[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * BVDecomposeSegCVSub.java |
---|
| 19 | * Copyright (C) 2003 Paul Conilione |
---|
| 20 | * |
---|
| 21 | * Based on the class: BVDecompose.java by Len Trigg (1999) |
---|
| 22 | */ |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | /* |
---|
| 26 | * DEDICATION |
---|
| 27 | * |
---|
| 28 | * Paul Conilione would like to express his deep gratitude and appreciation |
---|
| 29 | * to his Chinese Buddhist Taoist Master Sifu Chow Yuk Nen for the abilities |
---|
| 30 | * and insight that he has been taught, which have allowed him to program in |
---|
| 31 | * a clear and efficient manner. |
---|
| 32 | * |
---|
| 33 | * Master Sifu Chow Yuk Nen's Teachings are unique and precious. They are |
---|
| 34 | * applicable to any field of human endeavour. Through his unique and powerful |
---|
| 35 | * ability to skilfully apply Chinese Buddhist Teachings, people have achieved |
---|
| 36 | * success in; Computing, chemical engineering, business, accounting, philosophy |
---|
| 37 | * and more. |
---|
| 38 | * |
---|
| 39 | */ |
---|
| 40 | |
---|
| 41 | package weka.classifiers; |
---|
| 42 | |
---|
| 43 | import weka.core.Attribute; |
---|
| 44 | import weka.core.Instance; |
---|
| 45 | import weka.core.Instances; |
---|
| 46 | import weka.core.Option; |
---|
| 47 | import weka.core.OptionHandler; |
---|
| 48 | import weka.core.RevisionHandler; |
---|
| 49 | import weka.core.RevisionUtils; |
---|
| 50 | import weka.core.TechnicalInformation; |
---|
| 51 | import weka.core.TechnicalInformationHandler; |
---|
| 52 | import weka.core.Utils; |
---|
| 53 | import weka.core.TechnicalInformation.Field; |
---|
| 54 | import weka.core.TechnicalInformation.Type; |
---|
| 55 | |
---|
| 56 | import java.io.BufferedReader; |
---|
| 57 | import java.io.FileReader; |
---|
| 58 | import java.io.Reader; |
---|
| 59 | import java.util.Enumeration; |
---|
| 60 | import java.util.Random; |
---|
| 61 | import java.util.Vector; |
---|
| 62 | |
---|
| 63 | /** |
---|
| 64 | <!-- globalinfo-start --> |
---|
| 65 | * This class performs Bias-Variance decomposion on any classifier using the sub-sampled cross-validation procedure as specified in (1).<br/> |
---|
| 66 | * The Kohavi and Wolpert definition of bias and variance is specified in (2).<br/> |
---|
| 67 | * The Webb definition of bias and variance is specified in (3).<br/> |
---|
| 68 | * <br/> |
---|
| 69 | * Geoffrey I. Webb, Paul Conilione (2002). Estimating bias and variance from data. School of Computer Science and Software Engineering, Victoria, Australia.<br/> |
---|
| 70 | * <br/> |
---|
| 71 | * Ron Kohavi, David H. Wolpert: Bias Plus Variance Decomposition for Zero-One Loss Functions. In: Machine Learning: Proceedings of the Thirteenth International Conference, 275-283, 1996.<br/> |
---|
| 72 | * <br/> |
---|
| 73 | * Geoffrey I. Webb (2000). MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning. 40(2):159-196. |
---|
| 74 | * <p/> |
---|
| 75 | <!-- globalinfo-end --> |
---|
| 76 | * |
---|
| 77 | <!-- technical-bibtex-start --> |
---|
| 78 | * BibTeX: |
---|
| 79 | * <pre> |
---|
| 80 | * @misc{Webb2002, |
---|
| 81 | * address = {School of Computer Science and Software Engineering, Victoria, Australia}, |
---|
| 82 | * author = {Geoffrey I. Webb and Paul Conilione}, |
---|
| 83 | * institution = {Monash University}, |
---|
| 84 | * title = {Estimating bias and variance from data}, |
---|
| 85 | * year = {2002}, |
---|
| 86 | * PDF = {http://www.csse.monash.edu.au/\~webb/Files/WebbConilione04.pdf} |
---|
| 87 | * } |
---|
| 88 | * |
---|
| 89 | * @inproceedings{Kohavi1996, |
---|
| 90 | * author = {Ron Kohavi and David H. Wolpert}, |
---|
| 91 | * booktitle = {Machine Learning: Proceedings of the Thirteenth International Conference}, |
---|
| 92 | * editor = {Lorenza Saitta}, |
---|
| 93 | * pages = {275-283}, |
---|
| 94 | * publisher = {Morgan Kaufmann}, |
---|
| 95 | * title = {Bias Plus Variance Decomposition for Zero-One Loss Functions}, |
---|
| 96 | * year = {1996}, |
---|
| 97 | * PS = {http://robotics.stanford.edu/\~ronnyk/biasVar.ps} |
---|
| 98 | * } |
---|
| 99 | * |
---|
| 100 | * @article{Webb2000, |
---|
| 101 | * author = {Geoffrey I. Webb}, |
---|
| 102 | * journal = {Machine Learning}, |
---|
| 103 | * number = {2}, |
---|
| 104 | * pages = {159-196}, |
---|
| 105 | * title = {MultiBoosting: A Technique for Combining Boosting and Wagging}, |
---|
| 106 | * volume = {40}, |
---|
| 107 | * year = {2000} |
---|
| 108 | * } |
---|
| 109 | * </pre> |
---|
| 110 | * <p/> |
---|
| 111 | <!-- technical-bibtex-end --> |
---|
| 112 | * |
---|
| 113 | <!-- options-start --> |
---|
| 114 | * Valid options are: <p/> |
---|
| 115 | * |
---|
| 116 | * <pre> -c <class index> |
---|
| 117 | * The index of the class attribute. |
---|
| 118 | * (default last)</pre> |
---|
| 119 | * |
---|
| 120 | * <pre> -D |
---|
| 121 | * Turn on debugging output.</pre> |
---|
| 122 | * |
---|
| 123 | * <pre> -l <num> |
---|
| 124 | * The number of times each instance is classified. |
---|
| 125 | * (default 10)</pre> |
---|
| 126 | * |
---|
| 127 | * <pre> -p <proportion of objects in common> |
---|
| 128 | * The average proportion of instances common between any two training sets</pre> |
---|
| 129 | * |
---|
| 130 | * <pre> -s <seed> |
---|
| 131 | * The random number seed used.</pre> |
---|
| 132 | * |
---|
| 133 | * <pre> -t <name of arff file> |
---|
| 134 | * The name of the arff file used for the decomposition.</pre> |
---|
| 135 | * |
---|
| 136 | * <pre> -T <number of instances in training set> |
---|
| 137 | * The number of instances in the training set.</pre> |
---|
| 138 | * |
---|
| 139 | * <pre> -W <classifier class name> |
---|
| 140 | * Full class name of the learner used in the decomposition. |
---|
