/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * AbstractClassifier.java * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.CapabilitiesHandler; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.SerializedObject; import weka.core.Utils; import java.io.Serializable; import java.util.Enumeration; import java.util.Vector; /** * Abstract classifier. All schemes for numeric or nominal prediction in * Weka extend this class. Note that a classifier MUST either implement * distributionForInstance() or classifyInstance(). * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 6041 $ */ public abstract class AbstractClassifier implements Classifier, Cloneable, Serializable, OptionHandler, CapabilitiesHandler, RevisionHandler { /** for serialization */ private static final long serialVersionUID = 6502780192411755341L; /** Whether the classifier is run in debug mode. */ protected boolean m_Debug = false; /** * Classifies the given test instance. The instance has to belong to a * dataset when it's being classified. Note that a classifier MUST * implement either this or distributionForInstance(). * * @param instance the instance to be classified * @return the predicted most likely class for the instance or * Utils.missingValue() if no prediction is made * @exception Exception if an error occurred during the prediction */ public double classifyInstance(Instance instance) throws Exception { double [] dist = distributionForInstance(instance); if (dist == null) { throw new Exception("Null distribution predicted"); } switch (instance.classAttribute().type()) { case Attribute.NOMINAL: double max = 0; int maxIndex = 0; for (int i = 0; i < dist.length; i++) { if (dist[i] > max) { maxIndex = i; max = dist[i]; } } if (max > 0) { return maxIndex; } else { return Utils.missingValue(); } case Attribute.NUMERIC: return dist[0]; default: return Utils.missingValue(); } } /** * Predicts the class memberships for a given instance. If * an instance is unclassified, the returned array elements * must be all zero. If the class is numeric, the array * must consist of only one element, which contains the * predicted value. Note that a classifier MUST implement * either this or classifyInstance(). * * @param instance the instance to be classified * @return an array containing the estimated membership * probabilities of the test instance in each class * or the numeric prediction * @exception Exception if distribution could not be * computed successfully */ public double[] distributionForInstance(Instance instance) throws Exception { double[] dist = new double[instance.numClasses()]; switch (instance.classAttribute().type()) { case Attribute.NOMINAL: double classification = classifyInstance(instance); if (Utils.isMissingValue(classification)) { return dist; } else { dist[(int)classification] = 1.0; } return dist; case Attribute.NUMERIC: dist[0] = classifyInstance(instance); return dist; default: return dist; } } /** * Creates a new instance of a classifier given it's class name and * (optional) arguments to pass to it's setOptions method. If the * classifier implements OptionHandler and the options parameter is * non-null, the classifier will have it's options set. * * @param classifierName the fully qualified class name of the classifier * @param options an array of options suitable for passing to setOptions. May * be null. * @return the newly created classifier, ready for use. * @exception Exception if the classifier name is invalid, or the options * supplied are not acceptable to the classifier */ public static Classifier forName(String classifierName, String [] options) throws Exception { return ((AbstractClassifier)Utils.forName(Classifier.class, classifierName, options)); } /** * Creates a deep copy of the given classifier using serialization. * * @param model the classifier to copy * @return a deep copy of the classifier * @exception Exception if an error occurs */ public static Classifier makeCopy(Classifier model) throws Exception { return (Classifier)new SerializedObject(model).getObject(); } /** * Creates a given number of deep copies of the given classifier using serialization. * * @param model the classifier to copy * @param num the number of classifier copies to create. * @return an array of classifiers. * @exception Exception if an error occurs */ public static Classifier [] makeCopies(Classifier model, int num) throws Exception { if (model == null) { throw new Exception("No model classifier set"); } Classifier [] classifiers = new Classifier [num]; SerializedObject so = new SerializedObject(model); for(int i = 0; i < classifiers.length; i++) { classifiers[i] = (Classifier) so.getObject(); } return classifiers; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(1); newVector.addElement(new Option( "\tIf set, classifier is run in debug mode and\n" + "\tmay output additional info to the console", "D", 0, "-D")); return newVector.elements(); } /** * Parses a given list of options. Valid options are:

* * -D
* If set, classifier is run in debug mode and * may output additional info to the console.

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options; if (getDebug()) { options = new String[1]; options[0] = "-D"; } else { options = new String[0]; } return options; } /** * Set debugging mode. * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Get whether debugging is turned on. * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String debugTipText() { return "If set to true, classifier may output additional info to " + "the console."; } /** * Returns the Capabilities of this classifier. Maximally permissive * capabilities are allowed by default. Derived classifiers should * override this method and first disable all capabilities and then * enable just those capabilities that make sense for the scheme. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = new Capabilities(this); result.enableAll(); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6041 $"); } /** * runs the classifier instance with the given options. * * @param classifier the classifier to run * @param options the commandline options */ protected static void runClassifier(Classifier classifier, String[] options) { try { System.out.println(Evaluation.evaluateModel(classifier, options)); } catch (Exception e) { if ( ((e.getMessage() != null) && (e.getMessage().indexOf("General options") == -1)) || (e.getMessage() == null) ) e.printStackTrace(); else System.err.println(e.getMessage()); } } }