1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RELEASE INFORMATION (December 27, 2004) |
---|
19 | * |
---|
20 | * FCBF algorithm: |
---|
21 | * Template obtained from Weka |
---|
22 | * Developed for Weka by Zheng Alan Zhao |
---|
23 | * December 27, 2004 |
---|
24 | * |
---|
25 | * FCBF algorithm is a feature selection method based on Symmetrical Uncertainty Measurement for |
---|
26 | * relevance redundancy analysis. The details of FCBF algorithm are in: |
---|
27 | * |
---|
28 | <!-- technical-plaintext-start --> |
---|
29 | * Lei Yu, Huan Liu: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: Proceedings of the Twentieth International Conference on Machine Learning, 856-863, 2003. |
---|
30 | <!-- technical-plaintext-end --> |
---|
31 | * |
---|
32 | * |
---|
33 | * |
---|
34 | * CONTACT INFORMATION |
---|
35 | * |
---|
36 | * For algorithm implementation: |
---|
37 | * Zheng Zhao: zhaozheng at asu.edu |
---|
38 | * |
---|
39 | * For the algorithm: |
---|
40 | * Lei Yu: leiyu at asu.edu |
---|
41 | * Huan Liu: hliu at asu.edu |
---|
42 | * |
---|
43 | * Data Mining and Machine Learning Lab |
---|
44 | * Computer Science and Engineering Department |
---|
45 | * Fulton School of Engineering |
---|
46 | * Arizona State University |
---|
47 | * Tempe, AZ 85287 |
---|
48 | * |
---|
49 | * SymmetricalUncertAttributeSetEval.java |
---|
50 | * |
---|
51 | * Copyright (C) 2004 Data Mining and Machine Learning Lab, |
---|
52 | * Computer Science and Engineering Department, |
---|
53 | * Fulton School of Engineering, |
---|
54 | * Arizona State University |
---|
55 | * |
---|
56 | */ |
---|
57 | |
---|
58 | package weka.attributeSelection; |
---|
59 | |
---|
60 | import weka.core.Capabilities; |
---|
61 | import weka.core.ContingencyTables; |
---|
62 | import weka.core.Instance; |
---|
63 | import weka.core.Instances; |
---|
64 | import weka.core.Option; |
---|
65 | import weka.core.OptionHandler; |
---|
66 | import weka.core.RevisionUtils; |
---|
67 | import weka.core.TechnicalInformation; |
---|
68 | import weka.core.TechnicalInformationHandler; |
---|
69 | import weka.core.Utils; |
---|
70 | import weka.core.Capabilities.Capability; |
---|
71 | import weka.core.TechnicalInformation.Field; |
---|
72 | import weka.core.TechnicalInformation.Type; |
---|
73 | import weka.filters.Filter; |
---|
74 | import weka.filters.supervised.attribute.Discretize; |
---|
75 | |
---|
76 | import java.util.Enumeration; |
---|
77 | import java.util.Vector; |
---|
78 | |
---|
79 | /** |
---|
80 | <!-- globalinfo-start --> |
---|
81 | * SymmetricalUncertAttributeSetEval :<br/> |
---|
82 | * <br/> |
---|
83 | * Evaluates the worth of a set attributes by measuring the symmetrical uncertainty with respect to another set of attributes. <br/> |
---|
84 | * <br/> |
---|
85 | * SymmU(AttributeSet2, AttributeSet1) = 2 * (H(AttributeSet2) - H(AttributeSet1 | AttributeSet2)) / H(AttributeSet2) + H(AttributeSet1).<br/> |
---|
86 | * <br/> |
---|
87 | * For more information see:<br/> |
---|
88 | * <br/> |
---|
89 | * Lei Yu, Huan Liu: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: Proceedings of the Twentieth International Conference on Machine Learning, 856-863, 2003. |
---|
90 | * <p/> |
---|
91 | <!-- globalinfo-end --> |
---|
92 | * |
---|
93 | <!-- technical-bibtex-start --> |
---|
94 | * BibTeX: |
---|