| 141 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 142 | * |
---|
| 143 | * <pre> |
---|
| 144 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
| 145 | * </pre> |
---|
| 146 | * |
---|
| 147 | * <pre> -D |
---|
| 148 | * If set, classifier is run in debug mode and |
---|
| 149 | * may output additional info to the console</pre> |
---|
| 150 | * |
---|
| 151 | <!-- options-end --> |
---|
| 152 | * |
---|
| 153 | * Options after -- are passed to the designated sub-learner. <p> |
---|
| 154 | * |
---|
| 155 | * @author Paul Conilione (paulc4321@yahoo.com.au) |
---|
| 156 | * @version $Revision: 6041 $ |
---|
| 157 | */ |
---|
| 158 | public class BVDecomposeSegCVSub |
---|
| 159 | implements OptionHandler, TechnicalInformationHandler, RevisionHandler { |
---|
| 160 | |
---|
| 161 | /** Debugging mode, gives extra output if true. */ |
---|
| 162 | protected boolean m_Debug; |
---|
| 163 | |
---|
| 164 | /** An instantiated base classifier used for getting and testing options. */ |
---|
| 165 | protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); |
---|
| 166 | |
---|
| 167 | /** The options to be passed to the base classifier. */ |
---|
| 168 | protected String [] m_ClassifierOptions; |
---|
| 169 | |
---|
| 170 | /** The number of times an instance is classified*/ |
---|
| 171 | protected int m_ClassifyIterations; |
---|
| 172 | |
---|
| 173 | /** The name of the data file used for the decomposition */ |
---|
| 174 | protected String m_DataFileName; |
---|
| 175 | |
---|
| 176 | /** The index of the class attribute */ |
---|
| 177 | protected int m_ClassIndex = -1; |
---|
| 178 | |
---|
| 179 | /** The random number seed */ |
---|
| 180 | protected int m_Seed = 1; |
---|
| 181 | |
---|
| 182 | /** The calculated Kohavi & Wolpert bias (squared) */ |
---|
| 183 | protected double m_KWBias; |
---|
| 184 | |
---|
| 185 | /** The calculated Kohavi & Wolpert variance */ |
---|
| 186 | protected double m_KWVariance; |
---|
| 187 | |
---|
| 188 | /** The calculated Kohavi & Wolpert sigma */ |
---|
| 189 | protected double m_KWSigma; |
---|
| 190 | |
---|
| 191 | /** The calculated Webb bias */ |
---|
| 192 | protected double m_WBias; |
---|
| 193 | |
---|
| 194 | /** The calculated Webb variance */ |
---|
| 195 | protected double m_WVariance; |
---|
| 196 | |
---|
| 197 | /** The error rate */ |
---|
| 198 | protected double m_Error; |
---|
| 199 | |
---|
| 200 | /** The training set size */ |
---|
| 201 | protected int m_TrainSize; |
---|
| 202 | |
---|
| 203 | /** Proportion of instances common between any two training sets. */ |
---|
| 204 | protected double m_P; |
---|
| 205 | |
---|
| 206 | /** |
---|
| 207 | * Returns a string describing this object |
---|
| 208 | * @return a description of the classifier suitable for |
---|
| 209 | * displaying in the explorer/experimenter gui |
---|
| 210 | */ |
---|
| 211 | public String globalInfo() { |
---|
| 212 | return |
---|
| 213 | "This class performs Bias-Variance decomposion on any classifier using the " |
---|
| 214 | + "sub-sampled cross-validation procedure as specified in (1).\n" |
---|
| 215 | + "The Kohavi and Wolpert definition of bias and variance is specified in (2).\n" |
---|
| 216 | + "The Webb definition of bias and variance is specified in (3).\n\n" |
---|
| 217 | + getTechnicalInformation().toString(); |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | /** |
---|
| 221 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 222 | * detailed information about the technical background of this class, |
---|
| 223 | * e.g., paper reference or book this class is based on. |
---|
| 224 | * |
---|
| 225 | * @return the technical information about this class |
---|
| 226 | */ |
---|
| 227 | public TechnicalInformation getTechnicalInformation() { |
---|
| 228 | TechnicalInformation result; |
---|
| 229 | TechnicalInformation additional; |
---|
| 230 | |
---|
| 231 | result = new TechnicalInformation(Type.MISC); |
---|
| 232 | result.setValue(Field.AUTHOR, "Geoffrey I. Webb and Paul Conilione"); |
---|
| 233 | result.setValue(Field.YEAR, "2002"); |
---|
| 234 | result.setValue(Field.TITLE, "Estimating bias and variance from data"); |
---|
| 235 | result.setValue(Field.INSTITUTION, "Monash University"); |
---|
| 236 | result.setValue(Field.ADDRESS, "School of Computer Science and Software Engineering, Victoria, Australia"); |
---|
| 237 | result.setValue(Field.PDF, "http://www.csse.monash.edu.au/~webb/Files/WebbConilione04.pdf"); |
---|
| 238 | |
---|
| 239 | additional = result.add(Type.INPROCEEDINGS); |
---|
| 240 | additional.setValue(Field.AUTHOR, "Ron Kohavi and David H. Wolpert"); |
---|
| 241 | additional.setValue(Field.YEAR, "1996"); |
---|
| 242 | additional.setValue(Field.TITLE, "Bias Plus Variance Decomposition for Zero-One Loss Functions"); |
---|
| 243 | additional.setValue(Field.BOOKTITLE, "Machine Learning: Proceedings of the Thirteenth International Conference"); |
---|
| 244 | additional.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
| 245 | additional.setValue(Field.EDITOR, "Lorenza Saitta"); |
---|
| 246 | additional.setValue(Field.PAGES, "275-283"); |
---|
| 247 | additional.setValue(Field.PS, "http://robotics.stanford.edu/~ronnyk/biasVar.ps"); |
---|
| 248 | |
---|
| 249 | additional = result.add(Type.ARTICLE); |
---|
| 250 | additional.setValue(Field.AUTHOR, "Geoffrey I. Webb"); |
---|
| 251 | additional.setValue(Field.YEAR, "2000"); |
---|
| 252 | additional.setValue(Field.TITLE, "MultiBoosting: A Technique for Combining Boosting and Wagging"); |
---|
| 253 | additional.setValue(Field.JOURNAL, "Machine Learning"); |
---|
| 254 | additional.setValue(Field.VOLUME, "40"); |
---|
| 255 | additional.setValue(Field.NUMBER, "2"); |
---|
| 256 | additional.setValue(Field.PAGES, "159-196"); |
---|
| 257 | |
---|
