[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * RELEASE INFORMATION (December 27, 2004) |
---|
| 19 | * |
---|
| 20 | * FCBF algorithm: |
---|
| 21 | * Template obtained from Weka |
---|
| 22 | * Developed for Weka by Zheng Alan Zhao |
---|
| 23 | * December 27, 2004 |
---|
| 24 | * |
---|
| 25 | * FCBF algorithm is a feature selection method based on Symmetrical Uncertainty Measurement for |
---|
| 26 | * relevance redundancy analysis. The details of FCBF algorithm are in: |
---|
| 27 | * |
---|
| 28 | <!-- technical-plaintext-start --> |
---|
| 29 | * Lei Yu, Huan Liu: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: Proceedings of the Twentieth International Conference on Machine Learning, 856-863, 2003. |
---|
| 30 | <!-- technical-plaintext-end --> |
---|
| 31 | * |
---|
| 32 | * |
---|
| 33 | * |
---|
| 34 | * CONTACT INFORMATION |
---|
| 35 | * |
---|
| 36 | * For algorithm implementation: |
---|
| 37 | * Zheng Zhao: zhaozheng at asu.edu |
---|
| 38 | * |
---|
| 39 | * For the algorithm: |
---|
| 40 | * Lei Yu: leiyu at asu.edu |
---|
| 41 | * Huan Liu: hliu at asu.edu |
---|
| 42 | * |
---|
| 43 | * Data Mining and Machine Learning Lab |
---|
| 44 | * Computer Science and Engineering Department |
---|
| 45 | * Fulton School of Engineering |
---|
| 46 | * Arizona State University |
---|
| 47 | * Tempe, AZ 85287 |
---|
| 48 | * |
---|
| 49 | * SymmetricalUncertAttributeSetEval.java |
---|
| 50 | * |
---|
| 51 | * Copyright (C) 2004 Data Mining and Machine Learning Lab, |
---|
| 52 | * Computer Science and Engineering Department, |
---|
| 53 | * Fulton School of Engineering, |
---|
| 54 | * Arizona State University |
---|
| 55 | * |
---|
| 56 | */ |
---|
| 57 | |
---|
| 58 | package weka.attributeSelection; |
---|
| 59 | |
---|
| 60 | import weka.core.Capabilities; |
---|
| 61 | import weka.core.ContingencyTables; |
---|
| 62 | import weka.core.Instance; |
---|
| 63 | import weka.core.Instances; |
---|
| 64 | import weka.core.Option; |
---|
| 65 | import weka.core.OptionHandler; |
---|
| 66 | import weka.core.RevisionUtils; |
---|
| 67 | import weka.core.TechnicalInformation; |
---|
| 68 | import weka.core.TechnicalInformationHandler; |
---|
| 69 | import weka.core.Utils; |
---|
| 70 | import weka.core.Capabilities.Capability; |
---|
| 71 | import weka.core.TechnicalInformation.Field; |
---|
| 72 | import weka.core.TechnicalInformation.Type; |
---|
| 73 | import weka.filters.Filter; |
---|
| 74 | import weka.filters.supervised.attribute.Discretize; |
---|
| 75 | |
---|
| 76 | import java.util.Enumeration; |
---|
| 77 | import java.util.Vector; |
---|
| 78 | |
---|
| 79 | /** |
---|
| 80 | <!-- globalinfo-start --> |
---|
| 81 | * SymmetricalUncertAttributeSetEval :<br/> |
---|
| 82 | * <br/> |
---|
| 83 | * Evaluates the worth of a set attributes by measuring the symmetrical uncertainty with respect to another set of attributes. <br/> |
---|
| 84 | * <br/> |
---|
| 85 | * SymmU(AttributeSet2, AttributeSet1) = 2 * (H(AttributeSet2) - H(AttributeSet1 | AttributeSet2)) / H(AttributeSet2) + H(AttributeSet1).<br/> |
---|
| 86 | * <br/> |
---|
| 87 | * For more information see:<br/> |
---|
| 88 | * <br/> |
---|
| 89 | * Lei Yu, Huan Liu: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: Proceedings of the Twentieth International Conference on Machine Learning, 856-863, 2003. |
---|
| 90 | * <p/> |
---|
| 91 | <!-- globalinfo-end --> |
---|
| 92 | * |
---|
| 93 | <!-- technical-bibtex-start --> |
---|
| 94 | * BibTeX: |
---|
| 95 | * <pre> |
---|
| 96 | * @inproceedings{Yu2003, |
