1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * SignificanceAttributeEval.java |
---|
19 | * Copyright (C) 2009 Adrian Pino |
---|
20 | * Copyright (C) 2009 University of Waikato, Hamilton, NZ |
---|
21 | * |
---|
22 | */ |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import java.util.ArrayList; |
---|
26 | import java.util.Enumeration; |
---|
27 | import java.util.List; |
---|
28 | import java.util.Vector; |
---|
29 | |
---|
30 | import weka.core.Capabilities; |
---|
31 | import weka.core.Instance; |
---|
32 | import weka.core.Instances; |
---|
33 | import weka.core.Option; |
---|
34 | import weka.core.OptionHandler; |
---|
35 | import weka.core.RevisionUtils; |
---|
36 | import weka.core.TechnicalInformation; |
---|
37 | import weka.core.TechnicalInformationHandler; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.Capabilities.Capability; |
---|
40 | import weka.core.TechnicalInformation.Field; |
---|
41 | import weka.core.TechnicalInformation.Type; |
---|
42 | import weka.filters.Filter; |
---|
43 | import weka.filters.supervised.attribute.Discretize; |
---|
44 | |
---|
45 | /** |
---|
46 | <!-- globalinfo-start --> |
---|
47 | * Significance :<br/> |
---|
48 | * <br/> |
---|
49 | * Evaluates the worth of an attribute by computing the Probabilistic Significance as a two-way function.<br/> |
---|
50 | * (attribute-classes and classes-attribute association)<br/> |
---|
51 | * <br/> |
---|
52 | * For more information see:<br/> |
---|
53 | * <br/> |
---|
54 | * Amir Ahmad, Lipika Dey (2004). A feature selection technique for classificatory analysis. |
---|
55 | * <p/> |
---|
56 | <!-- globalinfo-end --> |
---|
57 | * |
---|
58 | <!-- options-start --> |
---|
59 | * Valid options are: <p/> |
---|
60 | * |
---|
61 | * <pre> -M |
---|
62 | * treat missing values as a separate value.</pre> |
---|
63 | * |
---|
64 | <!-- options-end --> |
---|
65 | * |
---|
66 | <!-- technical-bibtex-start --> |
---|
67 | * BibTeX: |
---|
68 | * <pre> |
---|
69 | * @phdthesis{Ahmad2004, |
---|
70 | * author = {Amir Ahmad and Lipika Dey}, |
---|
71 | * month = {October}, |
---|
72 | * publisher = {ELSEVIER}, |
---|
73 | * title = {A feature selection technique for classificatory analysis}, |
---|
74 | * year = {2004} |
---|
75 | * } |
---|
76 | * </pre> |
---|
77 | * <p/> |
---|
78 | <!-- technical-bibtex-end --> |
---|
79 | * |
---|
80 | * @author Adrian Pino (apinoa@facinf.uho.edu.cu) |
---|
81 | * @version $Revision: 5447 $ |
---|
82 | */ |
---|
83 | public class SignificanceAttributeEval |
---|
84 | extends ASEvaluation |
---|
85 | implements AttributeEvaluator, OptionHandler, TechnicalInformationHandler { |
---|
86 | |
---|
87 | /** for serialization */ |
---|
88 | static final long serialVersionUID = -8504656625598579926L; |
---|
89 | |
---|
90 | /** The training instances */ |
---|
91 | private Instances m_trainInstances; |
---|
92 | |
---|
93 | /** The class index */ |
---|
94 | private int m_classIndex; |
---|
95 | |
---|
96 | /** The number of attributes */ |
---|
97 | private int m_numAttribs; |
---|
98 | |
---|
99 | /** The number of instances */ |
---|
100 | private int m_numInstances; |
---|
101 | |
---|
102 | /** The number of classes */ |
---|
103 | private int m_numClasses; |
---|
104 | |
---|
105 | /** Merge missing values */ |
---|
106 | private boolean m_missing_merge; |
---|
107 | |
---|
108 | /** |
---|
109 | * Returns a string describing this attribute evaluator |
---|
110 | * @return a description of the evaluator suitable for |
---|
111 | * displaying in the explorer/experimenter gui |
---|
112 | */ |
---|
113 | public String globalInfo() { |
---|
114 | return "Significance :\n\nEvaluates the worth of an attribute " |
---|