| 258 | return result; |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | /** |
---|
| 262 | * Returns an enumeration describing the available options. |
---|
| 263 | * |
---|
| 264 | * @return an enumeration of all the available options. |
---|
| 265 | */ |
---|
| 266 | public Enumeration listOptions() { |
---|
| 267 | |
---|
| 268 | Vector newVector = new Vector(8); |
---|
| 269 | |
---|
| 270 | newVector.addElement(new Option( |
---|
| 271 | "\tThe index of the class attribute.\n"+ |
---|
| 272 | "\t(default last)", |
---|
| 273 | "c", 1, "-c <class index>")); |
---|
| 274 | newVector.addElement(new Option( |
---|
| 275 | "\tTurn on debugging output.", |
---|
| 276 | "D", 0, "-D")); |
---|
| 277 | newVector.addElement(new Option( |
---|
| 278 | "\tThe number of times each instance is classified.\n" |
---|
| 279 | +"\t(default 10)", |
---|
| 280 | "l", 1, "-l <num>")); |
---|
| 281 | newVector.addElement(new Option( |
---|
| 282 | "\tThe average proportion of instances common between any two training sets", |
---|
| 283 | "p", 1, "-p <proportion of objects in common>")); |
---|
| 284 | newVector.addElement(new Option( |
---|
| 285 | "\tThe random number seed used.", |
---|
| 286 | "s", 1, "-s <seed>")); |
---|
| 287 | newVector.addElement(new Option( |
---|
| 288 | "\tThe name of the arff file used for the decomposition.", |
---|
| 289 | "t", 1, "-t <name of arff file>")); |
---|
| 290 | newVector.addElement(new Option( |
---|
| 291 | "\tThe number of instances in the training set.", |
---|
| 292 | "T", 1, "-T <number of instances in training set>")); |
---|
| 293 | newVector.addElement(new Option( |
---|
| 294 | "\tFull class name of the learner used in the decomposition.\n" |
---|
| 295 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
| 296 | "W", 1, "-W <classifier class name>")); |
---|
| 297 | |
---|
| 298 | if ((m_Classifier != null) && |
---|
| 299 | (m_Classifier instanceof OptionHandler)) { |
---|
| 300 | newVector.addElement(new Option( |
---|
| 301 | "", |
---|
| 302 | "", 0, "\nOptions specific to learner " |
---|
| 303 | + m_Classifier.getClass().getName() |
---|
| 304 | + ":")); |
---|
| 305 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
| 306 | while (enu.hasMoreElements()) { |
---|
| 307 | newVector.addElement(enu.nextElement()); |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | return newVector.elements(); |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | /** |
---|
| 315 | * Sets the OptionHandler's options using the given list. All options |
---|
| 316 | * will be set (or reset) during this call (i.e. incremental setting |
---|
| 317 | * of options is not possible). <p/> |
---|
| 318 | * |
---|
| 319 | <!-- options-start --> |
---|
| 320 | * Valid options are: <p/> |
---|
| 321 | * |
---|
| 322 | * <pre> -c <class index> |
---|
| 323 | * The index of the class attribute. |
---|
| 324 | * (default last)</pre> |
---|
| 325 | * |
---|
| 326 | * <pre> -D |
---|
| 327 | * Turn on debugging output.</pre> |
---|
| 328 | * |
---|
| 329 | * <pre> -l <num> |
---|
| 330 | * The number of times each instance is classified. |
---|
| 331 | * (default 10)</pre> |
---|
| 332 | * |
---|
| 333 | * <pre> -p <proportion of objects in common> |
---|
| 334 | * The average proportion of instances common between any two training sets</pre> |
---|
| 335 | * |
---|
| 336 | * <pre> -s <seed> |
---|
| 337 | * The random number seed used.</pre> |
---|
| 338 | * |
---|
| 339 | * <pre> -t <name of arff file> |
---|
| 340 | * The name of the arff file used for the decomposition.</pre> |
---|
| 341 | * |
---|
| 342 | * <pre> -T <number of instances in training set> |
---|
| 343 | * The number of instances in the training set.</pre> |
---|
| 344 | * |
---|
| 345 | * <pre> -W <classifier class name> |
---|
| 346 | * Full class name of the learner used in the decomposition. |
---|
| 347 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 348 | * |
---|
| 349 | * <pre> |
---|
| 350 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
| 351 | * </pre> |
---|
| 352 | * |
---|
| 353 | * <pre> -D |
---|
| 354 | * If set, classifier is run in debug mode and |
---|
| 355 | * may output additional info to the console</pre> |
---|
| 356 | * |
---|
| 357 | <!-- options-end --> |
---|
| 358 | * |
---|
| 359 | * @param options the list of options as an array of strings |
---|
| 360 | * @throws Exception if an option is not supported |
---|
| 361 | */ |
---|
| 362 | public void setOptions(String[] options) throws Exception { |
---|
| 363 | setDebug(Utils.getFlag('D', options)); |
---|
| 364 | |
---|
| 365 | String classIndex = Utils.getOption('c', options); |
---|
| 366 | if (classIndex.length() != 0) { |
---|
| 367 | if (classIndex.toLowerCase().equals("last")) { |
---|
| 368 | setClassIndex(0); |
---|
| 369 | } else if (classIndex.toLowerCase().equals("first")) { |
---|
| 370 | setClassIndex(1); |
---|
| 371 | } else { |
---|
| 372 | setClassIndex(Integer.parseInt(classIndex)); |
---|
| 373 | } |
---|
| 374 | } else { |
---|
| 375 | setClassIndex(0); |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | String classifyIterations = Utils.getOption('l', options); |
---|
| 379 | if (classifyIterations.length() != 0) { |
---|
| 380 | setClassifyIterations(Integer.parseInt(classifyIterations)); |
---|
| 381 | } else { |
---|
| 382 | setClassifyIterations(10); |
---|
| 383 | } |
---|
| 384 | |
---|
| 385 | String prob = Utils.getOption('p', options); |
---|
| 386 | if (prob.length() != 0) { |
---|
| 387 | setP( Double.parseDouble(prob)); |
---|
| 388 | } else { |
---|
| 389 | setP(-1); |
---|
| 390 | } |
---|
| 391 | //throw new Exception("A proportion must be specified" + " with a -p option."); |
---|
| 392 | |
---|
| 393 | String seedString = Utils.getOption('s', options); |
---|
| 394 | if (seedString.length() != 0) { |