---|
| 97 | * author = {Lei Yu and Huan Liu}, |
---|
| 98 | * booktitle = {Proceedings of the Twentieth International Conference on Machine Learning}, |
---|
| 99 | * pages = {856-863}, |
---|
| 100 | * publisher = {AAAI Press}, |
---|
| 101 | * title = {Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution}, |
---|
| 102 | * year = {2003} |
---|
| 103 | * } |
---|
| 104 | * </pre> |
---|
| 105 | * <p/> |
---|
| 106 | <!-- technical-bibtex-end --> |
---|
| 107 | * |
---|
| 108 | <!-- options-start --> |
---|
| 109 | * Valid options are: <p/> |
---|
| 110 | * |
---|
| 111 | * <pre> -M |
---|
| 112 | * treat missing values as a seperate value.</pre> |
---|
| 113 | * |
---|
| 114 | <!-- options-end --> |
---|
| 115 | * |
---|
| 116 | * @author Zheng Zhao: zhaozheng at asu.edu |
---|
| 117 | * @version $Revision: 5447 $ |
---|
| 118 | * @see Discretize |
---|
| 119 | */ |
---|
| 120 | public class SymmetricalUncertAttributeSetEval |
---|
| 121 | extends AttributeSetEvaluator |
---|
| 122 | implements OptionHandler, TechnicalInformationHandler { |
---|
| 123 | |
---|
| 124 | /** for serialization */ |
---|
| 125 | static final long serialVersionUID = 8351377335495873202L; |
---|
| 126 | |
---|
| 127 | /** The training instances */ |
---|
| 128 | private Instances m_trainInstances; |
---|
| 129 | |
---|
| 130 | /** The class index */ |
---|
| 131 | private int m_classIndex; |
---|
| 132 | |
---|
| 133 | /** The number of attributes */ |
---|
| 134 | private int m_numAttribs; |
---|
| 135 | |
---|
| 136 | /** The number of instances */ |
---|
| 137 | private int m_numInstances; |
---|
| 138 | |
---|
| 139 | /** The number of classes */ |
---|
| 140 | private int m_numClasses; |
---|
| 141 | |
---|
| 142 | /** Treat missing values as a seperate value */ |
---|
| 143 | private boolean m_missing_merge; |
---|
| 144 | |
---|
| 145 | /** |
---|
| 146 | * Returns a string describing this attribute evaluator |
---|
| 147 | * @return a description of the evaluator suitable for |
---|
| 148 | * displaying in the explorer/experimenter gui |
---|
| 149 | */ |
---|
| 150 | public String globalInfo() { |
---|
| 151 | return "SymmetricalUncertAttributeSetEval :\n\nEvaluates the worth of a set attributes " |
---|
| 152 | +"by measuring the symmetrical uncertainty with respect to another set of attributes. " |
---|
| 153 | +"\n\n SymmU(AttributeSet2, AttributeSet1) = 2 * (H(AttributeSet2) - H(AttributeSet1 | AttributeSet2)) " |
---|
| 154 | +"/ H(AttributeSet2) + H(AttributeSet1).\n\n" |
---|
| 155 | + "For more information see:\n\n" |
---|
| 156 | + getTechnicalInformation().toString(); |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | /** |
---|
| 160 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 161 | * detailed information about the technical background of this class, |
---|
| 162 | * e.g., paper reference or book this class is based on. |
---|
| 163 | * |
---|
| 164 | * @return the technical information about this class |
---|
| 165 | */ |
---|
| 166 | public TechnicalInformation getTechnicalInformation() { |
---|
| 167 | TechnicalInformation result; |
---|
| 168 | |
---|
| 169 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 170 | result.setValue(Field.AUTHOR, "Lei Yu and Huan Liu"); |
---|
| 171 | result.setValue(Field.TITLE, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution"); |
---|
| 172 | result.setValue(Field.BOOKTITLE, "Proceedings of the Twentieth International Conference on Machine Learning"); |
---|
| 173 | result.setValue(Field.YEAR, "2003"); |
---|
