1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * BVDecompose.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.OptionHandler; |
---|
30 | import weka.core.RevisionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.TechnicalInformation; |
---|
33 | import weka.core.TechnicalInformationHandler; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.core.TechnicalInformation.Field; |
---|
36 | import weka.core.TechnicalInformation.Type; |
---|
37 | |
---|
38 | import java.io.BufferedReader; |
---|
39 | import java.io.FileReader; |
---|
40 | import java.io.Reader; |
---|
41 | import java.util.Enumeration; |
---|
42 | import java.util.Random; |
---|
43 | import java.util.Vector; |
---|
44 | |
---|
45 | /** |
---|
46 | <!-- globalinfo-start --> |
---|
47 | * Class for performing a Bias-Variance decomposition on any classifier using the method specified in:<br/> |
---|
48 | * <br/> |
---|
49 | * Ron Kohavi, David H. Wolpert: Bias Plus Variance Decomposition for Zero-One Loss Functions. In: Machine Learning: Proceedings of the Thirteenth International Conference, 275-283, 1996. |
---|
50 | * <p/> |
---|
51 | <!-- globalinfo-end --> |
---|
52 | * |
---|
53 | <!-- technical-bibtex-start --> |
---|
54 | * BibTeX: |
---|
55 | * <pre> |
---|
56 | * @inproceedings{Kohavi1996, |
---|
57 | * author = {Ron Kohavi and David H. Wolpert}, |
---|
58 | * booktitle = {Machine Learning: Proceedings of the Thirteenth International Conference}, |
---|
59 | * editor = {Lorenza Saitta}, |
---|
60 | * pages = {275-283}, |
---|
61 | * publisher = {Morgan Kaufmann}, |
---|
62 | * title = {Bias Plus Variance Decomposition for Zero-One Loss Functions}, |
---|
63 | * year = {1996}, |
---|
64 | * PS = {http://robotics.stanford.edu/\~ronnyk/biasVar.ps} |
---|
65 | * } |
---|
66 | * </pre> |
---|
67 | * <p/> |
---|
68 | <!-- technical-bibtex-end --> |
---|
69 | * |
---|
70 | <!-- options-start --> |
---|
71 | * Valid options are: <p/> |
---|
72 | * |
---|
73 | * <pre> -c <class index> |
---|
74 | * The index of the class attribute. |
---|
75 | * (default last)</pre> |
---|
76 | * |
---|
77 | * <pre> -t <name of arff file> |
---|
78 | * The name of the arff file used for the decomposition.</pre> |
---|
79 | * |
---|
80 | * <pre> -T <training pool size> |
---|
81 | * The number of instances placed in the training pool. |
---|
82 | * The remainder will be used for testing. (default 100)</pre> |
---|
83 | * |
---|
84 | * <pre> -s <seed> |
---|
85 | * The random number seed used.</pre> |
---|
86 | * |
---|
87 | * <pre> -x <num> |
---|
88 | * The number of training repetitions used. |
---|
89 | * (default 50)</pre> |
---|
90 | * |
---|
91 | * <pre> -D |
---|
92 | * Turn on debugging output.</pre> |
---|
93 | * |
---|
94 | * <pre> -W <classifier class name> |
---|
95 | * Full class name of the learner used in the decomposition. |
---|
96 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
97 | * |
---|
98 | * <pre> |
---|
99 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
100 | * </pre> |
---|
101 | * |
---|
102 | * <pre> -D |
---|
103 | * If set, classifier is run in debug mode and |
---|
104 | * may output additional info to the console</pre> |
---|
105 | * |
---|
106 | <!-- options-end --> |
---|
107 | * |
---|
108 | * Options after -- are passed to the designated sub-learner. <p> |
---|
109 | * |
---|
110 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
111 | * @version $Revision: 6041 $ |
---|
112 | */ |
---|
113 | public class BVDecompose |
---|
114 | implements OptionHandler, TechnicalInformationHandler, RevisionHandler { |
---|
115 | |
---|
116 | /** Debugging mode, gives extra output if true */ |
---|
117 | protected boolean m_Debug; |
---|