95 | * <pre> |
---|
96 | * @inproceedings{Yu2003, |
---|
97 | * author = {Lei Yu and Huan Liu}, |
---|
98 | * booktitle = {Proceedings of the Twentieth International Conference on Machine Learning}, |
---|
99 | * pages = {856-863}, |
---|
100 | * publisher = {AAAI Press}, |
---|
101 | * title = {Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution}, |
---|
102 | * year = {2003} |
---|
103 | * } |
---|
104 | * </pre> |
---|
105 | * <p/> |
---|
106 | <!-- technical-bibtex-end --> |
---|
107 | * |
---|
108 | <!-- options-start --> |
---|
109 | * Valid options are: <p/> |
---|
110 | * |
---|
111 | * <pre> -M |
---|
112 | * treat missing values as a seperate value.</pre> |
---|
113 | * |
---|
114 | <!-- options-end --> |
---|
115 | * |
---|
116 | * @author Zheng Zhao: zhaozheng at asu.edu |
---|
117 | * @version $Revision: 5447 $ |
---|
118 | * @see Discretize |
---|
119 | */ |
---|
120 | public class SymmetricalUncertAttributeSetEval |
---|
121 | extends AttributeSetEvaluator |
---|
122 | implements OptionHandler, TechnicalInformationHandler { |
---|
123 | |
---|
124 | /** for serialization */ |
---|
125 | static final long serialVersionUID = 8351377335495873202L; |
---|
126 | |
---|
127 | /** The training instances */ |
---|
128 | private Instances m_trainInstances; |
---|
129 | |
---|
130 | /** The class index */ |
---|
131 | private int m_classIndex; |
---|
132 | |
---|
133 | /** The number of attributes */ |
---|
134 | private int m_numAttribs; |
---|
135 | |
---|
136 | /** The number of instances */ |
---|
137 | private int m_numInstances; |
---|
138 | |
---|
139 | /** The number of classes */ |
---|
140 | private int m_numClasses; |
---|
141 | |
---|
142 | /** Treat missing values as a seperate value */ |
---|
143 | private boolean m_missing_merge; |
---|
144 | |
---|
145 | /** |
---|
146 | * Returns a string describing this attribute evaluator |
---|
147 | * @return a description of the evaluator suitable for |
---|
148 | * displaying in the explorer/experimenter gui |
---|
149 | */ |
---|
150 | public String globalInfo() { |
---|
151 | return "SymmetricalUncertAttributeSetEval :\n\nEvaluates the worth of a set attributes " |
---|
152 | +"by measuring the symmetrical uncertainty with respect to another set of attributes. " |
---|
153 | +"\n\n SymmU(AttributeSet2, AttributeSet1) = 2 * (H(AttributeSet2) - H(AttributeSet1 | AttributeSet2)) " |
---|
154 | +"/ H(AttributeSet2) + H(AttributeSet1).\n\n" |
---|
155 | + "For more information see:\n\n" |
---|
156 | + getTechnicalInformation().toString(); |
---|
157 | } |
---|
158 | |
---|
159 | /** |
---|
160 | * Returns an instance of a TechnicalInformation object, containing |
---|
161 | * detailed information about the technical background of this class, |
---|
162 | * e.g., paper reference or book this class is based on. |
---|
163 | * |
---|
164 | * @return the technical information about this class |
---|
165 | */ |
---|
166 | public TechnicalInformation getTechnicalInformation() { |
---|
167 | TechnicalInformation result; |
---|
168 | |
---|
169 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
170 | result.setValue(Field.AUTHOR, "Lei Yu and Huan Liu"); |
---|
171 | result.setValue(Field.TITLE, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution"); |
---|
172 | result.setValue(Field.BOOKTITLE, "Proceedings of the Twentieth International Conference on Machine Learning"); |