115 | +"by computing the Probabilistic Significance as a two-way function.\n" |
---|
116 | +"(atributte-classes and classes-atribute association)\n\n" |
---|
117 | + "For more information see:\n\n" |
---|
118 | + getTechnicalInformation().toString(); |
---|
119 | } |
---|
120 | |
---|
121 | /** |
---|
122 | * Returns an instance of a TechnicalInformation object, containing |
---|
123 | * detailed information about the technical background of this class, |
---|
124 | * e.g., paper reference or book this class is based on. |
---|
125 | * |
---|
126 | * @return the technical information about this class |
---|
127 | */ |
---|
128 | public TechnicalInformation getTechnicalInformation() { |
---|
129 | TechnicalInformation result; |
---|
130 | |
---|
131 | result = new TechnicalInformation(Type.PHDTHESIS); |
---|
132 | result.setValue(Field.AUTHOR, "Amir Ahmad and Lipika Dey"); |
---|
133 | result.setValue(Field.YEAR, "2004"); |
---|
134 | result.setValue(Field.MONTH, "October"); |
---|
135 | result.setValue(Field.TITLE, "A feature selection technique for classificatory analysis"); |
---|
136 | result.setValue(Field.PUBLISHER, "ELSEVIER"); |
---|
137 | |
---|
138 | return result; |
---|
139 | } |
---|
140 | |
---|
141 | |
---|
142 | /** |
---|
143 | * Constructor |
---|
144 | */ |
---|
145 | public SignificanceAttributeEval () { |
---|
146 | resetOptions(); |
---|
147 | } |
---|
148 | |
---|
149 | |
---|
150 | /** |
---|
151 | * Returns an enumeration describing the available options. |
---|
152 | * @return an enumeration of all the available options. |
---|
153 | **/ |
---|
154 | public Enumeration listOptions () { |
---|
155 | Vector newVector = new Vector(1); |
---|
156 | newVector.addElement(new Option("\ttreat missing values as a separate " |
---|
157 | + "value.", "M", 0, "-M")); |
---|
158 | return newVector.elements(); |
---|
159 | } |
---|
160 | |
---|
161 | |
---|
162 | /** |
---|
163 | * Parses a given list of options. <p/> |
---|
164 | * |
---|
165 | <!-- options-start --> |
---|
166 | * Valid options are: <p/> |
---|
167 | * |
---|
168 | * <pre> -M |
---|
169 | * treat missing values as a separate value.</pre> |
---|
170 | * |
---|
171 | <!-- options-end --> |
---|
172 | * |
---|
173 | * @param options the list of options as an array of strings |
---|
174 | * @throws Exception if an option is not supported |
---|
175 | **/ |
---|
176 | public void setOptions (String[] options) |
---|
177 | throws Exception { |
---|
178 | resetOptions(); |
---|
179 | setMissingMerge(!(Utils.getFlag('M', options))); |
---|
180 | } |
---|
181 | |
---|
182 | /** |
---|
183 | * Returns the tip text for this property |
---|
184 | * @return tip text for this property suitable for |
---|
185 | * displaying in the explorer/experimenter gui |
---|
186 | */ |
---|
187 | public String missingMergeTipText() { |
---|
188 | return "Distribute counts for missing values. Counts are distributed " |
---|
189 | +"across other values in proportion to their frequency. Otherwise, " |
---|
190 | +"missing is treated as a separate value."; |
---|
191 | } |
---|
192 | |
---|
193 | /** |
---|
194 | * distribute the counts for missing values across observed values |
---|
195 | * |
---|
196 | * @param b true=distribute missing values. |
---|
197 | */ |
---|
198 | public void setMissingMerge (boolean b) { |
---|
199 | m_missing_merge = b; |
---|
200 | } |
---|
201 | |
---|
202 | |
---|
203 | /** |
---|
204 | * get whether missing values are being distributed or not |
---|
205 | * |
---|
206 | * @return true if missing values are being distributed. |
---|
207 | */ |
---|
208 | public boolean getMissingMerge () { |
---|
209 | return m_missing_merge; |
---|
210 | } |
---|
211 | |
---|
212 | |
---|
213 | /** |
---|
214 | * Gets the current settings of WrapperSubsetEval. |