118 | |
---|
119 | /** An instantiated base classifier used for getting and testing options. */ |
---|
120 | protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); |
---|
121 | |
---|
122 | /** The options to be passed to the base classifier. */ |
---|
123 | protected String [] m_ClassifierOptions; |
---|
124 | |
---|
125 | /** The number of train iterations */ |
---|
126 | protected int m_TrainIterations = 50; |
---|
127 | |
---|
128 | /** The name of the data file used for the decomposition */ |
---|
129 | protected String m_DataFileName; |
---|
130 | |
---|
131 | /** The index of the class attribute */ |
---|
132 | protected int m_ClassIndex = -1; |
---|
133 | |
---|
134 | /** The random number seed */ |
---|
135 | protected int m_Seed = 1; |
---|
136 | |
---|
137 | /** The calculated bias (squared) */ |
---|
138 | protected double m_Bias; |
---|
139 | |
---|
140 | /** The calculated variance */ |
---|
141 | protected double m_Variance; |
---|
142 | |
---|
143 | /** The calculated sigma (squared) */ |
---|
144 | protected double m_Sigma; |
---|
145 | |
---|
146 | /** The error rate */ |
---|
147 | protected double m_Error; |
---|
148 | |
---|
149 | /** The number of instances used in the training pool */ |
---|
150 | protected int m_TrainPoolSize = 100; |
---|
151 | |
---|
152 | /** |
---|
153 | * Returns a string describing this object |
---|
154 | * @return a description of the classifier suitable for |
---|
155 | * displaying in the explorer/experimenter gui |
---|
156 | */ |
---|
157 | public String globalInfo() { |
---|
158 | |
---|
159 | return |
---|
160 | "Class for performing a Bias-Variance decomposition on any classifier " |
---|
161 | + "using the method specified in:\n\n" |
---|
162 | + getTechnicalInformation().toString(); |
---|
163 | } |
---|
164 | |
---|
165 | /** |
---|
166 | * Returns an instance of a TechnicalInformation object, containing |
---|
167 | * detailed information about the technical background of this class, |
---|
168 | * e.g., paper reference or book this class is based on. |
---|
169 | * |
---|
170 | * @return the technical information about this class |
---|
171 | */ |
---|
172 | public TechnicalInformation getTechnicalInformation() { |
---|
173 | TechnicalInformation result; |
---|
174 | |
---|
175 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
176 | result.setValue(Field.AUTHOR, "Ron Kohavi and David H. Wolpert"); |
---|
177 | result.setValue(Field.YEAR, "1996"); |
---|
178 | result.setValue(Field.TITLE, "Bias Plus Variance Decomposition for Zero-One Loss Functions"); |
---|
179 | result.setValue(Field.BOOKTITLE, "Machine Learning: Proceedings of the Thirteenth International Conference"); |
---|
180 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
181 | result.setValue(Field.EDITOR, "Lorenza Saitta"); |
---|
182 | result.setValue(Field.PAGES, "275-283"); |
---|
183 | result.setValue(Field.PS, "http://robotics.stanford.edu/~ronnyk/biasVar.ps"); |
---|
184 | |
---|
185 | return result; |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * Returns an enumeration describing the available options. |
---|
190 | * |
---|
191 | * @return an enumeration of all the available options. |
---|
192 | */ |
---|
193 | public Enumeration listOptions() { |
---|
194 | |
---|
195 | Vector newVector = new Vector(7); |
---|
196 | |
---|
197 | newVector.addElement(new Option( |
---|
198 | "\tThe index of the class attribute.\n"+ |
---|
199 | "\t(default last)", |
---|
200 | "c", 1, "-c <class index>")); |
---|
201 | newVector.addElement(new Option( |
---|
202 | "\tThe name of the arff file used for the decomposition.", |
---|
203 | "t", 1, "-t <name of arff file>")); |
---|
204 | newVector.addElement(new Option( |