---|
173 | result.setValue(Field.YEAR, "2003"); |
---|
174 | result.setValue(Field.PAGES, "856-863"); |
---|
175 | result.setValue(Field.PUBLISHER, "AAAI Press"); |
---|
176 | |
---|
177 | return result; |
---|
178 | } |
---|
179 | |
---|
180 | /** |
---|
181 | * Constructor |
---|
182 | */ |
---|
183 | public SymmetricalUncertAttributeSetEval () { |
---|
184 | resetOptions(); |
---|
185 | } |
---|
186 | |
---|
187 | |
---|
188 | /** |
---|
189 | * Returns an enumeration describing the available options. |
---|
190 | * @return an enumeration of all the available options. |
---|
191 | **/ |
---|
192 | public Enumeration listOptions () { |
---|
193 | Vector newVector = new Vector(1); |
---|
194 | newVector.addElement(new Option("\ttreat missing values as a seperate " |
---|
195 | + "value.", "M", 0, "-M")); |
---|
196 | return newVector.elements(); |
---|
197 | } |
---|
198 | |
---|
199 | |
---|
200 | /** |
---|
201 | * Parses a given list of options. <p/> |
---|
202 | * |
---|
203 | <!-- options-start --> |
---|
204 | * Valid options are: <p/> |
---|
205 | * |
---|
206 | * <pre> -M |
---|
207 | * treat missing values as a seperate value.</pre> |
---|
208 | * |
---|
209 | <!-- options-end --> |
---|
210 | * |
---|
211 | * @param options the list of options as an array of strings |
---|
212 | * @throws Exception if an option is not supported |
---|
213 | */ |
---|
214 | public void setOptions (String[] options) |
---|
215 | throws Exception { |
---|
216 | resetOptions(); |
---|
217 | setMissingMerge(!(Utils.getFlag('M', options))); |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Returns the tip text for this property |
---|
222 | * @return tip text for this property suitable for |
---|
223 | * displaying in the explorer/experimenter gui |
---|
224 | */ |
---|
225 | public String missingMergeTipText() { |
---|
226 | return "Distribute counts for missing values. Counts are distributed " |
---|
227 | +"across other values in proportion to their frequency. Otherwise, " |
---|
228 | +"missing is treated as a separate value."; |
---|
229 | } |
---|
230 | |
---|
231 | /** |
---|
232 | * distribute the counts for missing values across observed values |
---|
233 | * |
---|
234 | * @param b true=distribute missing values. |
---|
235 | */ |
---|
236 | public void setMissingMerge (boolean b) { |
---|
237 | m_missing_merge = b; |
---|
238 | } |
---|
239 | |
---|
240 | |
---|
241 | /** |
---|
242 | * get whether missing values are being distributed or not |
---|
243 | * |
---|
244 | * @return true if missing values are being distributed. |
---|
245 | */ |
---|
246 | public boolean getMissingMerge () { |
---|
247 | return m_missing_merge; |
---|
248 | } |
---|
249 | |
---|
250 | |
---|
251 | /** |
---|
252 | * Gets the current settings of WrapperSubsetEval. |
---|
253 | * @return an array of strings suitable for passing to setOptions() |
---|
254 | */ |
---|
255 | public String[] getOptions () { |
---|
256 | String[] options = new String[1]; |
---|
257 | int current = 0; |
---|
258 | |
---|
259 | if (!getMissingMerge()) { |
---|
260 | options[current++] = "-M"; |
---|
261 | } |
---|
262 | |
---|
263 | while (current < options.length) { |
---|
264 | options[current++] = ""; |
---|
265 | } |
---|
266 | |
---|