---|
215 | * @return an array of strings suitable for passing to setOptions() |
---|
216 | */ |
---|
217 | public String[] getOptions () { |
---|
218 | String[] options = new String[1]; |
---|
219 | int current = 0; |
---|
220 | |
---|
221 | if (!getMissingMerge()) { |
---|
222 | options[current++] = "-M"; |
---|
223 | } |
---|
224 | |
---|
225 | while (current < options.length) { |
---|
226 | options[current++] = ""; |
---|
227 | } |
---|
228 | |
---|
229 | return options; |
---|
230 | } |
---|
231 | |
---|
232 | /** |
---|
233 | * Returns the capabilities of this evaluator. |
---|
234 | * |
---|
235 | * @return the capabilities of this evaluator |
---|
236 | * @see Capabilities |
---|
237 | */ |
---|
238 | public Capabilities getCapabilities() { |
---|
239 | Capabilities result = super.getCapabilities(); |
---|
240 | result.disableAll(); |
---|
241 | |
---|
242 | // attributes |
---|
243 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
244 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
245 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
246 | result.enable(Capability.MISSING_VALUES); |
---|
247 | |
---|
248 | // class |
---|
249 | result.enable(Capability.NOMINAL_CLASS); |
---|
250 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
251 | |
---|
252 | return result; |
---|
253 | } |
---|
254 | |
---|
255 | /** |
---|
256 | * Initializes the Significance attribute evaluator. |
---|
257 | * Discretizes all attributes that are numeric. |
---|
258 | * |
---|
259 | * @param data set of instances serving as training data |
---|
260 | * @throws Exception if the evaluator has not been |
---|
261 | * generated successfully |
---|
262 | */ |
---|
263 | public void buildEvaluator (Instances data) |
---|
264 | throws Exception { |
---|
265 | |
---|
266 | // can evaluator handle data? |
---|
267 | getCapabilities().testWithFail(data); |
---|
268 | |
---|
269 | m_trainInstances = data; |
---|
270 | m_classIndex = m_trainInstances.classIndex(); |
---|
271 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
272 | m_numInstances = m_trainInstances.numInstances(); |
---|
273 | Discretize disTransform = new Discretize(); |
---|
274 | disTransform.setUseBetterEncoding(true); |
---|
275 | disTransform.setInputFormat(m_trainInstances); |
---|
276 | m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); |
---|
277 | m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); |
---|
278 | } |
---|
279 | |
---|
280 | |
---|
281 | /** |
---|
282 | * reset options to default values |
---|
283 | */ |
---|
284 | protected void resetOptions () { |
---|
285 | m_trainInstances = null; |
---|
286 | m_missing_merge = true; |
---|
287 | } |
---|
288 | |
---|
289 | |
---|
290 | /** |
---|
291 | * evaluates an individual attribute by measuring the Significance |
---|
292 | * |
---|
293 | * @param attribute the index of the attribute to be evaluated |
---|
294 | * @return the Significance of the attribute in the data base |
---|
295 | * @throws Exception if the attribute could not be evaluated |
---|
296 | */ |
---|
297 | public double evaluateAttribute (int attribute) |
---|
298 | throws Exception { |
---|
299 | int i, j, ii, jj; |
---|
300 | int ni, nj; |
---|
301 | double sum = 0.0; |
---|
302 | ni = m_trainInstances.attribute(attribute).numValues() + 1; |
---|
303 | nj = m_numClasses + 1; |
---|
304 | double[] sumi, sumj; |
---|
305 | Instance inst; |
---|
306 | double temp = 0.0; |
---|
307 | sumi = new double[ni]; |
---|
308 | sumj = new double[nj]; |
---|
309 | double[][] counts = new double[ni][nj]; |
---|
310 | |
---|
311 | for (i = 0; i < ni; i++) { |
---|
312 | sumi[i] = 0.0; |
---|
313 | |
---|
314 | for (j = 0; j < nj; j++) { |
---|
315 | sumj[j] = 0.0; |
---|