| 174 | result.setValue(Field.PAGES, "856-863"); |
---|
| 175 | result.setValue(Field.PUBLISHER, "AAAI Press"); |
---|
| 176 | |
---|
| 177 | return result; |
---|
| 178 | } |
---|
| 179 | |
---|
| 180 | /** |
---|
| 181 | * Constructor |
---|
| 182 | */ |
---|
| 183 | public SymmetricalUncertAttributeSetEval () { |
---|
| 184 | resetOptions(); |
---|
| 185 | } |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Returns an enumeration describing the available options. |
---|
| 190 | * @return an enumeration of all the available options. |
---|
| 191 | **/ |
---|
| 192 | public Enumeration listOptions () { |
---|
| 193 | Vector newVector = new Vector(1); |
---|
| 194 | newVector.addElement(new Option("\ttreat missing values as a seperate " |
---|
| 195 | + "value.", "M", 0, "-M")); |
---|
| 196 | return newVector.elements(); |
---|
| 197 | } |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | /** |
---|
| 201 | * Parses a given list of options. <p/> |
---|
| 202 | * |
---|
| 203 | <!-- options-start --> |
---|
| 204 | * Valid options are: <p/> |
---|
| 205 | * |
---|
| 206 | * <pre> -M |
---|
| 207 | * treat missing values as a seperate value.</pre> |
---|
| 208 | * |
---|
| 209 | <!-- options-end --> |
---|
| 210 | * |
---|
| 211 | * @param options the list of options as an array of strings |
---|
| 212 | * @throws Exception if an option is not supported |
---|
| 213 | */ |
---|
| 214 | public void setOptions (String[] options) |
---|
| 215 | throws Exception { |
---|
| 216 | resetOptions(); |
---|
| 217 | setMissingMerge(!(Utils.getFlag('M', options))); |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | /** |
---|
| 221 | * Returns the tip text for this property |
---|
| 222 | * @return tip text for this property suitable for |
---|
| 223 | * displaying in the explorer/experimenter gui |
---|
| 224 | */ |
---|
| 225 | public String missingMergeTipText() { |
---|
| 226 | return "Distribute counts for missing values. Counts are distributed " |
---|
| 227 | +"across other values in proportion to their frequency. Otherwise, " |
---|
| 228 | +"missing is treated as a separate value."; |
---|
| 229 | } |
---|
| 230 | |
---|
| 231 | /** |
---|
| 232 | * distribute the counts for missing values across observed values |
---|
| 233 | * |
---|
| 234 | * @param b true=distribute missing values. |
---|
| 235 | */ |
---|
| 236 | public void setMissingMerge (boolean b) { |
---|
| 237 | m_missing_merge = b; |
---|
| 238 | } |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | /** |
---|
| 242 | * get whether missing values are being distributed or not |
---|
| 243 | * |
---|
| 244 | * @return true if missing values are being distributed. |
---|
| 245 | */ |
---|
| 246 | public boolean getMissingMerge () { |
---|
| 247 | return m_missing_merge; |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | |
---|
| 251 | /** |
---|
| 252 | * Gets the current settings of WrapperSubsetEval. |
---|
| 253 | * @return an array of strings suitable for passing to setOptions() |
---|
| 254 | */ |
---|
| 255 | public String[] getOptions () { |
---|
| 256 | String[] options = new String[1]; |
---|
| 257 | int current = 0; |
---|
| 258 | |
---|
| 259 | if (!getMissingMerge()) { |
---|
| 260 | options[current++] = "-M"; |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | while (current < options.length) { |
---|
| 264 | options[current++] = ""; |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | return options; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * Returns the capabilities of this evaluator. |
---|