267 | return options; |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * Returns the capabilities of this evaluator. |
---|
272 | * |
---|
273 | * @return the capabilities of this evaluator |
---|
274 | * @see Capabilities |
---|
275 | */ |
---|
276 | public Capabilities getCapabilities() { |
---|
277 | Capabilities result = super.getCapabilities(); |
---|
278 | result.disableAll(); |
---|
279 | |
---|
280 | // attributes |
---|
281 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
282 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
283 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
284 | result.enable(Capability.MISSING_VALUES); |
---|
285 | |
---|
286 | // class |
---|
287 | result.enable(Capability.NOMINAL_CLASS); |
---|
288 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
289 | |
---|
290 | return result; |
---|
291 | } |
---|
292 | |
---|
293 | /** |
---|
294 | * Initializes a symmetrical uncertainty attribute evaluator. |
---|
295 | * Discretizes all attributes that are numeric. |
---|
296 | * |
---|
297 | * @param data set of instances serving as training data |
---|
298 | * @throws Exception if the evaluator has not been |
---|
299 | * generated successfully |
---|
300 | */ |
---|
301 | public void buildEvaluator (Instances data) |
---|
302 | throws Exception { |
---|
303 | |
---|
304 | // can evaluator handle data? |
---|
305 | getCapabilities().testWithFail(data); |
---|
306 | |
---|
307 | m_trainInstances = data; |
---|
308 | m_classIndex = m_trainInstances.classIndex(); |
---|
309 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
310 | m_numInstances = m_trainInstances.numInstances(); |
---|
311 | Discretize disTransform = new Discretize(); |
---|
312 | disTransform.setUseBetterEncoding(true); |
---|
313 | disTransform.setInputFormat(m_trainInstances); |
---|
314 | m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); |
---|
315 | m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); |
---|
316 | } |
---|
317 | |
---|
318 | |
---|
319 | /** |
---|
320 | * set options to default values |
---|
321 | */ |
---|
322 | protected void resetOptions () { |
---|
323 | m_trainInstances = null; |
---|
324 | m_missing_merge = true; |
---|
325 | } |
---|
326 | |
---|
327 | /** |
---|
328 | * evaluates an individual attribute by measuring the symmetrical |
---|
329 | * uncertainty between it and the class. |
---|
330 | * |
---|
331 | * @param attribute the index of the attribute to be evaluated |
---|
332 | * @return the uncertainty |
---|
333 | * @throws Exception if the attribute could not be evaluated |
---|
334 | */ |
---|
335 | public double evaluateAttribute (int attribute) |
---|
336 | throws Exception { |
---|
337 | int i, j, ii, jj; |
---|
338 | int ni, nj; |
---|
339 | double sum = 0.0; |
---|
340 | ni = m_trainInstances.attribute(attribute).numValues() + 1; |
---|
341 | nj = m_numClasses + 1; |
---|
342 | double[] sumi, sumj; |
---|
343 | Instance inst; |
---|
344 | double temp = 0.0; |
---|
345 | sumi = new double[ni]; |
---|
346 | sumj = new double[nj]; |
---|
347 | double[][] counts = new double[ni][nj]; |
---|
348 | sumi = new double[ni]; |
---|
349 | sumj = new double[nj]; |
---|
350 | |
---|
351 | for (i = 0; i < ni; i++) { |
---|
352 | sumi[i] = 0.0; |
---|
353 | |
---|
354 | for (j = 0; j < nj; j++) { |
---|
355 | sumj[j] = 0.0; |
---|
356 | counts[i][j] = 0.0; |
---|
357 | } |
---|
358 | } |
