[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * AbstractClassifier.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers; |
---|
| 24 | |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.CapabilitiesHandler; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.SerializedObject; |
---|
| 35 | import weka.core.Utils; |
---|
| 36 | |
---|
| 37 | import java.io.Serializable; |
---|
| 38 | import java.util.Enumeration; |
---|
| 39 | import java.util.Vector; |
---|
| 40 | |
---|
| 41 | /** |
---|
| 42 | * Abstract classifier. All schemes for numeric or nominal prediction in |
---|
| 43 | * Weka extend this class. Note that a classifier MUST either implement |
---|
| 44 | * distributionForInstance() or classifyInstance(). |
---|
| 45 | * |
---|
| 46 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 47 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 48 | * @version $Revision: 6041 $ |
---|
| 49 | */ |
---|
| 50 | public abstract class AbstractClassifier |
---|
| 51 | implements Classifier, Cloneable, Serializable, OptionHandler, |
---|
| 52 | CapabilitiesHandler, RevisionHandler { |
---|
| 53 | |
---|
| 54 | /** for serialization */ |
---|
| 55 | private static final long serialVersionUID = 6502780192411755341L; |
---|
| 56 | |
---|
| 57 | /** Whether the classifier is run in debug mode. */ |
---|
| 58 | protected boolean m_Debug = false; |
---|
| 59 | |
---|
| 60 | /** |
---|
| 61 | * Classifies the given test instance. The instance has to belong to a |
---|
| 62 | * dataset when it's being classified. Note that a classifier MUST |
---|
| 63 | * implement either this or distributionForInstance(). |
---|
| 64 | * |
---|
| 65 | * @param instance the instance to be classified |
---|
| 66 | * @return the predicted most likely class for the instance or |
---|
| 67 | * Utils.missingValue() if no prediction is made |
---|
| 68 | * @exception Exception if an error occurred during the prediction |
---|
| 69 | */ |
---|
| 70 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 71 | |
---|
| 72 | double [] dist = distributionForInstance(instance); |
---|
| 73 | if (dist == null) { |
---|
| 74 | throw new Exception("Null distribution predicted"); |
---|
| 75 | } |
---|
| 76 | switch (instance.classAttribute().type()) { |
---|
| 77 | case Attribute.NOMINAL: |
---|
| 78 | double max = 0; |
---|
| 79 | int maxIndex = 0; |
---|
| 80 | |
---|
| 81 | for (int i = 0; i < dist.length; i++) { |
---|
| 82 | if (dist[i] > max) { |
---|
| 83 | maxIndex = i; |
---|
| 84 | max = dist[i]; |
---|
| 85 | } |
---|
| 86 | } |
---|
| 87 | if (max > 0) { |
---|
| 88 | return maxIndex; |
---|
| 89 | } else { |
---|
| 90 | return Utils.missingValue(); |
---|
| 91 | } |
---|
| 92 | case Attribute.NUMERIC: |
---|
| 93 | return dist[0]; |
---|
| 94 | default: |
---|
| 95 | return Utils.missingValue(); |
---|
| 96 | } |
---|
| 97 | } |
---|
| 98 | |
---|
| 99 | /** |
---|
| 100 | * Predicts the class memberships for a given instance. If |
---|
| 101 | * an instance is unclassified, the returned array elements |
---|
| 102 | * must be all zero. If the class is numeric, the array |
---|
| 103 | * must consist of only one element, which contains the |
---|
| 104 | * predicted value. Note that a classifier MUST implement |
---|
| 105 | * either this or classifyInstance(). |
---|
| 106 | * |
---|
| 107 | * @param instance the instance to be classified |
---|
| 108 | * @return an array containing the estimated membership |
---|
| 109 | * probabilities of the test instance in each class |
---|
| 110 | * or the numeric prediction |
---|
| 111 | * @exception Exception if distribution could not be |
---|
| 112 | * computed successfully |
---|
| 113 | */ |
---|
| 114 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 115 | |
---|
| 116 | double[] dist = new double[instance.numClasses()]; |
---|