---|
| 395 | setSeed(Integer.parseInt(seedString)); |
---|
| 396 | } else { |
---|
| 397 | setSeed(1); |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | String dataFile = Utils.getOption('t', options); |
---|
| 401 | if (dataFile.length() != 0) { |
---|
| 402 | setDataFileName(dataFile); |
---|
| 403 | } else { |
---|
| 404 | throw new Exception("An arff file must be specified" |
---|
| 405 | + " with the -t option."); |
---|
| 406 | } |
---|
| 407 | |
---|
| 408 | String trainSize = Utils.getOption('T', options); |
---|
| 409 | if (trainSize.length() != 0) { |
---|
| 410 | setTrainSize(Integer.parseInt(trainSize)); |
---|
| 411 | } else { |
---|
| 412 | setTrainSize(-1); |
---|
| 413 | } |
---|
| 414 | //throw new Exception("A training set size must be specified" + " with a -T option."); |
---|
| 415 | |
---|
| 416 | String classifierName = Utils.getOption('W', options); |
---|
| 417 | if (classifierName.length() != 0) { |
---|
| 418 | setClassifier(AbstractClassifier.forName(classifierName, Utils.partitionOptions(options))); |
---|
| 419 | } else { |
---|
| 420 | throw new Exception("A learner must be specified with the -W option."); |
---|
| 421 | } |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | /** |
---|
| 425 | * Gets the current settings of the CheckClassifier. |
---|
| 426 | * |
---|
| 427 | * @return an array of strings suitable for passing to setOptions |
---|
| 428 | */ |
---|
| 429 | public String [] getOptions() { |
---|
| 430 | |
---|
| 431 | String [] classifierOptions = new String [0]; |
---|
| 432 | if ((m_Classifier != null) && |
---|
| 433 | (m_Classifier instanceof OptionHandler)) { |
---|
| 434 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
| 435 | } |
---|
| 436 | String [] options = new String [classifierOptions.length + 14]; |
---|
| 437 | int current = 0; |
---|
| 438 | if (getDebug()) { |
---|
| 439 | options[current++] = "-D"; |
---|
| 440 | } |
---|
| 441 | options[current++] = "-c"; options[current++] = "" + getClassIndex(); |
---|
| 442 | options[current++] = "-l"; options[current++] = "" + getClassifyIterations(); |
---|
| 443 | options[current++] = "-p"; options[current++] = "" + getP(); |
---|
| 444 | options[current++] = "-s"; options[current++] = "" + getSeed(); |
---|
| 445 | if (getDataFileName() != null) { |
---|
| 446 | options[current++] = "-t"; options[current++] = "" + getDataFileName(); |
---|
| 447 | } |
---|
| 448 | options[current++] = "-T"; options[current++] = "" + getTrainSize(); |
---|
| 449 | if (getClassifier() != null) { |
---|
| 450 | options[current++] = "-W"; |
---|
| 451 | options[current++] = getClassifier().getClass().getName(); |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | options[current++] = "--"; |
---|
| 455 | System.arraycopy(classifierOptions, 0, options, current, |
---|
| 456 | classifierOptions.length); |
---|
| 457 | current += classifierOptions.length; |
---|
| 458 | while (current < options.length) { |
---|
| 459 | options[current++] = ""; |
---|
| 460 | } |
---|
| 461 | return options; |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | /** |
---|
| 465 | * Set the classifiers being analysed |
---|
| 466 | * |
---|
| 467 | * @param newClassifier the Classifier to use. |
---|
| 468 | */ |
---|
| 469 | public void setClassifier(Classifier newClassifier) { |
---|
| 470 | |
---|
| 471 | m_Classifier = newClassifier; |
---|
| 472 | } |
---|
| 473 | |
---|
| 474 | /** |
---|
| 475 | * Gets the name of the classifier being analysed |
---|
| 476 | * |
---|
| 477 | * @return the classifier being analysed. |
---|
| 478 | */ |
---|
| 479 | public Classifier getClassifier() { |
---|
| 480 | |
---|
| 481 | return m_Classifier; |
---|
| 482 | } |
---|
| 483 | |
---|
| 484 | /** |
---|
| 485 | * Sets debugging mode |
---|
| 486 | * |
---|
| 487 | * @param debug true if debug output should be printed |
---|
| 488 | */ |
---|
| 489 | public void setDebug(boolean debug) { |
---|
| 490 | |
---|
| 491 | m_Debug = debug; |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | /** |
---|
| 495 | * Gets whether debugging is turned on |
---|
| 496 | * |
---|
| 497 | * @return true if debugging output is on |
---|
| 498 | */ |
---|
| 499 | public boolean getDebug() { |
---|
| 500 | |
---|
| 501 | return m_Debug; |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | /** |
---|
| 506 | * Sets the random number seed |
---|
| 507 | * |
---|
| 508 | * @param seed the random number seed |
---|
| 509 | */ |
---|
| 510 | public void setSeed(int seed) { |
---|
| 511 | |
---|
| 512 | m_Seed = seed; |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | /** |
---|
| 516 | * Gets the random number seed |
---|
| 517 | * |
---|
| 518 | * @return the random number seed |
---|
| 519 | */ |
---|
| 520 | public int getSeed() { |
---|
| 521 | |
---|
| 522 | return m_Seed; |
---|
| 523 | } |
---|
| 524 | |
---|
| 525 | /** |
---|
| 526 | * Sets the number of times an instance is classified |
---|
| 527 | * |
---|
| 528 | * @param classifyIterations number of times an instance is classified |
---|
| 529 | */ |
---|
| 530 | public void setClassifyIterations(int classifyIterations) { |
---|
| 531 | |
---|
| 532 | m_ClassifyIterations = classifyIterations; |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | /** |
---|
| 536 | * Gets the number of times an instance is classified |
---|
| 537 | * |
---|
| 538 | * @return the maximum number of times an instance is classified |
---|
| 539 | */ |
---|
| 540 | public int getClassifyIterations() { |
---|
| 541 | |
---|
| 542 | return m_ClassifyIterations; |
---|
| 543 | } |
---|
| 544 | |
---|
| 545 | /** |
---|
| 546 | * Sets the name of the dataset file. |
---|
| 547 | * |
---|
| 548 | * @param dataFileName name of dataset file. |
---|
| 549 | */ |
---|