---|
205 | "\tThe number of instances placed in the training pool.\n" |
---|
206 | + "\tThe remainder will be used for testing. (default 100)", |
---|
207 | "T", 1, "-T <training pool size>")); |
---|
208 | newVector.addElement(new Option( |
---|
209 | "\tThe random number seed used.", |
---|
210 | "s", 1, "-s <seed>")); |
---|
211 | newVector.addElement(new Option( |
---|
212 | "\tThe number of training repetitions used.\n" |
---|
213 | +"\t(default 50)", |
---|
214 | "x", 1, "-x <num>")); |
---|
215 | newVector.addElement(new Option( |
---|
216 | "\tTurn on debugging output.", |
---|
217 | "D", 0, "-D")); |
---|
218 | newVector.addElement(new Option( |
---|
219 | "\tFull class name of the learner used in the decomposition.\n" |
---|
220 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
221 | "W", 1, "-W <classifier class name>")); |
---|
222 | |
---|
223 | if ((m_Classifier != null) && |
---|
224 | (m_Classifier instanceof OptionHandler)) { |
---|
225 | newVector.addElement(new Option( |
---|
226 | "", |
---|
227 | "", 0, "\nOptions specific to learner " |
---|
228 | + m_Classifier.getClass().getName() |
---|
229 | + ":")); |
---|
230 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
231 | while (enu.hasMoreElements()) { |
---|
232 | newVector.addElement(enu.nextElement()); |
---|
233 | } |
---|
234 | } |
---|
235 | return newVector.elements(); |
---|
236 | } |
---|
237 | |
---|
238 | /** |
---|
239 | * Parses a given list of options. <p/> |
---|
240 | * |
---|
241 | <!-- options-start --> |
---|
242 | * Valid options are: <p/> |
---|
243 | * |
---|
244 | * <pre> -c <class index> |
---|
245 | * The index of the class attribute. |
---|
246 | * (default last)</pre> |
---|
247 | * |
---|
248 | * <pre> -t <name of arff file> |
---|
249 | * The name of the arff file used for the decomposition.</pre> |
---|
250 | * |
---|
251 | * <pre> -T <training pool size> |
---|
252 | * The number of instances placed in the training pool. |
---|
253 | * The remainder will be used for testing. (default 100)</pre> |
---|
254 | * |
---|
255 | * <pre> -s <seed> |
---|
256 | * The random number seed used.</pre> |
---|
257 | * |
---|
258 | * <pre> -x <num> |
---|
259 | * The number of training repetitions used. |
---|
260 | * (default 50)</pre> |
---|
261 | * |
---|
262 | * <pre> -D |
---|
263 | * Turn on debugging output.</pre> |
---|
264 | * |
---|
265 | * <pre> -W <classifier class name> |
---|
266 | * Full class name of the learner used in the decomposition. |
---|
267 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
268 | * |
---|
269 | * <pre> |
---|
270 | * Options specific to learner weka.classifiers.rules.ZeroR: |
---|
271 | * </pre> |
---|
272 | * |
---|
273 | * <pre> -D |
---|
274 | * If set, classifier is run in debug mode and |
---|
275 | * may output additional info to the console</pre> |
---|
276 | * |
---|
277 | <!-- options-end --> |
---|
278 | * |
---|
279 | * Options after -- are passed to the designated sub-learner. <p> |
---|
280 | * |
---|
281 | * @param options the list of options as an array of strings |
---|
282 | * @throws Exception if an option is not supported |
---|
283 | */ |
---|
284 | public void setOptions(String[] options) throws Exception { |
---|
285 | |
---|
286 | setDebug(Utils.getFlag('D', options)); |
---|
287 | |
---|
288 | String classIndex = Utils.getOption('c', options); |
---|
289 | if (classIndex.length() != 0) { |
---|
290 | if (classIndex.toLowerCase().equals("last")) { |
---|
291 | setClassIndex(0); |
---|
292 | } else if (classIndex.toLowerCase().equals("first")) { |
---|
293 | setClassIndex(1); |
---|
294 | } else { |
---|
295 | setClassIndex(Integer.parseInt(classIndex)); |