| 272 | * |
---|
| 273 | * @return the capabilities of this evaluator |
---|
| 274 | * @see Capabilities |
---|
| 275 | */ |
---|
| 276 | public Capabilities getCapabilities() { |
---|
| 277 | Capabilities result = super.getCapabilities(); |
---|
| 278 | result.disableAll(); |
---|
| 279 | |
---|
| 280 | // attributes |
---|
| 281 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 282 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 283 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 284 | result.enable(Capability.MISSING_VALUES); |
---|
| 285 | |
---|
| 286 | // class |
---|
| 287 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 288 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 289 | |
---|
| 290 | return result; |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | /** |
---|
| 294 | * Initializes a symmetrical uncertainty attribute evaluator. |
---|
| 295 | * Discretizes all attributes that are numeric. |
---|
| 296 | * |
---|
| 297 | * @param data set of instances serving as training data |
---|
| 298 | * @throws Exception if the evaluator has not been |
---|
| 299 | * generated successfully |
---|
| 300 | */ |
---|
| 301 | public void buildEvaluator (Instances data) |
---|
| 302 | throws Exception { |
---|
| 303 | |
---|
| 304 | // can evaluator handle data? |
---|
| 305 | getCapabilities().testWithFail(data); |
---|
| 306 | |
---|
| 307 | m_trainInstances = data; |
---|
| 308 | m_classIndex = m_trainInstances.classIndex(); |
---|
| 309 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
| 310 | m_numInstances = m_trainInstances.numInstances(); |
---|
| 311 | Discretize disTransform = new Discretize(); |
---|
| 312 | disTransform.setUseBetterEncoding(true); |
---|
| 313 | disTransform.setInputFormat(m_trainInstances); |
---|
| 314 | m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); |
---|
| 315 | m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); |
---|
| 316 | } |
---|
| 317 | |
---|
| 318 | |
---|
| 319 | /** |
---|
| 320 | * set options to default values |
---|
| 321 | */ |
---|
| 322 | protected void resetOptions () { |
---|
| 323 | m_trainInstances = null; |
---|
| 324 | m_missing_merge = true; |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | /** |
---|
| 328 | * evaluates an individual attribute by measuring the symmetrical |
---|
| 329 | * uncertainty between it and the class. |
---|
| 330 | * |
---|
| 331 | * @param attribute the index of the attribute to be evaluated |
---|
| 332 | * @return the uncertainty |
---|
| 333 | * @throws Exception if the attribute could not be evaluated |
---|
| 334 | */ |
---|
| 335 | public double evaluateAttribute (int attribute) |
---|
| 336 | throws Exception { |
---|
| 337 | int i, j, ii, jj; |
---|
| 338 | int ni, nj; |
---|
| 339 | double sum = 0.0; |
---|
| 340 | ni = m_trainInstances.attribute(attribute).numValues() + 1; |
---|
| 341 | nj = m_numClasses + 1; |
---|
| 342 | double[] sumi, sumj; |
---|
| 343 | Instance inst; |
---|
| 344 | double temp = 0.0; |
---|
| 345 | sumi = new double[ni]; |
---|
| 346 | sumj = new double[nj]; |
---|
| 347 | double[][] counts = new double[ni][nj]; |
---|
| 348 | sumi = new double[ni]; |
---|
| 349 | sumj = new double[nj]; |
---|
| 350 | |
---|
| 351 | for (i = 0; i < ni; i++) { |
---|
| 352 | sumi[i] = 0.0; |
---|
| 353 | |
---|
| 354 | for (j = 0; j < nj; j++) { |
---|
| 355 | sumj[j] = 0.0; |
---|
| 356 | counts[i][j] = 0.0; |
---|
| 357 | } |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | // Fill the contingency table |
---|