| 550 | public void setDataFileName(String dataFileName) { |
---|
| 551 | |
---|
| 552 | m_DataFileName = dataFileName; |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | /** |
---|
| 556 | * Get the name of the data file used for the decomposition |
---|
| 557 | * |
---|
| 558 | * @return the name of the data file |
---|
| 559 | */ |
---|
| 560 | public String getDataFileName() { |
---|
| 561 | |
---|
| 562 | return m_DataFileName; |
---|
| 563 | } |
---|
| 564 | |
---|
| 565 | /** |
---|
| 566 | * Get the index (starting from 1) of the attribute used as the class. |
---|
| 567 | * |
---|
| 568 | * @return the index of the class attribute |
---|
| 569 | */ |
---|
| 570 | public int getClassIndex() { |
---|
| 571 | |
---|
| 572 | return m_ClassIndex + 1; |
---|
| 573 | } |
---|
| 574 | |
---|
| 575 | /** |
---|
| 576 | * Sets index of attribute to discretize on |
---|
| 577 | * |
---|
| 578 | * @param classIndex the index (starting from 1) of the class attribute |
---|
| 579 | */ |
---|
| 580 | public void setClassIndex(int classIndex) { |
---|
| 581 | |
---|
| 582 | m_ClassIndex = classIndex - 1; |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | /** |
---|
| 586 | * Get the calculated bias squared according to the Kohavi and Wolpert definition |
---|
| 587 | * |
---|
| 588 | * @return the bias squared |
---|
| 589 | */ |
---|
| 590 | public double getKWBias() { |
---|
| 591 | |
---|
| 592 | return m_KWBias; |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | /** |
---|
| 596 | * Get the calculated bias according to the Webb definition |
---|
| 597 | * |
---|
| 598 | * @return the bias |
---|
| 599 | * |
---|
| 600 | */ |
---|
| 601 | public double getWBias() { |
---|
| 602 | |
---|
| 603 | return m_WBias; |
---|
| 604 | } |
---|
| 605 | |
---|
| 606 | |
---|
| 607 | /** |
---|
| 608 | * Get the calculated variance according to the Kohavi and Wolpert definition |
---|
| 609 | * |
---|
| 610 | * @return the variance |
---|
| 611 | */ |
---|
| 612 | public double getKWVariance() { |
---|
| 613 | |
---|
| 614 | return m_KWVariance; |
---|
| 615 | } |
---|
| 616 | |
---|
| 617 | /** |
---|
| 618 | * Get the calculated variance according to the Webb definition |
---|
| 619 | * |
---|
| 620 | * @return the variance according to Webb |
---|
| 621 | * |
---|
| 622 | */ |
---|
| 623 | public double getWVariance() { |
---|
| 624 | |
---|
| 625 | return m_WVariance; |
---|
| 626 | } |
---|
| 627 | |
---|
| 628 | /** |
---|
| 629 | * Get the calculated sigma according to the Kohavi and Wolpert definition |
---|
| 630 | * |
---|
| 631 | * @return the sigma |
---|
| 632 | * |
---|
| 633 | */ |
---|
| 634 | public double getKWSigma() { |
---|
| 635 | |
---|
| 636 | return m_KWSigma; |
---|
| 637 | } |
---|
| 638 | |
---|
| 639 | /** |
---|
| 640 | * Set the training size. |
---|
| 641 | * |
---|
| 642 | * @param size the size of the training set |
---|
| 643 | * |
---|
| 644 | */ |
---|
| 645 | public void setTrainSize(int size) { |
---|
| 646 | |
---|
| 647 | m_TrainSize = size; |
---|
| 648 | } |
---|
| 649 | |
---|
| 650 | /** |
---|
| 651 | * Get the training size |
---|
| 652 | * |
---|
| 653 | * @return the size of the training set |
---|
| 654 | * |
---|
| 655 | */ |
---|
| 656 | public int getTrainSize() { |
---|
| 657 | |
---|
| 658 | return m_TrainSize; |
---|
| 659 | } |
---|
| 660 | |
---|
| 661 | /** |
---|
| 662 | * Set the proportion of instances that are common between two training sets |
---|
| 663 | * used to train a classifier. |
---|
| 664 | * |
---|
| 665 | * @param proportion the proportion of instances that are common between training |
---|
| 666 | * sets. |
---|
| 667 | * |
---|
| 668 | */ |
---|
| 669 | public void setP(double proportion) { |
---|
| 670 | |
---|
| 671 | m_P = proportion; |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | /** |
---|
| 675 | * Get the proportion of instances that are common between two training sets. |
---|
| 676 | * |
---|
| 677 | * @return the proportion |
---|
| 678 | * |
---|
| 679 | */ |
---|
| 680 | public double getP() { |
---|
| 681 | |
---|
| 682 | return m_P; |
---|
| 683 | } |
---|
| 684 | |
---|
| 685 | /** |
---|
| 686 | * Get the calculated error rate |
---|
| 687 | * |
---|
| 688 | * @return the error rate |
---|
| 689 | */ |
---|
| 690 | public double getError() { |
---|
| 691 | |
---|
| 692 | return m_Error; |
---|
| 693 | } |
---|
| 694 | |
---|
| 695 | /** |
---|
| 696 | * Carry out the bias-variance decomposition using the sub-sampled cross-validation method. |
---|
| 697 | * |
---|
| 698 | * @throws Exception if the decomposition couldn't be carried out |
---|
| 699 | */ |
---|
| 700 | public void decompose() throws Exception { |
---|
| 701 | |
---|
| 702 | Reader dataReader; |
---|
| 703 | Instances data; |
---|
| 704 | |
---|
| 705 | int tps; // training pool size, size of segment E. |
---|
| 706 | int k; // number of folds in segment E. |
---|
| 707 | int q; // number of segments of size tps. |
---|
| 708 | |
---|
| 709 | dataReader = new BufferedReader(new FileReader(m_DataFileName)); //open file |
---|
| 710 | data = new Instances(dataReader); // encapsulate in wrapper class called weka.Instances() |
---|
| 711 | |
---|
| 712 | if (m_ClassIndex < 0) { |
---|
| 713 | data.setClassIndex(data.numAttributes() - 1); |
---|
| 714 | } else { |
---|
| 715 | data.setClassIndex(m_ClassIndex); |
---|
| 716 | } |
---|
| 717 | |
---|
| 718 | if (data.classAttribute().type() != Attribute.NOMINAL) { |
---|
| 719 | throw new Exception("Class attribute must be nominal"); |
---|
| 720 | } |
---|
| 721 | int numClasses = data.numClasses(); |
---|
| 722 | |
---|
| 723 | data.deleteWithMissingClass(); |
---|
| 724 | if ( data.checkForStringAttributes() ) { |
---|
| 725 | throw new Exception("Can't handle string attributes!"); |
---|
| 726 | } |
---|
| 727 | |
---|