---|
359 | |
---|
360 | // Fill the contingency table |
---|
361 | for (i = 0; i < m_numInstances; i++) { |
---|
362 | inst = m_trainInstances.instance(i); |
---|
363 | |
---|
364 | if (inst.isMissing(attribute)) { |
---|
365 | ii = ni - 1; |
---|
366 | } |
---|
367 | else { |
---|
368 | ii = (int)inst.value(attribute); |
---|
369 | } |
---|
370 | |
---|
371 | if (inst.isMissing(m_classIndex)) { |
---|
372 | jj = nj - 1; |
---|
373 | } |
---|
374 | else { |
---|
375 | jj = (int)inst.value(m_classIndex); |
---|
376 | } |
---|
377 | |
---|
378 | counts[ii][jj]++; |
---|
379 | } |
---|
380 | |
---|
381 | // get the row totals |
---|
382 | for (i = 0; i < ni; i++) { |
---|
383 | sumi[i] = 0.0; |
---|
384 | |
---|
385 | for (j = 0; j < nj; j++) { |
---|
386 | //there are how many happen of a special feature value |
---|
387 | sumi[i] += counts[i][j]; |
---|
388 | sum += counts[i][j]; |
---|
389 | } |
---|
390 | } |
---|
391 | |
---|
392 | // get the column totals |
---|
393 | for (j = 0; j < nj; j++) { |
---|
394 | sumj[j] = 0.0; |
---|
395 | |
---|
396 | for (i = 0; i < ni; i++) { |
---|
397 | //a class value include how many instance. |
---|
398 | sumj[j] += counts[i][j]; |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | // distribute missing counts |
---|
403 | if (m_missing_merge && |
---|
404 | (sumi[ni-1] < m_numInstances) && |
---|
405 | (sumj[nj-1] < m_numInstances)) { |
---|
406 | double[] i_copy = new double[sumi.length]; |
---|
407 | double[] j_copy = new double[sumj.length]; |
---|
408 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
409 | |
---|
410 | for (i = 0; i < ni; i++) { |
---|
411 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
412 | } |
---|
413 | |
---|
414 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
415 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
416 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] |
---|
417 | - counts[ni - 1][nj - 1]); |
---|
418 | |
---|
419 | // do the missing i's |
---|
420 | if (sumi[ni - 1] > 0.0) { //sumi[ni - 1]: missing value contains how many values. |
---|
421 | for (j = 0; j < nj - 1; j++) { |
---|
422 | if (counts[ni - 1][j] > 0.0) { |
---|
423 | for (i = 0; i < ni - 1; i++) { |
---|
424 | temp = ((i_copy[i]/(sum - i_copy[ni - 1])) * |
---|
425 | counts[ni - 1][j]); |
---|
426 | counts[i][j] += temp; //according to the probability of value i we distribute account of the missing degree of a class lable to it |
---|
427 | sumi[i] += temp; |
---|
428 | } |
---|
429 | |
---|
430 | counts[ni - 1][j] = 0.0; |
---|
431 | } |
---|
432 | } |
---|
433 | } |
---|
434 | |
---|
435 | sumi[ni - 1] = 0.0; |
---|
436 | |
---|
437 | // do the missing j's |
---|
438 | if (sumj[nj - 1] > 0.0) { |
---|
439 | for (i = 0; i < ni - 1; i++) { |
---|
440 | if (counts[i][nj - 1] > 0.0) { |
---|
441 | for (j = 0; j < nj - 1; j++) { |
---|
442 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
443 | counts[i][j] += temp; |
---|
444 | sumj[j] += temp; |
---|
445 | } |
---|
446 | |
---|
447 | counts[i][nj - 1] = 0.0; |
---|
448 | } |
---|
449 | } |
---|
450 | } |
---|
451 | |
---|
452 | sumj[nj - 1] = 0.0; |
---|
453 | |
---|
454 | // do the both missing |
---|
455 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
456 | for (i = 0; i < ni - 1; i++) { |
---|
457 | for (j = 0; j < nj - 1; j++) { |
---|