| 361 | for (i = 0; i < m_numInstances; i++) { |
---|
| 362 | inst = m_trainInstances.instance(i); |
---|
| 363 | |
---|
| 364 | if (inst.isMissing(attribute)) { |
---|
| 365 | ii = ni - 1; |
---|
| 366 | } |
---|
| 367 | else { |
---|
| 368 | ii = (int)inst.value(attribute); |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | if (inst.isMissing(m_classIndex)) { |
---|
| 372 | jj = nj - 1; |
---|
| 373 | } |
---|
| 374 | else { |
---|
| 375 | jj = (int)inst.value(m_classIndex); |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | counts[ii][jj]++; |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | // get the row totals |
---|
| 382 | for (i = 0; i < ni; i++) { |
---|
| 383 | sumi[i] = 0.0; |
---|
| 384 | |
---|
| 385 | for (j = 0; j < nj; j++) { |
---|
| 386 | //there are how many happen of a special feature value |
---|
| 387 | sumi[i] += counts[i][j]; |
---|
| 388 | sum += counts[i][j]; |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | |
---|
| 392 | // get the column totals |
---|
| 393 | for (j = 0; j < nj; j++) { |
---|
| 394 | sumj[j] = 0.0; |
---|
| 395 | |
---|
| 396 | for (i = 0; i < ni; i++) { |
---|
| 397 | //a class value include how many instance. |
---|
| 398 | sumj[j] += counts[i][j]; |
---|
| 399 | } |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | // distribute missing counts |
---|
| 403 | if (m_missing_merge && |
---|
| 404 | (sumi[ni-1] < m_numInstances) && |
---|
| 405 | (sumj[nj-1] < m_numInstances)) { |
---|
| 406 | double[] i_copy = new double[sumi.length]; |
---|
| 407 | double[] j_copy = new double[sumj.length]; |
---|
| 408 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
| 409 | |
---|
| 410 | for (i = 0; i < ni; i++) { |
---|
| 411 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
| 412 | } |
---|
| 413 | |
---|
| 414 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
| 415 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
| 416 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] |
---|
| 417 | - counts[ni - 1][nj - 1]); |
---|
| 418 | |
---|
| 419 | // do the missing i's |
---|
| 420 | if (sumi[ni - 1] > 0.0) { //sumi[ni - 1]: missing value contains how many values. |
---|
| 421 | for (j = 0; j < nj - 1; j++) { |
---|
| 422 | if (counts[ni - 1][j] > 0.0) { |
---|
| 423 | for (i = 0; i < ni - 1; i++) { |
---|
| 424 | temp = ((i_copy[i]/(sum - i_copy[ni - 1])) * |
---|
| 425 | counts[ni - 1][j]); |
---|
| 426 | counts[i][j] += temp; //according to the probability of value i we distribute account of the missing degree of a class lable to it |
---|
| 427 | sumi[i] += temp; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | counts[ni - 1][j] = 0.0; |
---|
| 431 | } |
---|
| 432 | } |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | sumi[ni - 1] = 0.0; |
---|
| 436 | |
---|
| 437 | // do the missing j's |
---|
| 438 | if (sumj[nj - 1] > 0.0) { |
---|
| 439 | for (i = 0; i < ni - 1; i++) { |
---|
| 440 | if (counts[i][nj - 1] > 0.0) { |
---|
| 441 | for (j = 0; j < nj - 1; j++) { |
---|
| 442 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
| 443 | counts[i][j] += temp; |
---|
| 444 | sumj[j] += temp; |
---|
| 445 | } |
---|
| 446 | |
---|
| 447 | counts[i][nj - 1] = 0.0; |
---|
| 448 | } |
---|
| 449 | } |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | sumj[nj - 1] = 0.0; |
---|
| 453 | |
---|
| 454 | // do the both missing |
---|
| 455 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
| 456 | for (i = 0; i < ni - 1; i++) { |
---|
| 457 | for (j = 0; j < nj - 1; j++) { |
---|
| 458 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