| 728 | // Dataset size must be greater than 2 |
---|
| 729 | if ( data.numInstances() <= 2 ){ |
---|
| 730 | throw new Exception("Dataset size must be greater than 2."); |
---|
| 731 | } |
---|
| 732 | |
---|
| 733 | if ( m_TrainSize == -1 ){ // default value |
---|
| 734 | m_TrainSize = (int) Math.floor( (double) data.numInstances() / 2.0 ); |
---|
| 735 | }else if ( m_TrainSize < 0 || m_TrainSize >= data.numInstances() - 1 ) { // Check if 0 < training Size < D - 1 |
---|
| 736 | throw new Exception("Training set size of "+m_TrainSize+" is invalid."); |
---|
| 737 | } |
---|
| 738 | |
---|
| 739 | if ( m_P == -1 ){ // default value |
---|
| 740 | m_P = (double) m_TrainSize / ( (double)data.numInstances() - 1 ); |
---|
| 741 | }else if ( m_P < ( m_TrainSize / ( (double)data.numInstances() - 1 ) ) || m_P >= 1.0 ) { //Check if p is in range: m/(|D|-1) <= p < 1.0 |
---|
| 742 | throw new Exception("Proportion is not in range: "+ (m_TrainSize / ((double) data.numInstances() - 1 )) +" <= p < 1.0 "); |
---|
| 743 | } |
---|
| 744 | |
---|
| 745 | //roundup tps from double to integer |
---|
| 746 | tps = (int) Math.ceil( ((double)m_TrainSize / (double)m_P) + 1 ); |
---|
| 747 | k = (int) Math.ceil( tps / (tps - (double) m_TrainSize)); |
---|
| 748 | |
---|
| 749 | // number of folds cannot be more than the number of instances in the training pool |
---|
| 750 | if ( k > tps ) { |
---|
| 751 | throw new Exception("The required number of folds is too many." |
---|
| 752 | + "Change p or the size of the training set."); |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | // calculate the number of segments, round down. |
---|
| 756 | q = (int) Math.floor( (double) data.numInstances() / (double)tps ); |
---|
| 757 | |
---|
| 758 | //create confusion matrix, columns = number of instances in data set, as all will be used, by rows = number of classes. |
---|
| 759 | double [][] instanceProbs = new double [data.numInstances()][numClasses]; |
---|
| 760 | int [][] foldIndex = new int [ k ][ 2 ]; |
---|
| 761 | Vector segmentList = new Vector(q + 1); |
---|
| 762 | |
---|
| 763 | //Set random seed |
---|
| 764 | Random random = new Random(m_Seed); |
---|
| 765 | |
---|
| 766 | data.randomize(random); |
---|
| 767 | |
---|
| 768 | //create index arrays for different segments |
---|
| 769 | |
---|
| 770 | int currentDataIndex = 0; |
---|
| 771 | |
---|
| 772 | for( int count = 1; count <= (q + 1); count++ ){ |
---|
| 773 | if( count > q){ |
---|
| 774 | int [] segmentIndex = new int [ (data.numInstances() - (q * tps)) ]; |
---|
| 775 | for(int index = 0; index < segmentIndex.length; index++, currentDataIndex++){ |
---|
| 776 | |
---|
| 777 | segmentIndex[index] = currentDataIndex; |
---|
| 778 | } |
---|
| 779 | segmentList.add(segmentIndex); |
---|
| 780 | } else { |
---|
| 781 | int [] segmentIndex = new int [ tps ]; |
---|
| 782 | |
---|
| 783 | for(int index = 0; index < segmentIndex.length; index++, currentDataIndex++){ |
---|
| 784 | segmentIndex[index] = currentDataIndex; |
---|
| 785 | } |
---|
| 786 | segmentList.add(segmentIndex); |
---|
| 787 | } |
---|
| 788 | } |
---|
| 789 | |
---|
| 790 | int remainder = tps % k; // remainder is used to determine when to shrink the fold size by 1. |
---|
| 791 | |
---|
| 792 | //foldSize = ROUNDUP( tps / k ) (round up, eg 3 -> 3, 3.3->4) |
---|
| 793 | int foldSize = (int) Math.ceil( (double)tps /(double) k); //roundup fold size double to integer |
---|
| 794 | int index = 0; |
---|
| 795 | int currentIndex; |
---|
| 796 | |
---|
| 797 | for( int count = 0; count < k; count ++){ |
---|
| 798 | if( remainder != 0 && count == remainder ){ |
---|
| 799 | foldSize -= 1; |
---|
| 800 | } |
---|
| 801 | foldIndex[count][0] = index; |
---|
| 802 | foldIndex[count][1] = foldSize; |
---|
| 803 | index += foldSize; |
---|
| 804 | } |
---|
| 805 | |
---|
| 806 | for( int l = 0; l < m_ClassifyIterations; l++) { |
---|
| 807 | |
---|
| 808 | for(int i = 1; i <= q; i++){ |
---|
| 809 | |
---|
| 810 | int [] currentSegment = (int[]) segmentList.get(i - 1); |
---|
| 811 | |
---|
| 812 | randomize(currentSegment, random); |
---|
| 813 | |
---|
| 814 | //CROSS FOLD VALIDATION for current Segment |
---|
| 815 | for( int j = 1; j <= k; j++){ |
---|
| 816 | |
---|
| 817 | Instances TP = null; |
---|
| 818 | for(int foldNum = 1; foldNum <= k; foldNum++){ |
---|
| 819 | if( foldNum != j){ |
---|
| 820 | |
---|
| 821 | int startFoldIndex = foldIndex[ foldNum - 1 ][ 0 ]; //start index |
---|
| 822 | foldSize = foldIndex[ foldNum - 1 ][ 1 ]; |
---|
| 823 | int endFoldIndex = startFoldIndex + foldSize - 1; |
---|
| 824 | |
---|
| 825 | for(int currentFoldIndex = startFoldIndex; currentFoldIndex <= endFoldIndex; currentFoldIndex++){ |
---|
| 826 | |
---|
| 827 | if( TP == null ){ |
---|
| 828 | TP = new Instances(data, currentSegment[ currentFoldIndex ], 1); |
---|
| 829 | }else{ |
---|
| 830 | TP.add( data.instance( currentSegment[ currentFoldIndex ] ) ); |
---|
| 831 | } |
---|
| 832 | } |
---|
| 833 | } |
---|
| 834 | } |
---|
| 835 | |
---|
| 836 | TP.randomize(random); |
---|
| 837 | |
---|
| 838 | if( getTrainSize() > TP.numInstances() ){ |
---|
| 839 | throw new Exception("The training set size of " + getTrainSize() + ", is greater than the training pool " |
---|
| 840 | + TP.numInstances() ); |
---|
| 841 | } |
---|
| 842 | |
---|
| 843 | Instances train = new Instances(TP, 0, m_TrainSize); |
---|
| 844 | |
---|
| 845 | Classifier current = AbstractClassifier.makeCopy(m_Classifier); |
---|
| 846 | current.buildClassifier(train); // create a clssifier using the instances in train. |
---|
| 847 | |
---|
| 848 | int currentTestIndex = foldIndex[ j - 1 ][ 0 ]; //start index |
---|
| 849 | int testFoldSize = foldIndex[ j - 1 ][ 1 ]; //size |
---|
| 850 | int endTestIndex = currentTestIndex + testFoldSize - 1; |
