/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * BVDecomposeSegCVSub.java * Copyright (C) 2003 Paul Conilione * * Based on the class: BVDecompose.java by Len Trigg (1999) */ /* * DEDICATION * * Paul Conilione would like to express his deep gratitude and appreciation * to his Chinese Buddhist Taoist Master Sifu Chow Yuk Nen for the abilities * and insight that he has been taught, which have allowed him to program in * a clear and efficient manner. * * Master Sifu Chow Yuk Nen's Teachings are unique and precious. They are * applicable to any field of human endeavour. Through his unique and powerful * ability to skilfully apply Chinese Buddhist Teachings, people have achieved * success in; Computing, chemical engineering, business, accounting, philosophy * and more. * */ package weka.classifiers; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.io.BufferedReader; import java.io.FileReader; import java.io.Reader; import java.util.Enumeration; import java.util.Random; import java.util.Vector; /** * This class performs Bias-Variance decomposion on any classifier using the sub-sampled cross-validation procedure as specified in (1).
* The Kohavi and Wolpert definition of bias and variance is specified in (2).
* The Webb definition of bias and variance is specified in (3).
*
* Geoffrey I. Webb, Paul Conilione (2002). Estimating bias and variance from data. School of Computer Science and Software Engineering, Victoria, Australia.
*
* Ron Kohavi, David H. Wolpert: Bias Plus Variance Decomposition for Zero-One Loss Functions. In: Machine Learning: Proceedings of the Thirteenth International Conference, 275-283, 1996.
*
* Geoffrey I. Webb (2000). MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning. 40(2):159-196. *

* * BibTeX: *

 * @misc{Webb2002,
 *    address = {School of Computer Science and Software Engineering, Victoria, Australia},
 *    author = {Geoffrey I. Webb and Paul Conilione},
 *    institution = {Monash University},
 *    title = {Estimating bias and variance from data},
 *    year = {2002},
 *    PDF = {http://www.csse.monash.edu.au/\~webb/Files/WebbConilione04.pdf}
 * }
 *
 * @inproceedings{Kohavi1996,
 *    author = {Ron Kohavi and David H. Wolpert},
 *    booktitle = {Machine Learning: Proceedings of the Thirteenth International Conference},
 *    editor = {Lorenza Saitta},
 *    pages = {275-283},
 *    publisher = {Morgan Kaufmann},
 *    title = {Bias Plus Variance Decomposition for Zero-One Loss Functions},
 *    year = {1996},
 *    PS = {http://robotics.stanford.edu/\~ronnyk/biasVar.ps}
 * }
 *
 * @article{Webb2000,
 *    author = {Geoffrey I. Webb},
 *    journal = {Machine Learning},
 *    number = {2},
 *    pages = {159-196},
 *    title = {MultiBoosting: A Technique for Combining Boosting and Wagging},
 *    volume = {40},
 *    year = {2000}
 * }
 * 
*

* * Valid options are:

* *

 -c <class index>
 *  The index of the class attribute.
 *  (default last)
* *
 -D
 *  Turn on debugging output.
* *
 -l <num>
 *  The number of times each instance is classified.
 *  (default 10)
* *
 -p <proportion of objects in common>
 *  The average proportion of instances common between any two training sets
* *
 -s <seed>
 *  The random number seed used.
* *
 -t <name of arff file>
 *  The name of the arff file used for the decomposition.
* *
 -T <number of instances in training set>
 *  The number of instances in the training set.
* *
 -W <classifier class name>
 *  Full class name of the learner used in the decomposition.
 *  eg: weka.classifiers.bayes.NaiveBayes
* *
 * Options specific to learner weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * Options after -- are passed to the designated sub-learner.