458 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
459 | counts_copy[ni - 1][nj - 1]; |
---|
460 | counts[i][j] += temp; |
---|
461 | sumi[i] += temp; |
---|
462 | sumj[j] += temp; |
---|
463 | } |
---|
464 | } |
---|
465 | |
---|
466 | counts[ni - 1][nj - 1] = 0.0; |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | return ContingencyTables.symmetricalUncertainty(counts); |
---|
471 | } |
---|
472 | |
---|
473 | /** |
---|
474 | * calculate symmetrical uncertainty between sets of attributes |
---|
475 | * |
---|
476 | * @param attributes the indexes of the attributes |
---|
477 | * @param classAttributes the indexes of the attributes whose combination will |
---|
478 | * be used as class label |
---|
479 | * @return the uncertainty |
---|
480 | * @throws Exception if the attribute could not be evaluated |
---|
481 | */ |
---|
482 | public double evaluateAttribute (int[] attributes, int[] classAttributes) |
---|
483 | throws Exception { |
---|
484 | |
---|
485 | int i, j; //variable for looping. |
---|
486 | int p; //variable for looping. |
---|
487 | int ii, jj; //specifying the position in the contingency table. |
---|
488 | int nnj, nni; //counting base for attributes[]. |
---|
489 | int ni, nj; //the nubmer of rows and columns in the ContingencyTables. |
---|
490 | |
---|
491 | double sum = 0.0; |
---|
492 | boolean b_missing_attribute = false; |
---|
493 | boolean b_missing_classAtrribute = false; |
---|
494 | |
---|
495 | if(attributes.length==0) |
---|
496 | { |
---|
497 | throw new Exception("the parameter attributes[] is empty;SEQ:W-FS-Eval-SUAS-001"); |
---|
498 | } |
---|
499 | if(classAttributes.length==0) |
---|
500 | { |
---|
501 | throw new Exception("the parameter classAttributes[] is empty;SEQ:W-FS-Eval-SUAS-002"); |
---|
502 | } |
---|
503 | |
---|
504 | /*calculate the number of the rows in ContingencyTable*/ |
---|
505 | ni = m_trainInstances.attribute(attributes[0]).numValues(); |
---|
506 | if (ni == 0) |
---|
507 | { |
---|
508 | throw new Exception("an attribute is empty;SEQ:W-FS-Eval-SUAS-003;"+1); |
---|
509 | } |
---|
510 | |
---|
511 | for (i = 1;i<attributes.length;i++) |
---|
512 | { |
---|
513 | if (m_trainInstances.attribute(attributes[i]).numValues() == 0) |
---|
514 | { |
---|
515 | throw new Exception("an attribute is empty;SEQ:W-FS-Eval-SUAS-003;" + |
---|
516 | (i+1)); |
---|
517 | } |
---|
518 | ni = ni*m_trainInstances.attribute(attributes[i]).numValues(); |
---|
519 | } |
---|
520 | ni = ni+1; |
---|
521 | |
---|
522 | /*calculate the number of the colums in the ContingencyTable*/ |
---|
523 | nj = m_trainInstances.attribute(classAttributes[0]).numValues(); |
---|
524 | if (nj == 0) |
---|
525 | { |
---|
526 | throw new Exception("the a classAttribute is empty;SEQ:W-FS-Eval-SUAS-004;"+1); |
---|
527 | } |
---|
528 | |
---|
529 | for (i = 1;i<classAttributes.length;i++) |
---|
530 | { |
---|
531 | if (m_trainInstances.attribute(classAttributes[i]).numValues() == 0) |
---|
532 | { |
---|
533 | throw new Exception("the a classAttribute is empty;SEQ:W-FS-Eval-SUAS-004;" + |
---|
534 | (i+1)); |
---|
535 | } |
---|
536 | nj = nj*m_trainInstances.attribute(classAttributes[i]).numValues(); |
---|
537 | } |
---|
538 | nj = nj+1; |
---|
539 | |
---|
540 | double[] sumi, sumj; |
---|
541 | Instance inst; |
---|
542 | double temp = 0.0; |
---|
543 | sumi = new double[ni]; |