---|
| 851 | |
---|
| 852 | while( currentTestIndex <= endTestIndex ){ |
---|
| 853 | |
---|
| 854 | Instance testInst = data.instance( currentSegment[currentTestIndex] ); |
---|
| 855 | int pred = (int)current.classifyInstance( testInst ); |
---|
| 856 | |
---|
| 857 | |
---|
| 858 | if(pred != testInst.classValue()) { |
---|
| 859 | m_Error++; // add 1 to mis-classifications. |
---|
| 860 | } |
---|
| 861 | instanceProbs[ currentSegment[ currentTestIndex ] ][ pred ]++; |
---|
| 862 | currentTestIndex++; |
---|
| 863 | } |
---|
| 864 | |
---|
| 865 | if( i == 1 && j == 1){ |
---|
| 866 | int[] segmentElast = (int[])segmentList.lastElement(); |
---|
| 867 | for( currentIndex = 0; currentIndex < segmentElast.length; currentIndex++){ |
---|
| 868 | Instance testInst = data.instance( segmentElast[currentIndex] ); |
---|
| 869 | int pred = (int)current.classifyInstance( testInst ); |
---|
| 870 | if(pred != testInst.classValue()) { |
---|
| 871 | m_Error++; // add 1 to mis-classifications. |
---|
| 872 | } |
---|
| 873 | |
---|
| 874 | instanceProbs[ segmentElast[ currentIndex ] ][ pred ]++; |
---|
| 875 | } |
---|
| 876 | } |
---|
| 877 | } |
---|
| 878 | } |
---|
| 879 | } |
---|
| 880 | |
---|
| 881 | m_Error /= (double)( m_ClassifyIterations * data.numInstances() ); |
---|
| 882 | |
---|
| 883 | m_KWBias = 0.0; |
---|
| 884 | m_KWVariance = 0.0; |
---|
| 885 | m_KWSigma = 0.0; |
---|
| 886 | |
---|
| 887 | m_WBias = 0.0; |
---|
| 888 | m_WVariance = 0.0; |
---|
| 889 | |
---|
| 890 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 891 | |
---|
| 892 | Instance current = data.instance( i ); |
---|
| 893 | |
---|
| 894 | double [] predProbs = instanceProbs[ i ]; |
---|
| 895 | double pActual, pPred; |
---|
| 896 | double bsum = 0, vsum = 0, ssum = 0; |
---|
| 897 | double wBSum = 0, wVSum = 0; |
---|
| 898 | |
---|
| 899 | Vector centralTendencies = findCentralTendencies( predProbs ); |
---|
| 900 | |
---|
| 901 | if( centralTendencies == null ){ |
---|
| 902 | throw new Exception("Central tendency was null."); |
---|
| 903 | } |
---|
| 904 | |
---|
| 905 | for (int j = 0; j < numClasses; j++) { |
---|
| 906 | pActual = (current.classValue() == j) ? 1 : 0; |
---|
| 907 | pPred = predProbs[j] / m_ClassifyIterations; |
---|
| 908 | bsum += (pActual - pPred) * (pActual - pPred) - pPred * (1 - pPred) / (m_ClassifyIterations - 1); |
---|
| 909 | vsum += pPred * pPred; |
---|
| 910 | ssum += pActual * pActual; |
---|
| 911 | } |
---|
| 912 | |
---|
| 913 | m_KWBias += bsum; |
---|
| 914 | m_KWVariance += (1 - vsum); |
---|
| 915 | m_KWSigma += (1 - ssum); |
---|
| 916 | |
---|
| 917 | for( int count = 0; count < centralTendencies.size(); count++ ) { |
---|
| 918 | |
---|
| 919 | int wB = 0, wV = 0; |
---|
| 920 | int centralTendency = ((Integer)centralTendencies.get(count)).intValue(); |
---|
| 921 | |
---|
| 922 | // For a single instance xi, find the bias and variance. |
---|
| 923 | for (int j = 0; j < numClasses; j++) { |
---|
| 924 | |
---|
| 925 | //Webb definition |
---|
| 926 | if( j != (int)current.classValue() && j == centralTendency ) { |
---|
| 927 | wB += predProbs[j]; |
---|
| 928 | } |
---|
| 929 | if( j != (int)current.classValue() && j != centralTendency ) { |
---|
| 930 | wV += predProbs[j]; |
---|
| 931 | } |
---|
| 932 | |
---|
| 933 | } |
---|
| 934 | wBSum += (double) wB; |
---|
| 935 | wVSum += (double) wV; |
---|
| 936 | } |
---|
| 937 | |
---|
| 938 | // calculate bais by dividing bSum by the number of central tendencies and |
---|
| 939 | // total number of instances. (effectively finding the average and dividing |
---|
| 940 | // by the number of instances to get the nominalised probability). |
---|
| 941 | |
---|
| 942 | m_WBias += ( wBSum / ((double) ( centralTendencies.size() * m_ClassifyIterations ))); |
---|
| 943 | // calculate variance by dividing vSum by the total number of interations |
---|
| 944 | m_WVariance += ( wVSum / ((double) ( centralTendencies.size() * m_ClassifyIterations ))); |
---|
| 945 | |
---|
| 946 | } |
---|
| 947 | |
---|
| 948 | m_KWBias /= (2.0 * (double) data.numInstances()); |
---|
| 949 | m_KWVariance /= (2.0 * (double) data.numInstances()); |
---|
| 950 | m_KWSigma /= (2.0 * (double) data.numInstances()); |
---|
| 951 | |
---|
| 952 | // bias = bias / number of data instances |
---|
| 953 | m_WBias /= (double) data.numInstances(); |
---|
| 954 | // variance = variance / number of data instances. |
---|
| 955 | m_WVariance /= (double) data.numInstances(); |
---|
| 956 | |
---|
| 957 | if (m_Debug) { |
---|
| 958 | System.err.println("Decomposition finished"); |
---|
| 959 | } |
---|
| 960 | |
---|
| 961 | } |
---|
| 962 | |
---|
| 963 | /** Finds the central tendency, given the classifications for an instance. |
---|
| 964 | * |
---|
| 965 | * Where the central tendency is defined as the class that was most commonly |
---|
| 966 | * selected for a given instance.<p> |
---|
| 967 | * |
---|
| 968 | * For example, instance 'x' may be classified out of 3 classes y = {1, 2, 3}, |
---|
| 969 | * so if x is classified 10 times, and is classified as follows, '1' = 2 times, '2' = 5 times |
---|
| 970 | * and '3' = 3 times. Then the central tendency is '2'. <p> |
---|
| 971 | * |
---|
| 972 | * However, it is important to note that this method returns a list of all classes |
---|
| 973 | * that have the highest number of classifications. |
---|
| 974 | * |
---|
| 975 | * In cases where there are several classes with the largest number of classifications, then |
---|
| 976 | * all of these classes are returned. For example if 'x' is classified '1' = 4 times, |
---|
| 977 | * '2' = 4 times and '3' = 2 times. Then '1' and '2' are returned.<p> |
---|
| 978 | * |
---|
| 979 | * @param predProbs the array of classifications for a single instance. |
---|