| 459 | counts_copy[ni - 1][nj - 1]; |
---|
| 460 | counts[i][j] += temp; |
---|
| 461 | sumi[i] += temp; |
---|
| 462 | sumj[j] += temp; |
---|
| 463 | } |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | counts[ni - 1][nj - 1] = 0.0; |
---|
| 467 | } |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | return ContingencyTables.symmetricalUncertainty(counts); |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | /** |
---|
| 474 | * calculate symmetrical uncertainty between sets of attributes |
---|
| 475 | * |
---|
| 476 | * @param attributes the indexes of the attributes |
---|
| 477 | * @param classAttributes the indexes of the attributes whose combination will |
---|
| 478 | * be used as class label |
---|
| 479 | * @return the uncertainty |
---|
| 480 | * @throws Exception if the attribute could not be evaluated |
---|
| 481 | */ |
---|
| 482 | public double evaluateAttribute (int[] attributes, int[] classAttributes) |
---|
| 483 | throws Exception { |
---|
| 484 | |
---|
| 485 | int i, j; //variable for looping. |
---|
| 486 | int p; //variable for looping. |
---|
| 487 | int ii, jj; //specifying the position in the contingency table. |
---|
| 488 | int nnj, nni; //counting base for attributes[]. |
---|
| 489 | int ni, nj; //the nubmer of rows and columns in the ContingencyTables. |
---|
| 490 | |
---|
| 491 | double sum = 0.0; |
---|
| 492 | boolean b_missing_attribute = false; |
---|
| 493 | boolean b_missing_classAtrribute = false; |
---|
| 494 | |
---|
| 495 | if(attributes.length==0) |
---|
| 496 | { |
---|
| 497 | throw new Exception("the parameter attributes[] is empty;SEQ:W-FS-Eval-SUAS-001"); |
---|
| 498 | } |
---|
| 499 | if(classAttributes.length==0) |
---|
| 500 | { |
---|
| 501 | throw new Exception("the parameter classAttributes[] is empty;SEQ:W-FS-Eval-SUAS-002"); |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | /*calculate the number of the rows in ContingencyTable*/ |
---|
| 505 | ni = m_trainInstances.attribute(attributes[0]).numValues(); |
---|
| 506 | if (ni == 0) |
---|
| 507 | { |
---|
| 508 | throw new Exception("an attribute is empty;SEQ:W-FS-Eval-SUAS-003;"+1); |
---|
| 509 | } |
---|
| 510 | |
---|
| 511 | for (i = 1;i<attributes.length;i++) |
---|
| 512 | { |
---|
| 513 | if (m_trainInstances.attribute(attributes[i]).numValues() == 0) |
---|
| 514 | { |
---|
| 515 | throw new Exception("an attribute is empty;SEQ:W-FS-Eval-SUAS-003;" + |
---|
| 516 | (i+1)); |
---|
| 517 | } |
---|
| 518 | ni = ni*m_trainInstances.attribute(attributes[i]).numValues(); |
---|
| 519 | } |
---|
| 520 | ni = ni+1; |
---|
| 521 | |
---|
| 522 | /*calculate the number of the colums in the ContingencyTable*/ |
---|
| 523 | nj = m_trainInstances.attribute(classAttributes[0]).numValues(); |
---|
| 524 | if (nj == 0) |
---|
| 525 | { |
---|
| 526 | throw new Exception("the a classAttribute is empty;SEQ:W-FS-Eval-SUAS-004;"+1); |
---|
| 527 | } |
---|
| 528 | |
---|
| 529 | for (i = 1;i<classAttributes.length;i++) |
---|
| 530 | { |
---|
| 531 | if (m_trainInstances.attribute(classAttributes[i]).numValues() == 0) |
---|
| 532 | { |
---|
| 533 | throw new Exception("the a classAttribute is empty;SEQ:W-FS-Eval-SUAS-004;" + |
---|
| 534 | (i+1)); |
---|
| 535 | } |
---|
| 536 | nj = nj*m_trainInstances.attribute(classAttributes[i]).numValues(); |
---|
| 537 | } |
---|
| 538 | nj = nj+1; |
---|
| 539 | |
---|
| 540 | double[] sumi, sumj; |
---|
| 541 | Instance inst; |
---|
| 542 | double temp = 0.0; |
---|
| 543 | sumi = new double[ni]; |
---|