---|
296 | } |
---|
297 | } else { |
---|
298 | setClassIndex(0); |
---|
299 | } |
---|
300 | |
---|
301 | String trainIterations = Utils.getOption('x', options); |
---|
302 | if (trainIterations.length() != 0) { |
---|
303 | setTrainIterations(Integer.parseInt(trainIterations)); |
---|
304 | } else { |
---|
305 | setTrainIterations(50); |
---|
306 | } |
---|
307 | |
---|
308 | String trainPoolSize = Utils.getOption('T', options); |
---|
309 | if (trainPoolSize.length() != 0) { |
---|
310 | setTrainPoolSize(Integer.parseInt(trainPoolSize)); |
---|
311 | } else { |
---|
312 | setTrainPoolSize(100); |
---|
313 | } |
---|
314 | |
---|
315 | String seedString = Utils.getOption('s', options); |
---|
316 | if (seedString.length() != 0) { |
---|
317 | setSeed(Integer.parseInt(seedString)); |
---|
318 | } else { |
---|
319 | setSeed(1); |
---|
320 | } |
---|
321 | |
---|
322 | String dataFile = Utils.getOption('t', options); |
---|
323 | if (dataFile.length() == 0) { |
---|
324 | throw new Exception("An arff file must be specified" |
---|
325 | + " with the -t option."); |
---|
326 | } |
---|
327 | setDataFileName(dataFile); |
---|
328 | |
---|
329 | String classifierName = Utils.getOption('W', options); |
---|
330 | if (classifierName.length() == 0) { |
---|
331 | throw new Exception("A learner must be specified with the -W option."); |
---|
332 | } |
---|
333 | setClassifier(AbstractClassifier.forName(classifierName, |
---|
334 | Utils.partitionOptions(options))); |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * Gets the current settings of the CheckClassifier. |
---|
339 | * |
---|
340 | * @return an array of strings suitable for passing to setOptions |
---|
341 | */ |
---|
342 | public String [] getOptions() { |
---|
343 | |
---|
344 | String [] classifierOptions = new String [0]; |
---|
345 | if ((m_Classifier != null) && |
---|
346 | (m_Classifier instanceof OptionHandler)) { |
---|
347 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
348 | } |
---|
349 | String [] options = new String [classifierOptions.length + 14]; |
---|
350 | int current = 0; |
---|
351 | if (getDebug()) { |
---|
352 | options[current++] = "-D"; |
---|
353 | } |
---|
354 | options[current++] = "-c"; options[current++] = "" + getClassIndex(); |
---|
355 | options[current++] = "-x"; options[current++] = "" + getTrainIterations(); |
---|
356 | options[current++] = "-T"; options[current++] = "" + getTrainPoolSize(); |
---|
357 | options[current++] = "-s"; options[current++] = "" + getSeed(); |
---|
358 | if (getDataFileName() != null) { |
---|
359 | options[current++] = "-t"; options[current++] = "" + getDataFileName(); |
---|
360 | } |
---|
361 | if (getClassifier() != null) { |
---|
362 | options[current++] = "-W"; |
---|
363 | options[current++] = getClassifier().getClass().getName(); |
---|
364 | } |
---|
365 | options[current++] = "--"; |
---|
366 | System.arraycopy(classifierOptions, 0, options, current, |
---|
367 | classifierOptions.length); |
---|
368 | current += classifierOptions.length; |
---|
369 | while (current < options.length) { |
---|
370 | options[current++] = ""; |
---|
371 | } |
---|
372 | return options; |
---|
373 | } |
---|
374 | |
---|
375 | /** |
---|
376 | * Get the number of instances in the training pool. |
---|
377 | * |
---|
378 | * @return number of instances in the training pool. |
---|
379 | */ |
---|
380 | public int getTrainPoolSize() { |
---|
381 | |
---|
382 | return m_TrainPoolSize; |
---|
383 | } |
---|
384 | |
---|
385 | /** |
---|
386 | * Set the number of instances in the training pool. |
---|
387 | * |
---|
388 | * @param numTrain number of instances in the training pool. |
---|
389 | */ |
---|
