributionForInstance(Instance instance) throws Exception; |
---|
| 93 | |
---|
| 94 | /** |
---|
| 95 | * Returns the Capabilities of this classifier. Maximally permissive |
---|
| 96 | * capabilities are allowed by default. Derived classifiers should |
---|
| 97 | * override this method and first disable all capabilities and then |
---|
| 98 | * enable just those capabilities that make sense for the scheme. |
---|
| 99 | * |
---|
| 100 | * @return the capabilities of this object |
---|
| 101 | * @see Capabilities |
---|
| 102 | */ |
---|
| 103 | public Capabilities getCapabilities(); |
---|
| 104 | } |
---|
| 105 | |
---|