* * @author Paul Conilione (paulc4321@yahoo.com.au) * @version $Revision: 6041 $ */ public class BVDecomposeSegCVSub implements OptionHandler, TechnicalInformationHandler, RevisionHandler { /** Debugging mode, gives extra output if true. */ protected boolean m_Debug; /** An instantiated base classifier used for getting and testing options. */ protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); /** The options to be passed to the base classifier. */ protected String [] m_ClassifierOptions; /** The number of times an instance is classified*/ protected int m_ClassifyIterations; /** The name of the data file used for the decomposition */ protected String m_DataFileName; /** The index of the class attribute */ protected int m_ClassIndex = -1; /** The random number seed */ protected int m_Seed = 1; /** The calculated Kohavi & Wolpert bias (squared) */ protected double m_KWBias; /** The calculated Kohavi & Wolpert variance */ protected double m_KWVariance; /** The calculated Kohavi & Wolpert sigma */ protected double m_KWSigma; /** The calculated Webb bias */ protected double m_WBias; /** The calculated Webb variance */ protected double m_WVariance; /** The error rate */ protected double m_Error; /** The training set size */ protected int m_TrainSize; /** Proportion of instances common between any two training sets. */ protected double m_P; /** * Returns a string describing this object * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "This class performs Bias-Variance decomposion on any classifier using the " + "sub-sampled cross-validation procedure as specified in (1).\n" + "The Kohavi and Wolpert definition of bias and variance is specified in (2).\n" + "The Webb definition of bias and variance is specified in (3).\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.MISC); result.setValue(Field.AUTHOR, "Geoffrey I. Webb and Paul Conilione"); result.setValue(Field.YEAR, "2002"); result.setValue(Field.TITLE, "Estimating bias and variance from data"); result.setValue(Field.INSTITUTION, "Monash University"); result.setValue(Field.ADDRESS, "School of Computer Science and Software Engineering, Victoria, Australia"); result.setValue(Field.PDF, "http://www.csse.monash.edu.au/~webb/Files/WebbConilione04.pdf"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Ron Kohavi and David H. Wolpert"); additional.setValue(Field.YEAR, "1996"); additional.setValue(Field.TITLE, "Bias Plus Variance Decomposition for Zero-One Loss Functions"); additional.setValue(Field.BOOKTITLE, "Machine Learning: Proceedings of the Thirteenth International Conference"); additional.setValue(Field.PUBLISHER, "Morgan Kaufmann"); additional.setValue(Field.EDITOR, "Lorenza Saitta"); additional.setValue(Field.PAGES, "275-283"); additional.setValue(Field.PS, "http://robotics.stanford.edu/~ronnyk/biasVar.ps"); additional = result.add(Type.ARTICLE); additional.setValue(Field.AUTHOR, "Geoffrey I. Webb"); additional.setValue(Field.YEAR, "2000"); additional.setValue(Field.TITLE, "MultiBoosting: A Technique for Combining Boosting and Wagging"); additional.setValue(Field.JOURNAL, "Machine Learning"); additional.setValue(Field.VOLUME, "40"); additional.setValue(Field.NUMBER, "2"); additional.setValue(Field.PAGES, "159-196"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(8); newVector.addElement(new Option( "\tThe index of the class attribute.\n"+ "\t(default last)", "c", 1, "-c ")); newVector.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option( "\tThe number of times each instance is classified.\n" +"\t(default 10)", "l", 1, "-l ")); newVector.addElement(new Option( "\tThe average proportion of instances common between any two training sets", "p", 1, "-p ")); newVector.addElement(new Option( "\tThe random number seed used.", "s", 1, "-s ")); newVector.addElement(new Option( "\tThe name of the arff file used for the decomposition.", "t", 1, "-t ")); newVector.addElement(new Option( "\tThe number of instances in the training set.", "T", 1, "-T ")); newVector.addElement(new Option( "\tFull class name of the learner used in the decomposition.\n" +"\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W ")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to learner " + m_Classifier.getClass().getName() + ":")); Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Sets the OptionHandler's options using the given list. All options * will be set (or reset) during this call (i.e. incremental setting * of options is not possible).

* * Valid options are:

* *

 -c <class index>
     *  The index of the class attribute.
     *  (default last)
* *
 -D
     *  Turn on debugging output.
* *
 -l <num>
     *  The number of times each instance is classified.
     *  (default 10)
* *
 -p <proportion of objects in common>
     *  The average proportion of instances common between any two training sets
* *
 -s <seed>
     *  The random number seed used.
* *
 -t <name of arff file>
     *  The name of the arff file used for the decomposition.
* *
 -T <number of instances in training set>
     *  The number of instances in the training set.
* *
 -W <classifier class name>
     *  Full class name of the learner used in the decomposition.
     *  eg: weka.classifiers.bayes.NaiveBayes
* *
     * Options specific to learner weka.classifiers.rules.ZeroR:
     * 
* *
 -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String classIndex = Utils.getOption('c', options); if (classIndex.length() != 0) { if (classIndex.toLowerCase().equals("last")) { setClassIndex(0); } else if (classIndex.toLowerCase().equals("first")) { setClassIndex(1); } else { setClassIndex(Integer.parseInt(classIndex)); } } else { setClassIndex(0); } String classifyIterations = Utils.getOption('l', options); if (classifyIterations.length() != 0) { setClassifyIterations(Integer.parseInt(classifyIterations)); } else { setClassifyIterations(10); } String prob = Utils.getOption('p', options); if (prob.length() != 0) { setP( Double.parseDouble(prob)); } else { setP(-1); } //throw new Exception("A proportion must be specified" + " with a -p option."); String seedString = Utils.getOption('s', options); if (seedString.length() != 0) { setSeed(Integer.parseInt(seedString)); } else { setSeed(1); } String dataFile = Utils.getOption('t', options); if (dataFile.length() != 0) { setDataFileName(dataFile); } else { throw new Exception("An arff file must be specified" + " with the -t option."); } String trainSize = Utils.getOption('T', options); if (trainSize.length() != 0) { setTrainSize(Integer.parseInt(trainSize)); } else { setTrainSize(-1); } //throw new Exception("A training set size must be specified" + " with a -T option."); String classifierName = Utils.getOption('W', options); if (classifierName.length() != 0) { setClassifier(AbstractClassifier.forName(classifierName, Utils.partitionOptions(options))); } else { throw new Exception("A learner must be specified with the -W option."); } } /** * Gets the current settings of the CheckClassifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] classifierOptions = new String [0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String [] options = new String [classifierOptions.length + 14]; int current = 0; if (getDebug()) { options[current++] = "-D"; } options[current++] = "-c"; options[current++] = "" + getClassIndex(); options[current++] = "-l"; options[current++] = "" + getClassifyIterations(); options[current++] = "-p"; options[current++] = "" + getP(); options[current++] = "-s"; options[current++] = "" + getSeed(); if (getDataFileName() != null) { options[current++] = "-t"; options[current++] = "" + getDataFileName(); } options[current++] = "-T"; options[current++] = "" + getTrainSize(); if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set the classifiers being analysed * * @param newClassifier the Classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; } /** * Gets the name of the classifier being analysed * * @return the classifier being analysed. */ public Classifier getClassifier() { return m_Classifier; } /** * Sets debugging mode * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Gets whether debugging is turned on * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Sets the random number seed * * @param seed the random number seed */ public void setSeed(int seed) { m_Seed = seed; } /** * Gets the random number seed * * @return the random number seed */ public int getSeed() { return m_Seed; } /** * Sets the number of times an instance is classified * * @param classifyIterations number of times an instance is classified */ public void setClassifyIterations(int classifyIterations) { m_ClassifyIterations = classifyIterations; } /** * Gets the number of times an instance is classified * * @return the maximum number of times an instance is classified */ public int getClassifyIterations() { return m_ClassifyIterations; } /** * Sets the name of the dataset file. * * @param dataFileName name of dataset file. */ public void setDataFileName(String dataFileName) { m_DataFileName = dataFileName; } /** * Get the name of the data file used for the decomposition * * @return the name of the data file */ public String getDataFileName() { return m_DataFileName; } /** * Get the index (starting from 1) of the attribute used as the class. * * @return the index of the class attribute */ public int getClassIndex() { return m_ClassIndex + 1; } /** * Sets index of attribute to