390 | public void setTrainPoolSize(int numTrain) { |
---|
391 | |
---|
392 | m_TrainPoolSize = numTrain; |
---|
393 | } |
---|
394 | |
---|
395 | /** |
---|
396 | * Set the classifiers being analysed |
---|
397 | * |
---|
398 | * @param newClassifier the Classifier to use. |
---|
399 | */ |
---|
400 | public void setClassifier(Classifier newClassifier) { |
---|
401 | |
---|
402 | m_Classifier = newClassifier; |
---|
403 | } |
---|
404 | |
---|
405 | /** |
---|
406 | * Gets the name of the classifier being analysed |
---|
407 | * |
---|
408 | * @return the classifier being analysed. |
---|
409 | */ |
---|
410 | public Classifier getClassifier() { |
---|
411 | |
---|
412 | return m_Classifier; |
---|
413 | } |
---|
414 | |
---|
415 | /** |
---|
416 | * Sets debugging mode |
---|
417 | * |
---|
418 | * @param debug true if debug output should be printed |
---|
419 | */ |
---|
420 | public void setDebug(boolean debug) { |
---|
421 | |
---|
422 | m_Debug = debug; |
---|
423 | } |
---|
424 | |
---|
425 | /** |
---|
426 | * Gets whether debugging is turned on |
---|
427 | * |
---|
428 | * @return true if debugging output is on |
---|
429 | */ |
---|
430 | public boolean getDebug() { |
---|
431 | |
---|
432 | return m_Debug; |
---|
433 | } |
---|
434 | |
---|
435 | /** |
---|
436 | * Sets the random number seed |
---|
437 | * |
---|
438 | * @param seed the random number seed |
---|
439 | */ |
---|
440 | public void setSeed(int seed) { |
---|
441 | |
---|
442 | m_Seed = seed; |
---|
443 | } |
---|
444 | |
---|
445 | /** |
---|
446 | * Gets the random number seed |
---|
447 | * |
---|
448 | * @return the random number seed |
---|
449 | */ |
---|
450 | public int getSeed() { |
---|
451 | |
---|
452 | return m_Seed; |
---|
453 | } |
---|
454 | |
---|
455 | /** |
---|
456 | * Sets the maximum number of boost iterations |
---|
457 | * |
---|
458 | * @param trainIterations the number of boost iterations |
---|
459 | */ |
---|
460 | public void setTrainIterations(int trainIterations) { |
---|
461 | |
---|
462 | m_TrainIterations = trainIterations; |
---|
463 | } |
---|
464 | |
---|
465 | /** |
---|
466 | * Gets the maximum number of boost iterations |
---|
467 | * |
---|
468 | * @return the maximum number of boost iterations |
---|
469 | */ |
---|
470 | public int getTrainIterations() { |
---|
471 | |
---|
472 | return m_TrainIterations; |
---|
473 | } |
---|
474 | |
---|
475 | /** |
---|
476 | * Sets the name of the data file used for the decomposition |
---|
477 | * |
---|
478 | * @param dataFileName the data file to use |
---|
479 | */ |
---|
480 | public void setDataFileName(String dataFileName) { |
---|
481 | |
---|
482 | m_DataFileName = dataFileName; |
---|
483 | } |
---|
484 | |
---|
485 | /** |
---|
486 | * Get the name of the data file used for the decomposition |
---|
487 | * |
---|
488 | * @return the name of the data file |
---|
489 | */ |
---|
490 | public String getDataFileName() { |
---|
491 | |
---|
492 | return m_DataFileName; |
---|
493 | } |
---|
494 | |
---|
495 | /** |
---|
496 | * Get the index (starting from 1) of the attribute used as the class. |
---|
497 | * |
---|
498 | * @return the index of the class attribute |
---|
499 | */ |
---|
500 | public int getClassIndex() { |
---|
501 | |
---|
502 | return m_ClassIndex + 1; |
---|
503 | } |
---|
504 | |
---|
505 | /** |
---|
506 | * Sets index of attribute to discretize on |
---|
507 | * |
---|
508 | * @param classIndex the index (starting from 1) of the class attribute |
---|
509 | */ |
---|
510 | public void setClassIndex(int classIndex) { |
---|
511 | |
---|
512 | m_ClassIndex = classIndex - 1; |
---|
513 | } |
---|
514 | |
---|
515 | /** |
---|
516 | * Get the calculated bias squared |