| 117 | switch (instance.classAttribute().type()) { |
---|
| 118 | case Attribute.NOMINAL: |
---|
| 119 | double classification = classifyInstance(instance); |
---|
| 120 | if (Utils.isMissingValue(classification)) { |
---|
| 121 | return dist; |
---|
| 122 | } else { |
---|
| 123 | dist[(int)classification] = 1.0; |
---|
| 124 | } |
---|
| 125 | return dist; |
---|
| 126 | case Attribute.NUMERIC: |
---|
| 127 | dist[0] = classifyInstance(instance); |
---|
| 128 | return dist; |
---|
| 129 | default: |
---|
| 130 | return dist; |
---|
| 131 | } |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | /** |
---|
| 135 | * Creates a new instance of a classifier given it's class name and |
---|
| 136 | * (optional) arguments to pass to it's setOptions method. If the |
---|
| 137 | * classifier implements OptionHandler and the options parameter is |
---|
| 138 | * non-null, the classifier will have it's options set. |
---|
| 139 | * |
---|
| 140 | * @param classifierName the fully qualified class name of the classifier |
---|
| 141 | * @param options an array of options suitable for passing to setOptions. May |
---|
| 142 | * be null. |
---|
| 143 | * @return the newly created classifier, ready for use. |
---|
| 144 | * @exception Exception if the classifier name is invalid, or the options |
---|
| 145 | * supplied are not acceptable to the classifier |
---|
| 146 | */ |
---|
| 147 | public static Classifier forName(String classifierName, |
---|
| 148 | String [] options) throws Exception { |
---|
| 149 | |
---|
| 150 | return ((AbstractClassifier)Utils.forName(Classifier.class, |
---|
| 151 | classifierName, |
---|
| 152 | options)); |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | /** |
---|
| 156 | * Creates a deep copy of the given classifier using serialization. |
---|
| 157 | * |
---|
| 158 | * @param model the classifier to copy |
---|
| 159 | * @return a deep copy of the classifier |
---|
| 160 | * @exception Exception if an error occurs |
---|
| 161 | */ |
---|
| 162 | public static Classifier makeCopy(Classifier model) throws Exception { |
---|
| 163 | |
---|
| 164 | return (Classifier)new SerializedObject(model).getObject(); |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | /** |
---|
| 168 | * Creates a given number of deep copies of the given classifier using serialization. |
---|
| 169 | * |
---|
| 170 | * @param model the classifier to copy |
---|
| 171 | * @param num the number of classifier copies to create. |
---|
| 172 | * @return an array of classifiers. |
---|
| 173 | * @exception Exception if an error occurs |
---|
| 174 | */ |
---|
| 175 | public static Classifier [] makeCopies(Classifier model, int num) throws Exception { |
---|
| 176 | |
---|
| 177 | if (model == null) { |
---|
| 178 | throw new Exception("No model classifier set"); |
---|
| 179 | } |
---|
| 180 | Classifier [] classifiers = new Classifier [num]; |
---|
| 181 | SerializedObject so = new SerializedObject(model); |
---|
| 182 | for(int i = 0; i < classifiers.length; i++) { |
---|
| 183 | classifiers[i] = (Classifier) so.getObject(); |
---|
| 184 | } |
---|
| 185 | return classifiers; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Returns an enumeration describing the available options. |
---|
| 190 | * |
---|
| 191 | * @return an enumeration of all the available options. |
---|
| 192 | */ |
---|
| 193 | public Enumeration listOptions() { |
---|
| 194 | |
---|
| 195 | Vector newVector = new Vector(1); |
---|
| 196 | |
---|
| 197 | newVector.addElement(new Option( |
---|
| 198 | "\tIf set, classifier is run in debug mode and\n" |
---|
| 199 | + "\tmay output additional info to the console", |
---|
| 200 | "D", 0, "-D")); |
---|
| 201 | return newVector.elements(); |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | * Parses a given list of options. Valid options are:<p> |
---|
| 206 | * |
---|
| 207 | * -D <br> |