discretize on * * @param classIndex the index (starting from 1) of the class attribute */ public void setClassIndex(int classIndex) { m_ClassIndex = classIndex - 1; } /** * Get the calculated bias squared according to the Kohavi and Wolpert definition * * @return the bias squared */ public double getKWBias() { return m_KWBias; } /** * Get the calculated bias according to the Webb definition * * @return the bias * */ public double getWBias() { return m_WBias; } /** * Get the calculated variance according to the Kohavi and Wolpert definition * * @return the variance */ public double getKWVariance() { return m_KWVariance; } /** * Get the calculated variance according to the Webb definition * * @return the variance according to Webb * */ public double getWVariance() { return m_WVariance; } /** * Get the calculated sigma according to the Kohavi and Wolpert definition * * @return the sigma * */ public double getKWSigma() { return m_KWSigma; } /** * Set the training size. * * @param size the size of the training set * */ public void setTrainSize(int size) { m_TrainSize = size; } /** * Get the training size * * @return the size of the training set * */ public int getTrainSize() { return m_TrainSize; } /** * Set the proportion of instances that are common between two training sets * used to train a classifier. * * @param proportion the proportion of instances that are common between training * sets. * */ public void setP(double proportion) { m_P = proportion; } /** * Get the proportion of instances that are common between two training sets. * * @return the proportion * */ public double getP() { return m_P; } /** * Get the calculated error rate * * @return the error rate */ public double getError() { return m_Error; } /** * Carry out the bias-variance decomposition using the sub-sampled cross-validation method. * * @throws Exception if the decomposition couldn't be carried out */ public void decompose() throws Exception { Reader dataReader; Instances data; int tps; // training pool size, size of segment E. int k; // number of folds in segment E. int q; // number of segments of size tps. dataReader = new BufferedReader(new FileReader(m_DataFileName)); //open file data = new Instances(dataReader); // encapsulate in wrapper class called weka.Instances() if (m_ClassIndex < 0) { data.setClassIndex(data.numAttributes() - 1); } else { data.setClassIndex(m_ClassIndex); } if (data.classAttribute().type() != Attribute.NOMINAL) { throw new Exception("Class attribute must be nominal"); } int numClasses = data.numClasses(); data.deleteWithMissingClass(); if ( data.checkForStringAttributes() ) { throw new Exception("Can't handle string attributes!"); } // Dataset size must be greater than 2 if ( data.numInstances() <= 2 ){ throw new Exception("Dataset size must be greater than 2."); } if ( m_TrainSize == -1 ){ // default value m_TrainSize = (int) Math.floor( (double) data.numInstances() / 2.0 ); }else if ( m_TrainSize < 0 || m_TrainSize >= data.numInstances() - 1 ) { // Check if 0 < training Size < D - 1 throw new Exception("Training set size of "+m_TrainSize+" is invalid."); } if ( m_P == -1 ){ // default value m_P = (double) m_TrainSize / ( (double)data.numInstances() - 1 ); }else if ( m_P < ( m_TrainSize / ( (double)data.numInstances() - 1 ) ) || m_P >= 1.0 ) { //Check if p is in range: m/(|D|-1) <= p < 1.0 throw new Exception("Proportion is not in range: "+ (m_TrainSize / ((double) data.numInstances() - 1 )) +" <= p < 1.0 "); } //roundup tps from double to integer tps = (int) Math.ceil( ((double)m_TrainSize / (double)m_P) + 1 ); k = (int) Math.ceil( tps / (tps - (double) m_TrainSize)); // number of folds cannot be more than the number of instances in the training pool if ( k > tps ) { throw new Exception("The required number of folds is too many." + "Change p or the size of the training set."); } // calculate the number of segments, round down. q = (int) Math.floor( (double) data.numInstances() / (double)tps ); //create confusion matrix, columns = number of instances in data set, as all will be used, by rows = number of classes. double [][] instanceProbs = new double [data.numInstances()][numClasses]; int [][] foldIndex = new int [ k ][ 2 ]; Vector segmentList = new Vector(q + 1); //Set random seed Random random = new Random(m_Seed); data.randomize(random); //create index arrays for different segments int currentDataIndex = 0; for( int count = 1; count <= (q + 1); count++ ){ if( count > q){ int [] segmentIndex = new int [ (data.numInstances() - (q * tps)) ]; for(int index = 0; index < segmentIndex.length; index++, currentDataIndex++){ segmentIndex[index] = currentDataIndex; } segmentList.add(segmentIndex); } else { int [] segmentIndex = new int [ tps ]; for(int index = 0; index < segmentIndex.length; index++, currentDataIndex++){ segmentIndex[index] = currentDataIndex; } segmentList.add(segmentIndex); } } int remainder = tps % k; // remainder is