| 980 | * |
---|
| 981 | * @return a Vector containing Integer objects which store the class(s) which |
---|
| 982 | * are the central tendency. |
---|
| 983 | */ |
---|
| 984 | public Vector findCentralTendencies(double[] predProbs) { |
---|
| 985 | |
---|
| 986 | int centralTValue = 0; |
---|
| 987 | int currentValue = 0; |
---|
| 988 | //array to store the list of classes the have the greatest number of classifictions. |
---|
| 989 | Vector centralTClasses; |
---|
| 990 | |
---|
| 991 | centralTClasses = new Vector(); //create an array with size of the number of classes. |
---|
| 992 | |
---|
| 993 | // Go through array, finding the central tendency. |
---|
| 994 | for( int i = 0; i < predProbs.length; i++) { |
---|
| 995 | currentValue = (int) predProbs[i]; |
---|
| 996 | // if current value is greater than the central tendency value then |
---|
| 997 | // clear vector and add new class to vector array. |
---|
| 998 | if( currentValue > centralTValue) { |
---|
| 999 | centralTClasses.clear(); |
---|
| 1000 | centralTClasses.addElement( new Integer(i) ); |
---|
| 1001 | centralTValue = currentValue; |
---|
| 1002 | } else if( currentValue != 0 && currentValue == centralTValue) { |
---|
| 1003 | centralTClasses.addElement( new Integer(i) ); |
---|
| 1004 | } |
---|
| 1005 | } |
---|
| 1006 | //return all classes that have the greatest number of classifications. |
---|
| 1007 | if( centralTValue != 0){ |
---|
| 1008 | return centralTClasses; |
---|
| 1009 | } else { |
---|
| 1010 | return null; |
---|
| 1011 | } |
---|
| 1012 | |
---|
| 1013 | } |
---|
| 1014 | |
---|
| 1015 | /** |
---|
| 1016 | * Returns description of the bias-variance decomposition results. |
---|
| 1017 | * |
---|
| 1018 | * @return the bias-variance decomposition results as a string |
---|
| 1019 | */ |
---|
| 1020 | public String toString() { |
---|
| 1021 | |
---|
| 1022 | String result = "\nBias-Variance Decomposition Segmentation, Cross Validation\n" + |
---|
| 1023 | "with subsampling.\n"; |
---|
| 1024 | |
---|
| 1025 | if (getClassifier() == null) { |
---|
| 1026 | return "Invalid setup"; |
---|
| 1027 | } |
---|
| 1028 | |
---|
| 1029 | result += "\nClassifier : " + getClassifier().getClass().getName(); |
---|
| 1030 | if (getClassifier() instanceof OptionHandler) { |
---|
| 1031 | result += Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()); |
---|
| 1032 | } |
---|
| 1033 | result += "\nData File : " + getDataFileName(); |
---|
| 1034 | result += "\nClass Index : "; |
---|
| 1035 | if (getClassIndex() == 0) { |
---|
| 1036 | result += "last"; |
---|
| 1037 | } else { |
---|
| 1038 | result += getClassIndex(); |
---|
| 1039 | } |
---|
| 1040 | result += "\nIterations : " + getClassifyIterations(); |
---|
| 1041 | result += "\np : " + getP(); |
---|
| 1042 | result += "\nTraining Size : " + getTrainSize(); |
---|
| 1043 | result += "\nSeed : " + getSeed(); |
---|
| 1044 | |
---|
| 1045 | result += "\n\nDefinition : " +"Kohavi and Wolpert"; |
---|
| 1046 | result += "\nError :" + Utils.doubleToString(getError(), 4); |
---|
| 1047 | result += "\nBias^2 :" + Utils.doubleToString(getKWBias(), 4); |
---|
| 1048 | result += "\nVariance :" + Utils.doubleToString(getKWVariance(), 4); |
---|
| 1049 | result += "\nSigma^2 :" + Utils.doubleToString(getKWSigma(), 4); |
---|
| 1050 | |
---|
| 1051 | result += "\n\nDefinition : " +"Webb"; |
---|
| 1052 | result += "\nError :" + Utils.doubleToString(getError(), 4); |
---|
| 1053 | result += "\nBias :" + Utils.doubleToString(getWBias(), 4); |
---|
| 1054 | result += "\nVariance :" + Utils.doubleToString(getWVariance(), 4); |
---|
| 1055 | |
---|
| 1056 | return result; |
---|
| 1057 | } |
---|
| 1058 | |
---|
| 1059 | /** |
---|
| 1060 | * Returns the revision string. |
---|
| 1061 | * |
---|
| 1062 | * @return the revision |
---|
| 1063 | */ |
---|
| 1064 | public String getRevision() { |
---|
| 1065 | return RevisionUtils.extract("$Revision: 6041 $"); |
---|
| 1066 | } |
---|
| 1067 | |
---|
| 1068 | /** |
---|
| 1069 | * Test method for this class |
---|
| 1070 | * |
---|
| 1071 | * @param args the command line arguments |
---|
| 1072 | */ |
---|
| 1073 | public static void main(String [] args) { |
---|
| 1074 | |
---|
| 1075 | try { |
---|
| 1076 | BVDecomposeSegCVSub bvd = new BVDecomposeSegCVSub(); |
---|
| 1077 | |
---|
| 1078 | try { |
---|
| 1079 | bvd.setOptions(args); |
---|
| 1080 | Utils.checkForRemainingOptions(args); |
---|
| 1081 | } catch (Exception ex) { |
---|
| 1082 | String result = ex.getMessage() + "\nBVDecompose Options:\n\n"; |
---|
| 1083 | Enumeration enu = bvd.listOptions(); |
---|
| 1084 | while (enu.hasMoreElements()) { |
---|
| 1085 | Option option = (Option) enu.nextElement(); |
---|
| 1086 | result += option.synopsis() + "\n" + option.description() + "\n"; |
---|
| 1087 | } |
---|
| 1088 | throw new Exception(result); |
---|
| 1089 | } |
---|
| 1090 | |
---|
| 1091 | bvd.decompose(); |
---|
| 1092 | |
---|
| 1093 | System.out.println(bvd.toString()); |
---|
| 1094 | |
---|
| 1095 | } catch (Exception ex) { |
---|
| 1096 | System.err.println(ex.getMessage()); |
---|
| 1097 | } |
---|
| 1098 | |
---|
| 1099 | } |
---|
| 1100 | |
---|
| 1101 | /** |
---|
| 1102 | * Accepts an array of ints and randomises the values in the array, using the |
---|
| 1103 | * random seed. |
---|
| 1104 | * |
---|
| 1105 | *@param index is the array of integers |
---|
| 1106 | *@param random is the Random seed. |
---|
| 1107 | */ |
---|
| 1108 | public final void randomize(int[] index, Random random) { |
---|
| 1109 | for( int j = index.length - 1; j > 0; j-- ){ |
---|
| 1110 | int k = random.nextInt( j + 1 ); |
---|
| 1111 | int temp = index[j]; |
---|
| 1112 | index[j] = index[k]; |
---|
| 1113 | index[k] = temp; |
---|
| 1114 | } |
---|
| 1115 | } |
---|
| 1116 | } |
---|