---|
| 208 | * If set, classifier is run in debug mode and |
---|
| 209 | * may output additional info to the console.<p> |
---|
| 210 | * |
---|
| 211 | * @param options the list of options as an array of strings |
---|
| 212 | * @exception Exception if an option is not supported |
---|
| 213 | */ |
---|
| 214 | public void setOptions(String[] options) throws Exception { |
---|
| 215 | |
---|
| 216 | setDebug(Utils.getFlag('D', options)); |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** |
---|
| 220 | * Gets the current settings of the Classifier. |
---|
| 221 | * |
---|
| 222 | * @return an array of strings suitable for passing to setOptions |
---|
| 223 | */ |
---|
| 224 | public String [] getOptions() { |
---|
| 225 | |
---|
| 226 | String [] options; |
---|
| 227 | if (getDebug()) { |
---|
| 228 | options = new String[1]; |
---|
| 229 | options[0] = "-D"; |
---|
| 230 | } else { |
---|
| 231 | options = new String[0]; |
---|
| 232 | } |
---|
| 233 | return options; |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | /** |
---|
| 237 | * Set debugging mode. |
---|
| 238 | * |
---|
| 239 | * @param debug true if debug output should be printed |
---|
| 240 | */ |
---|
| 241 | public void setDebug(boolean debug) { |
---|
| 242 | |
---|
| 243 | m_Debug = debug; |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | /** |
---|
| 247 | * Get whether debugging is turned on. |
---|
| 248 | * |
---|
| 249 | * @return true if debugging output is on |
---|
| 250 | */ |
---|
| 251 | public boolean getDebug() { |
---|
| 252 | |
---|
| 253 | return m_Debug; |
---|
| 254 | } |
---|
| 255 | |
---|
| 256 | /** |
---|
| 257 | * Returns the tip text for this property |
---|
| 258 | * @return tip text for this property suitable for |
---|
| 259 | * displaying in the explorer/experimenter gui |
---|
| 260 | */ |
---|
| 261 | public String debugTipText() { |
---|
| 262 | return "If set to true, classifier may output additional info to " + |
---|
| 263 | "the console."; |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | /** |
---|
| 267 | * Returns the Capabilities of this classifier. Maximally permissive |
---|
| 268 | * capabilities are allowed by default. Derived classifiers should |
---|
| 269 | * override this method and first disable all capabilities and then |
---|
| 270 | * enable just those capabilities that make sense for the scheme. |
---|
| 271 | * |
---|
| 272 | * @return the capabilities of this object |
---|
| 273 | * @see Capabilities |
---|
| 274 | */ |
---|
| 275 | public Capabilities getCapabilities() { |
---|
| 276 | Capabilities result = new Capabilities(this); |
---|
| 277 | result.enableAll(); |
---|
| 278 | |
---|
| 279 | return result; |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | /** |
---|
| 283 | * Returns the revision string. |
---|
| 284 | * |
---|
| 285 | * @return the revision |
---|
| 286 | */ |
---|
| 287 | public String getRevision() { |
---|
| 288 | return RevisionUtils.extract("$Revision: 6041 $"); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | /** |
---|
| 292 | * runs the classifier instance with the given options. |
---|
| 293 | * |
---|
| 294 | * @param classifier the classifier to run |
---|
| 295 | * @param options the commandline options |
---|
| 296 | */ |
---|
| 297 | protected static void runClassifier(Classifier classifier, String[] options) { |
---|
| 298 | try { |
---|
| 299 | System.out.println(Evaluation.evaluateModel(classifier, options)); |
---|
| 300 | } |
---|
| 301 | catch (Exception e) { |
---|
| 302 | if ( ((e.getMessage() != null) && (e.getMessage().indexOf("General options") == -1)) |
---|
| 303 | || (e.getMessage() == null) ) |
---|
| 304 | e.printStackTrace(); |
---|
| 305 | else |
---|
| 306 | System.err.println(e.getMessage()); |
---|
| 307 | } |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | |
---|