used to determine when to shrink the fold size by 1. //foldSize = ROUNDUP( tps / k ) (round up, eg 3 -> 3, 3.3->4) int foldSize = (int) Math.ceil( (double)tps /(double) k); //roundup fold size double to integer int index = 0; int currentIndex; for( int count = 0; count < k; count ++){ if( remainder != 0 && count == remainder ){ foldSize -= 1; } foldIndex[count][0] = index; foldIndex[count][1] = foldSize; index += foldSize; } for( int l = 0; l < m_ClassifyIterations; l++) { for(int i = 1; i <= q; i++){ int [] currentSegment = (int[]) segmentList.get(i - 1); randomize(currentSegment, random); //CROSS FOLD VALIDATION for current Segment for( int j = 1; j <= k; j++){ Instances TP = null; for(int foldNum = 1; foldNum <= k; foldNum++){ if( foldNum != j){ int startFoldIndex = foldIndex[ foldNum - 1 ][ 0 ]; //start index foldSize = foldIndex[ foldNum - 1 ][ 1 ]; int endFoldIndex = startFoldIndex + foldSize - 1; for(int currentFoldIndex = startFoldIndex; currentFoldIndex <= endFoldIndex; currentFoldIndex++){ if( TP == null ){ TP = new Instances(data, currentSegment[ currentFoldIndex ], 1); }else{ TP.add( data.instance( currentSegment[ currentFoldIndex ] ) ); } } } } TP.randomize(random); if( getTrainSize() > TP.numInstances() ){ throw new Exception("The training set size of " + getTrainSize() + ", is greater than the training pool " + TP.numInstances() ); } Instances train = new Instances(TP, 0, m_TrainSize); Classifier current = AbstractClassifier.makeCopy(m_Classifier); current.buildClassifier(train); // create a clssifier using the instances in train. int currentTestIndex = foldIndex[ j - 1 ][ 0 ]; //start index int testFoldSize = foldIndex[ j - 1 ][ 1 ]; //size int endTestIndex = currentTestIndex + testFoldSize - 1; while( currentTestIndex <= endTestIndex ){ Instance testInst = data.instance( currentSegment[currentTestIndex] ); int pred = (int)current.classifyInstance( testInst ); if(pred != testInst.classValue()) { m_Error++; // add 1 to mis-classifications. } instanceProbs[ currentSegment[ currentTestIndex ] ][ pred ]++; currentTestIndex++; } if( i == 1 && j == 1){ int[] segmentElast = (int[])segmentList.lastElement(); for( currentIndex = 0; currentIndex < segmentElast.length; currentIndex++){ Instance testInst = data.instance( segmentElast[currentIndex] ); int pred = (int)current.classifyInstance( testInst ); if(pred != testInst.classValue()) { m_Error++; // add 1 to mis-classifications. } instanceProbs[ segmentElast[ currentIndex ] ][ pred ]++; } } } } } m_Error /= (double)( m_ClassifyIterations * data.numInstances() ); m_KWBias = 0.0; m_KWVariance = 0.0; m_KWSigma = 0.0; m_WBias = 0.0; m_WVariance = 0.0; for (int i = 0; i < data.numInstances(); i++) { Instance current = data.instance( i ); double [] predProbs = instanceProbs[ i ]; double pActual, pPred; double bsum = 0, vsum = 0, ssum = 0; double wBSum = 0, wVSum = 0; Vector centralTendencies = findCentralTendencies( predProbs ); if( centralTendencies == null ){ throw new Exception("Central tendency was null."); } for (int j = 0; j < numClasses; j++) { pActual = (current.classValue() == j) ? 1 : 0; pPred = predProbs[j] / m_ClassifyIterations; bsum += (pActual - pPred) * (pActual - pPred) - pPred * (1 - pPred) / (m_ClassifyIterations - 1); vsum += pPred * pPred; ssum += pActual * pActual; } m_KWBias += bsum; m_KWVariance += (1 - vsum); m_KWSigma += (1 - ssum); for( int count = 0; count < centralTendencies.size(); count++ ) { int wB = 0, wV = 0; int centralTendency = ((Integer)centralTendencies.get(count)).intValue(); // For a single instance xi, find the bias and variance. for (int j = 0; j < numClasses; j++) { //Webb definition if( j != (int)current.classValue() && j == centralTendency ) { wB += predProbs[j]; } if( j != (int)current.classValue() && j != centralTendency ) { wV += predProbs[j]; } } wBSum += (double) wB; wVSum += (double) wV; } // calculate bais by dividing bSum by the number of central tendencies and // total number of instances. (effectively finding the average and dividing // by the number of instances to get the nominalised probability). m_WBias += ( wBSum / ((double) ( centralTendencies.size() * m_ClassifyIterations ))); // calculate variance by dividing vSum by the total number of interations m_WVariance += ( wVSum / ((double) ( centralTendencies.size() * m_ClassifyIterations ))); } m_KWBias /= (2.0 * (double) data.numInstances()); m_KWVariance /= (2.0 * (double) data.numInstances()); m_KWSigma /= (2.0 * (double) data.numInstances()); // bias = bias / number of data instances m_WBias /= (double) data.numInstances(); // variance = variance / number of data instances. m_WVariance /= (double) data.numInstances(); if (m_Debug) { System.err.println("Decomposition finished"); } } /** Finds the central tendency, given the classifications for an instance. * * Where the central tendency is defined as the class that was most commonly * selected for a given instance.