| 544 | sumj = new double[nj]; |
---|
| 545 | double[][] counts = new double[ni][nj]; |
---|
| 546 | sumi = new double[ni]; |
---|
| 547 | sumj = new double[nj]; |
---|
| 548 | |
---|
| 549 | for (i = 0; i < ni; i++) { |
---|
| 550 | sumi[i] = 0.0; |
---|
| 551 | |
---|
| 552 | for (j = 0; j < nj; j++) { |
---|
| 553 | sumj[j] = 0.0; |
---|
| 554 | counts[i][j] = 0.0; |
---|
| 555 | } |
---|
| 556 | } |
---|
| 557 | |
---|
| 558 | // Fill the contingency table |
---|
| 559 | for (i = 0; i < m_numInstances; i++) { |
---|
| 560 | inst = m_trainInstances.instance(i); |
---|
| 561 | |
---|
| 562 | b_missing_attribute = false; |
---|
| 563 | b_missing_classAtrribute = false; |
---|
| 564 | |
---|
| 565 | /*get row position in contingency table*/ |
---|
| 566 | nni = 1; |
---|
| 567 | ii = 0; |
---|
| 568 | for (p=attributes.length-1; p>=0; p--) |
---|
| 569 | { |
---|
| 570 | if (inst.isMissing(attributes[p])) { |
---|
| 571 | b_missing_attribute = true; |
---|
| 572 | } |
---|
| 573 | ii = ((int)inst.value(attributes[p])*nni)+ii; |
---|
| 574 | if (p<attributes.length-1){ |
---|
| 575 | nni = nni * (m_trainInstances.attribute(attributes[p]).numValues()); |
---|
| 576 | } |
---|
| 577 | else { |
---|
| 578 | nni = m_trainInstances.attribute(attributes[p]).numValues(); |
---|
| 579 | } |
---|
| 580 | } |
---|
| 581 | if (b_missing_attribute) { |
---|
| 582 | ii = ni-1; |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | /*get colum position in contingency table*/ |
---|
| 586 | nnj = 1; |
---|
| 587 | jj = 0; |
---|
| 588 | for (p=classAttributes.length-1; p>=0; p--) |
---|
| 589 | { |
---|
| 590 | if (inst.isMissing(classAttributes[p])) { |
---|
| 591 | b_missing_classAtrribute = true; |
---|
| 592 | } |
---|
| 593 | jj = ((int)inst.value(classAttributes[p])*nnj)+jj; |
---|
| 594 | if (p<attributes.length-1){ |
---|
| 595 | nnj = nnj * (m_trainInstances.attribute(classAttributes[p]).numValues()); |
---|
| 596 | } |
---|
| 597 | else { |
---|
| 598 | nnj = m_trainInstances.attribute(classAttributes[p]).numValues(); |
---|
| 599 | } |
---|
| 600 | } |
---|
| 601 | if (b_missing_classAtrribute) { |
---|
| 602 | jj = nj-1; |
---|
| 603 | } |
---|
| 604 | |
---|
| 605 | counts[ii][jj]++; |
---|
| 606 | } |
---|
| 607 | |
---|
| 608 | // get the row totals |
---|
| 609 | for (i = 0; i < ni; i++) { |
---|
| 610 | sumi[i] = 0.0; |
---|
| 611 | |
---|
| 612 | for (j = 0; j < nj; j++) { |
---|
| 613 | //there are how many happen of a special feature value |
---|
| 614 | sumi[i] += counts[i][j]; |
---|
| 615 | sum += counts[i][j]; |
---|
| 616 | } |
---|
| 617 | } |
---|
| 618 | |
---|
| 619 | // get the column totals |
---|
| 620 | for (j = 0; j < nj; j++) { |
---|
| 621 | sumj[j] = 0.0; |
---|
| 622 | |
---|
| 623 | for (i = 0; i < ni; i++) { |
---|
| 624 | //a class value include how many instance. |
---|
| 625 | sumj[j] += counts[i][j]; |
---|
| 626 | } |
---|
| 627 | } |
---|
| 628 | |
---|
| 629 | // distribute missing counts |
---|
| 630 | if (m_missing_merge && |
---|
| 631 | (sumi[ni-1] < m_numInstances) && |
---|
| 632 | (sumj[nj-1] < m_numInstances)) { |
---|
| 633 | double[] i_copy = new double[sumi.length]; |
---|
| 634 | double[] j_copy = new double[sumj.length]; |
---|
| 635 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
| 636 | |
---|
| 637 | for (i = 0; i < ni; i++) { |
---|
| 638 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
| 639 | } |
---|
| 640 | |
---|
| 641 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
| 642 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