---|
517 | * |
---|
518 | * @return the bias squared |
---|
519 | */ |
---|
520 | public double getBias() { |
---|
521 | |
---|
522 | return m_Bias; |
---|
523 | } |
---|
524 | |
---|
525 | /** |
---|
526 | * Get the calculated variance |
---|
527 | * |
---|
528 | * @return the variance |
---|
529 | */ |
---|
530 | public double getVariance() { |
---|
531 | |
---|
532 | return m_Variance; |
---|
533 | } |
---|
534 | |
---|
535 | /** |
---|
536 | * Get the calculated sigma squared |
---|
537 | * |
---|
538 | * @return the sigma squared |
---|
539 | */ |
---|
540 | public double getSigma() { |
---|
541 | |
---|
542 | return m_Sigma; |
---|
543 | } |
---|
544 | |
---|
545 | /** |
---|
546 | * Get the calculated error rate |
---|
547 | * |
---|
548 | * @return the error rate |
---|
549 | */ |
---|
550 | public double getError() { |
---|
551 | |
---|
552 | return m_Error; |
---|
553 | } |
---|
554 | |
---|
555 | /** |
---|
556 | * Carry out the bias-variance decomposition |
---|
557 | * |
---|
558 | * @throws Exception if the decomposition couldn't be carried out |
---|
559 | */ |
---|
560 | public void decompose() throws Exception { |
---|
561 | |
---|
562 | Reader dataReader = new BufferedReader(new FileReader(m_DataFileName)); |
---|
563 | Instances data = new Instances(dataReader); |
---|
564 | |
---|
565 | if (m_ClassIndex < 0) { |
---|
566 | data.setClassIndex(data.numAttributes() - 1); |
---|
567 | } else { |
---|
568 | data.setClassIndex(m_ClassIndex); |
---|
569 | } |
---|
570 | if (data.classAttribute().type() != Attribute.NOMINAL) { |
---|
571 | throw new Exception("Class attribute must be nominal"); |
---|
572 | } |
---|
573 | int numClasses = data.numClasses(); |
---|
574 | |
---|
575 | data.deleteWithMissingClass(); |
---|
576 | if (data.checkForStringAttributes()) { |
---|
577 | throw new Exception("Can't handle string attributes!"); |
---|
578 | } |
---|
579 | |
---|
580 | if (data.numInstances() < 2 * m_TrainPoolSize) { |
---|
581 | throw new Exception("The dataset must contain at least " |
---|
582 | + (2 * m_TrainPoolSize) + " instances"); |
---|
583 | } |
---|
584 | Random random = new Random(m_Seed); |
---|
585 | data.randomize(random); |
---|
586 | Instances trainPool = new Instances(data, 0, m_TrainPoolSize); |
---|
587 | Instances test = new Instances(data, m_TrainPoolSize, |
---|
588 | data.numInstances() - m_TrainPoolSize); |
---|
589 | int numTest = test.numInstances(); |
---|
590 | double [][] instanceProbs = new double [numTest][numClasses]; |
---|
591 | |
---|
592 | m_Error = 0; |
---|
593 | for (int i = 0; i < m_TrainIterations; i++) { |
---|
594 | if (m_Debug) { |
---|
595 | System.err.println("Iteration " + (i + 1)); |
---|
596 | } |
---|
597 | trainPool.randomize(random); |
---|
598 | Instances train = new Instances(trainPool, 0, m_TrainPoolSize / 2); |
---|
599 | |
---|
600 | Classifier current = AbstractClassifier.makeCopy(m_Classifier); |
---|
601 | current.buildClassifier(train); |
---|
602 | |
---|
603 | //// Evaluate the classifier on test, updating BVD stats |
---|
604 | for (int j = 0; j < numTest; j++) { |
---|
605 | int pred = (int)current.classifyInstance(test.instance(j)); |
---|
606 | if (pred != test.instance(j).classValue()) { |
---|
607 | m_Error++; |
---|
608 | } |
---|
609 | instanceProbs[j][pred]++; |
---|
610 | } |
---|
611 | } |
---|
612 | m_Error /= (m_TrainIterations * numTest); |
---|
613 | |
---|
614 | // Average the BV over each instance in test. |
---|
615 | m_Bias = 0; |
---|
616 | m_Variance = 0; |
---|
617 | m_Sigma = 0; |
---|
618 | for (int i = 0; i < numTest; i++) { |
---|
619 | Instance current = test.instance(i); |
---|
620 | double [] predProbs = instanceProbs[i]; |
---|