---|
544 | sumj = new double[nj]; |
---|
545 | double[][] counts = new double[ni][nj]; |
---|
546 | sumi = new double[ni]; |
---|
547 | sumj = new double[nj]; |
---|
548 | |
---|
549 | for (i = 0; i < ni; i++) { |
---|
550 | sumi[i] = 0.0; |
---|
551 | |
---|
552 | for (j = 0; j < nj; j++) { |
---|
553 | sumj[j] = 0.0; |
---|
554 | counts[i][j] = 0.0; |
---|
555 | } |
---|
556 | } |
---|
557 | |
---|
558 | // Fill the contingency table |
---|
559 | for (i = 0; i < m_numInstances; i++) { |
---|
560 | inst = m_trainInstances.instance(i); |
---|
561 | |
---|
562 | b_missing_attribute = false; |
---|
563 | b_missing_classAtrribute = false; |
---|
564 | |
---|
565 | /*get row position in contingency table*/ |
---|
566 | nni = 1; |
---|
567 | ii = 0; |
---|
568 | for (p=attributes.length-1; p>=0; p--) |
---|
569 | { |
---|
570 | if (inst.isMissing(attributes[p])) { |
---|
571 | b_missing_attribute = true; |
---|
572 | } |
---|
573 | ii = ((int)inst.value(attributes[p])*nni)+ii; |
---|
574 | if (p<attributes.length-1){ |
---|
575 | nni = nni * (m_trainInstances.attribute(attributes[p]).numValues()); |
---|
576 | } |
---|
577 | else { |
---|
578 | nni = m_trainInstances.attribute(attributes[p]).numValues(); |
---|
579 | } |
---|
580 | } |
---|
581 | if (b_missing_attribute) { |
---|
582 | ii = ni-1; |
---|
583 | } |
---|
584 | |
---|
585 | /*get colum position in contingency table*/ |
---|
586 | nnj = 1; |
---|
587 | jj = 0; |
---|
588 | for (p=classAttributes.length-1; p>=0; p--) |
---|
589 | { |
---|
590 | if (inst.isMissing(classAttributes[p])) { |
---|
591 | b_missing_classAtrribute = true; |
---|
592 | } |
---|
593 | jj = ((int)inst.value(classAttributes[p])*nnj)+jj; |
---|
594 | if (p<attributes.length-1){ |
---|
595 | nnj = nnj * (m_trainInstances.attribute(classAttributes[p]).numValues()); |
---|
596 | } |
---|
597 | else { |
---|
598 | nnj = m_trainInstances.attribute(classAttributes[p]).numValues(); |
---|
599 | } |
---|
600 | } |
---|
601 | if (b_missing_classAtrribute) { |
---|
602 | jj = nj-1; |
---|
603 | } |
---|
604 | |
---|
605 | counts[ii][jj]++; |
---|
606 | } |
---|
607 | |
---|
608 | // get the row totals |
---|
609 | for (i = 0; i < ni; i++) { |
---|
610 | sumi[i] = 0.0; |
---|
611 | |
---|
612 | for (j = 0; j < nj; j++) { |
---|
613 | //there are how many happen of a special feature value |
---|
614 | sumi[i] += counts[i][j]; |
---|
615 | sum += counts[i][j]; |
---|
616 | } |
---|
617 | } |
---|
618 | |
---|
619 | // get the column totals |
---|
620 | for (j = 0; j < nj; j++) { |
---|
621 | sumj[j] = 0.0; |
---|
622 | |
---|
623 | for (i = 0; i < ni; i++) { |
---|
624 | //a class value include how many instance. |
---|
625 | sumj[j] += counts[i][j]; |
---|
626 | } |
---|
627 | } |
---|
628 | |
---|
629 | // distribute missing counts |
---|
630 | if (m_missing_merge && |
---|
631 | (sumi[ni-1] < m_numInstances) && |
---|
632 | (sumj[nj-1] < m_numInstances)) { |
---|
633 | double[] i_copy = new double[sumi.length]; |
---|
634 | double[] j_copy = new double[sumj.length]; |
---|
635 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
636 | |
---|
637 | for (i = 0; i < ni; i++) { |
---|
638 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
639 | } |
---|
640 | |
---|
641 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
642 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