| 643 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] |
---|
| 644 | - counts[ni - 1][nj - 1]); |
---|
| 645 | |
---|
| 646 | // do the missing i's |
---|
| 647 | if (sumi[ni - 1] > 0.0) { //sumi[ni - 1]: missing value contains how many values. |
---|
| 648 | for (j = 0; j < nj - 1; j++) { |
---|
| 649 | if (counts[ni - 1][j] > 0.0) { |
---|
| 650 | for (i = 0; i < ni - 1; i++) { |
---|
| 651 | temp = ((i_copy[i]/(sum - i_copy[ni - 1])) * |
---|
| 652 | counts[ni - 1][j]); |
---|
| 653 | counts[i][j] += temp; //according to the probability of value i we distribute account of the missing degree of a class lable to it |
---|
| 654 | sumi[i] += temp; |
---|
| 655 | } |
---|
| 656 | |
---|
| 657 | counts[ni - 1][j] = 0.0; |
---|
| 658 | } |
---|
| 659 | } |
---|
| 660 | } |
---|
| 661 | |
---|
| 662 | sumi[ni - 1] = 0.0; |
---|
| 663 | |
---|
| 664 | // do the missing j's |
---|
| 665 | if (sumj[nj - 1] > 0.0) { |
---|
| 666 | for (i = 0; i < ni - 1; i++) { |
---|
| 667 | if (counts[i][nj - 1] > 0.0) { |
---|
| 668 | for (j = 0; j < nj - 1; j++) { |
---|
| 669 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
| 670 | counts[i][j] += temp; |
---|
| 671 | sumj[j] += temp; |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | counts[i][nj - 1] = 0.0; |
---|
| 675 | } |
---|
| 676 | } |
---|
| 677 | } |
---|
| 678 | |
---|
| 679 | sumj[nj - 1] = 0.0; |
---|
| 680 | |
---|
| 681 | // do the both missing |
---|
| 682 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
| 683 | for (i = 0; i < ni - 1; i++) { |
---|
| 684 | for (j = 0; j < nj - 1; j++) { |
---|
| 685 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
| 686 | counts_copy[ni - 1][nj - 1]; |
---|
| 687 | counts[i][j] += temp; |
---|
| 688 | sumi[i] += temp; |
---|
| 689 | sumj[j] += temp; |
---|
| 690 | } |
---|
| 691 | } |
---|
| 692 | |
---|
| 693 | counts[ni - 1][nj - 1] = 0.0; |
---|
| 694 | } |
---|
| 695 | } |
---|
| 696 | |
---|
| 697 | return ContingencyTables.symmetricalUncertainty(counts); |
---|
| 698 | } |
---|
| 699 | |
---|
| 700 | |
---|
| 701 | /** |
---|
| 702 | * Return a description of the evaluator |
---|
| 703 | * @return description as a string |
---|
| 704 | */ |
---|
| 705 | public String toString () { |
---|
| 706 | StringBuffer text = new StringBuffer(); |
---|
| 707 | |
---|
| 708 | if (m_trainInstances == null) { |
---|
| 709 | text.append("\tSymmetrical Uncertainty evaluator has not been built"); |
---|
| 710 | } |
---|
| 711 | else { |
---|
| 712 | text.append("\tSymmetrical Uncertainty Ranking Filter"); |
---|
| 713 | if (!m_missing_merge) { |
---|
| 714 | text.append("\n\tMissing values treated as seperate"); |
---|
| 715 | } |
---|
| 716 | } |
---|
| 717 | |
---|
| 718 | text.append("\n"); |
---|
| 719 | return text.toString(); |
---|
| 720 | } |
---|
| 721 | |
---|
| 722 | /** |
---|
| 723 | * Returns the revision string. |
---|
| 724 | * |
---|
| 725 | * @return the revision |
---|
| 726 | */ |
---|
| 727 | public String getRevision() { |
---|
| 728 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
| 729 | } |
---|
| 730 | |
---|
| 731 | // ============ |
---|
| 732 | // Test method. |
---|
| 733 | // ============ |
---|
| 734 | /** |
---|
| 735 | * Main method for testing this class. |
---|
| 736 | * |
---|
| 737 | * @param argv should contain the following arguments: |
---|
| 738 | * -t training file |
---|
| 739 | */ |
---|
| 740 | public static void main (String[] argv) { |
---|
| 741 | runEvaluator(new SymmetricalUncertAttributeSetEval(), argv); |
---|
| 742 | } |
---|
| 743 | } |
---|