* * For example, instance 'x' may be classified out of 3 classes y = {1, 2, 3}, * so if x is classified 10 times, and is classified as follows, '1' = 2 times, '2' = 5 times * and '3' = 3 times. Then the central tendency is '2'.

* * However, it is important to note that this method returns a list of all classes * that have the highest number of classifications. * * In cases where there are several classes with the largest number of classifications, then * all of these classes are returned. For example if 'x' is classified '1' = 4 times, * '2' = 4 times and '3' = 2 times. Then '1' and '2' are returned.

* * @param predProbs the array of classifications for a single instance. * * @return a Vector containing Integer objects which store the class(s) which * are the central tendency. */ public Vector findCentralTendencies(double[] predProbs) { int centralTValue = 0; int currentValue = 0; //array to store the list of classes the have the greatest number of classifictions. Vector centralTClasses; centralTClasses = new Vector(); //create an array with size of the number of classes. // Go through array, finding the central tendency. for( int i = 0; i < predProbs.length; i++) { currentValue = (int) predProbs[i]; // if current value is greater than the central tendency value then // clear vector and add new class to vector array. if( currentValue > centralTValue) { centralTClasses.clear(); centralTClasses.addElement( new Integer(i) ); centralTValue = currentValue; } else if( currentValue != 0 && currentValue == centralTValue) { centralTClasses.addElement( new Integer(i) ); } } //return all classes that have the greatest number of classifications. if( centralTValue != 0){ return centralTClasses; } else { return null; } } /** * Returns description of the bias-variance decomposition results. * * @return the bias-variance decomposition results as a string */ public String toString() { String result = "\nBias-Variance Decomposition Segmentation, Cross Validation\n" + "with subsampling.\n"; if (getClassifier() == null) { return "Invalid setup"; } result += "\nClassifier : " + getClassifier().getClass().getName(); if (getClassifier() instanceof OptionHandler) { result += Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()); } result += "\nData File : " + getDataFileName(); result += "\nClass Index : "; if (getClassIndex() == 0) { result += "last"; } else { result += getClassIndex(); } result += "\nIterations : " + getClassifyIterations(); result += "\np : " + getP(); result += "\nTraining Size : " + getTrainSize(); result += "\nSeed : " + getSeed(); result += "\n\nDefinition : " +"Kohavi and Wolpert"; result += "\nError :" + Utils.doubleToString(getError(), 4); result += "\nBias^2 :" + Utils.doubleToString(getKWBias(), 4); result += "\nVariance :" + Utils.doubleToString(getKWVariance(), 4); result += "\nSigma^2 :" + Utils.doubleToString(getKWSigma(), 4); result += "\n\nDefinition : " +"Webb"; result += "\nError :" + Utils.doubleToString(getError(), 4); result += "\nBias :" + Utils.doubleToString(getWBias(), 4); result += "\nVariance :" + Utils.doubleToString(getWVariance(), 4); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6041 $"); } /** * Test method for this class * * @param args the command line arguments */ public static void main(String [] args) { try { BVDecomposeSegCVSub bvd = new BVDecomposeSegCVSub(); try { bvd.setOptions(args); Utils.checkForRemainingOptions(args); } catch (Exception ex) { String result = ex.getMessage() + "\nBVDecompose Options:\n\n"; Enumeration enu = bvd.listOptions(); while (enu.hasMoreElements()) { Option option = (Option) enu.nextElement(); result += option.synopsis() + "\n" + option.description() + "\n"; } throw new Exception(result); } bvd.decompose(); System.out.println(bvd.toString()); } catch (Exception ex) { System.err.println(ex.getMessage()); } } /** * Accepts an array of ints and randomises the values in the array, using the * random seed. * *@param index is the array of integers *@param random is the Random seed. */ public final void randomize(int[] index, Random random) { for( int j = index.length - 1; j > 0; j-- ){ int k = random.nextInt( j + 1 ); int temp = index[j]; index[j] = index[k]; index[k] = temp; } } }