643 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] |
---|
644 | - counts[ni - 1][nj - 1]); |
---|
645 | |
---|
646 | // do the missing i's |
---|
647 | if (sumi[ni - 1] > 0.0) { //sumi[ni - 1]: missing value contains how many values. |
---|
648 | for (j = 0; j < nj - 1; j++) { |
---|
649 | if (counts[ni - 1][j] > 0.0) { |
---|
650 | for (i = 0; i < ni - 1; i++) { |
---|
651 | temp = ((i_copy[i]/(sum - i_copy[ni - 1])) * |
---|
652 | counts[ni - 1][j]); |
---|
653 | counts[i][j] += temp; //according to the probability of value i we distribute account of the missing degree of a class lable to it |
---|
654 | sumi[i] += temp; |
---|
655 | } |
---|
656 | |
---|
657 | counts[ni - 1][j] = 0.0; |
---|
658 | } |
---|
659 | } |
---|
660 | } |
---|
661 | |
---|
662 | sumi[ni - 1] = 0.0; |
---|
663 | |
---|
664 | // do the missing j's |
---|
665 | if (sumj[nj - 1] > 0.0) { |
---|
666 | for (i = 0; i < ni - 1; i++) { |
---|
667 | if (counts[i][nj - 1] > 0.0) { |
---|
668 | for (j = 0; j < nj - 1; j++) { |
---|
669 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
670 | counts[i][j] += temp; |
---|
671 | sumj[j] += temp; |
---|
672 | } |
---|
673 | |
---|
674 | counts[i][nj - 1] = 0.0; |
---|
675 | } |
---|
676 | } |
---|
677 | } |
---|
678 | |
---|
679 | sumj[nj - 1] = 0.0; |
---|
680 | |
---|
681 | // do the both missing |
---|
682 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
683 | for (i = 0; i < ni - 1; i++) { |
---|
684 | for (j = 0; j < nj - 1; j++) { |
---|
685 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
686 | counts_copy[ni - 1][nj - 1]; |
---|
687 | counts[i][j] += temp; |
---|
688 | sumi[i] += temp; |
---|
689 | sumj[j] += temp; |
---|
690 | } |
---|
691 | } |
---|
692 | |
---|
693 | counts[ni - 1][nj - 1] = 0.0; |
---|
694 | } |
---|
695 | } |
---|
696 | |
---|
697 | return ContingencyTables.symmetricalUncertainty(counts); |
---|
698 | } |
---|
699 | |
---|
700 | |
---|
701 | /** |
---|
702 | * Return a description of the evaluator |
---|
703 | * @return description as a string |
---|
704 | */ |
---|
705 | public String toString () { |
---|
706 | StringBuffer text = new StringBuffer(); |
---|
707 | |
---|
708 | if (m_trainInstances == null) { |
---|
709 | text.append("\tSymmetrical Uncertainty evaluator has not been built"); |
---|
710 | } |
---|
711 | else { |
---|
712 | text.append("\tSymmetrical Uncertainty Ranking Filter"); |
---|
713 | if (!m_missing_merge) { |
---|
714 | text.append("\n\tMissing values treated as seperate"); |
---|
715 | } |
---|
716 | } |
---|
717 | |
---|
718 | text.append("\n"); |
---|
719 | return text.toString(); |
---|
720 | } |
---|
721 | |
---|
722 | /** |
---|
723 | * Returns the revision string. |
---|
724 | * |
---|
725 | * @return the revision |
---|
726 | */ |
---|
727 | public String getRevision() { |
---|
728 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
729 | } |
---|
730 | |
---|
731 | // ============ |
---|
732 | // Test method. |
---|
733 | // ============ |
---|
734 | /** |
---|
735 | * Main method for testing this class. |
---|
736 | * |
---|
737 | * @param argv should contain the following arguments: |
---|
738 | * -t training file |
---|
739 | */ |
---|
740 | public static void main (String[] argv) { |
---|
741 | runEvaluator(new SymmetricalUncertAttributeSetEval(), argv); |
---|
742 | } |
---|
743 | } |
---|