621 | double pActual, pPred; |
---|
622 | double bsum = 0, vsum = 0, ssum = 0; |
---|
623 | for (int j = 0; j < numClasses; j++) { |
---|
624 | pActual = (current.classValue() == j) ? 1 : 0; // Or via 1NN from test data? |
---|
625 | pPred = predProbs[j] / m_TrainIterations; |
---|
626 | bsum += (pActual - pPred) * (pActual - pPred) |
---|
627 | - pPred * (1 - pPred) / (m_TrainIterations - 1); |
---|
628 | vsum += pPred * pPred; |
---|
629 | ssum += pActual * pActual; |
---|
630 | } |
---|
631 | m_Bias += bsum; |
---|
632 | m_Variance += (1 - vsum); |
---|
633 | m_Sigma += (1 - ssum); |
---|
634 | } |
---|
635 | m_Bias /= (2 * numTest); |
---|
636 | m_Variance /= (2 * numTest); |
---|
637 | m_Sigma /= (2 * numTest); |
---|
638 | |
---|
639 | if (m_Debug) { |
---|
640 | System.err.println("Decomposition finished"); |
---|
641 | } |
---|
642 | } |
---|
643 | |
---|
644 | |
---|
645 | /** |
---|
646 | * Returns description of the bias-variance decomposition results. |
---|
647 | * |
---|
648 | * @return the bias-variance decomposition results as a string |
---|
649 | */ |
---|
650 | public String toString() { |
---|
651 | |
---|
652 | String result = "\nBias-Variance Decomposition\n"; |
---|
653 | |
---|
654 | if (getClassifier() == null) { |
---|
655 | return "Invalid setup"; |
---|
656 | } |
---|
657 | |
---|
658 | result += "\nClassifier : " + getClassifier().getClass().getName(); |
---|
659 | if (getClassifier() instanceof OptionHandler) { |
---|
660 | result += Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()); |
---|
661 | } |
---|
662 | result += "\nData File : " + getDataFileName(); |
---|
663 | result += "\nClass Index : "; |
---|
664 | if (getClassIndex() == 0) { |
---|
665 | result += "last"; |
---|
666 | } else { |
---|
667 | result += getClassIndex(); |
---|
668 | } |
---|
669 | result += "\nTraining Pool: " + getTrainPoolSize(); |
---|
670 | result += "\nIterations : " + getTrainIterations(); |
---|
671 | result += "\nSeed : " + getSeed(); |
---|
672 | result += "\nError : " + Utils.doubleToString(getError(), 6, 4); |
---|
673 | result += "\nSigma^2 : " + Utils.doubleToString(getSigma(), 6, 4); |
---|
674 | result += "\nBias^2 : " + Utils.doubleToString(getBias(), 6, 4); |
---|
675 | result += "\nVariance : " + Utils.doubleToString(getVariance(), 6, 4); |
---|
676 | |
---|
677 | return result + "\n"; |
---|
678 | } |
---|
679 | |
---|
680 | /** |
---|
681 | * Returns the revision string. |
---|
682 | * |
---|
683 | * @return the revision |
---|
684 | */ |
---|
685 | public String getRevision() { |
---|
686 | return RevisionUtils.extract("$Revision: 6041 $"); |
---|
687 | } |
---|
688 | |
---|
689 | /** |
---|
690 | * Test method for this class |
---|
691 | * |
---|
692 | * @param args the command line arguments |
---|
693 | */ |
---|
694 | public static void main(String [] args) { |
---|
695 | |
---|
696 | try { |
---|
697 | BVDecompose bvd = new BVDecompose(); |
---|
698 | |
---|
699 | try { |
---|
700 | bvd.setOptions(args); |
---|
701 | Utils.checkForRemainingOptions(args); |
---|
702 | } catch (Exception ex) { |
---|
703 | String result = ex.getMessage() + "\nBVDecompose Options:\n\n"; |
---|
704 | Enumeration enu = bvd.listOptions(); |
---|
705 | while (enu.hasMoreElements()) { |
---|
706 | Option option = (Option) enu.nextElement(); |
---|
707 | result += option.synopsis() + "\n" + option.description() + "\n"; |
---|
708 | } |
---|
709 | throw new Exception(result); |
---|
710 | } |
---|
711 | |
---|
712 | bvd.decompose(); |
---|
713 | System.out.println(bvd.toString()); |
---|
714 | } catch (Exception ex) { |
---|
715 | System.err.println(ex.getMessage()); |
---|
716 | } |
---|
717 | } |
---|
718 | } |
---|