316 | counts[i][j] = 0.0; |
---|
317 | } |
---|
318 | } |
---|
319 | |
---|
320 | // Fill the contingency table |
---|
321 | for (i = 0; i < m_numInstances; i++) { |
---|
322 | inst = m_trainInstances.instance(i); |
---|
323 | |
---|
324 | if (inst.isMissing(attribute)) { |
---|
325 | ii = ni - 1; |
---|
326 | } |
---|
327 | else { |
---|
328 | ii = (int)inst.value(attribute); |
---|
329 | } |
---|
330 | |
---|
331 | if (inst.isMissing(m_classIndex)) { |
---|
332 | jj = nj - 1; |
---|
333 | } |
---|
334 | else { |
---|
335 | jj = (int)inst.value(m_classIndex); |
---|
336 | } |
---|
337 | |
---|
338 | counts[ii][jj]++; |
---|
339 | } |
---|
340 | |
---|
341 | // get the row totals |
---|
342 | for (i = 0; i < ni; i++) { |
---|
343 | sumi[i] = 0.0; |
---|
344 | |
---|
345 | for (j = 0; j < nj; j++) { |
---|
346 | sumi[i] += counts[i][j]; |
---|
347 | sum += counts[i][j]; |
---|
348 | } |
---|
349 | } |
---|
350 | |
---|
351 | // get the column totals |
---|
352 | for (j = 0; j < nj; j++) { |
---|
353 | sumj[j] = 0.0; |
---|
354 | |
---|
355 | for (i = 0; i < ni; i++) { |
---|
356 | sumj[j] += counts[i][j]; |
---|
357 | } |
---|
358 | } |
---|
359 | |
---|
360 | |
---|
361 | // distribute missing counts |
---|
362 | if (m_missing_merge && |
---|
363 | (sumi[ni-1] < m_numInstances) && |
---|
364 | (sumj[nj-1] < m_numInstances)) { |
---|
365 | double[] i_copy = new double[sumi.length]; |
---|
366 | double[] j_copy = new double[sumj.length]; |
---|
367 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
368 | |
---|
369 | for (i = 0; i < ni; i++) { |
---|
370 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
371 | } |
---|
372 | |
---|
373 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
374 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
375 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] - |
---|
376 | counts[ni - 1][nj - 1]); |
---|
377 | |
---|
378 | // do the missing i's |
---|
379 | if (sumi[ni - 1] > 0.0) { |
---|
380 | for (j = 0; j < nj - 1; j++) { |
---|
381 | if (counts[ni - 1][j] > 0.0) { |
---|
382 | for (i = 0; i < ni - 1; i++) { |
---|
383 | temp = ((i_copy[i]/(sum - i_copy[ni - 1]))*counts[ni - 1][j]); |
---|
384 | counts[i][j] += temp; |
---|
385 | sumi[i] += temp; |
---|
386 | } |
---|
387 | |
---|
388 | counts[ni - 1][j] = 0.0; |
---|
389 | } |
---|
390 | } |
---|
391 | } |
---|
392 | |
---|
393 | sumi[ni - 1] = 0.0; |
---|
394 | |
---|
395 | // do the missing j's |
---|
396 | if (sumj[nj - 1] > 0.0) { |
---|
397 | for (i = 0; i < ni - 1; i++) { |
---|
398 | if (counts[i][nj - 1] > 0.0) { |
---|
399 | for (j = 0; j < nj - 1; j++) { |
---|
400 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
401 | counts[i][j] += temp; |
---|
402 | sumj[j] += temp; |
---|
403 | } |
---|
404 | |
---|
405 | counts[i][nj - 1] = 0.0; |
---|
406 | } |
---|
407 | } |
---|
408 | } |
---|
409 | |
---|
410 | sumj[nj - 1] = 0.0; |
---|
411 | |
---|
412 | // do the both missing |
---|
413 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
414 | for (i = 0; i < ni - 1; i++) { |
---|
415 | for (j = 0; j < nj - 1; j++) { |
---|
416 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
417 | counts_copy[ni - 1][nj - 1]; |
---|
418 | counts[i][j] += temp; |
---|
419 | sumi[i] += temp; |
---|
420 | sumj[j] += temp; |
---|
421 | } |
---|
422 | } |
---|
423 | |
---|
424 | counts[ni - 1][nj - 1] = 0.0; |
---|
425 | } |
---|
426 | } |
---|
427 | |
---|
428 | /**Working on the ContingencyTables****/ |
---|
429 | double discriminatingPower = associationAttributeClasses(counts); |
---|
430 | double separability = associationClassesAttribute(counts); |
---|
431 | /*...*/ |
---|
432 | |
---|
433 | |
---|
434 | return discriminatingPower + separability / 2; |
---|
435 | } |
---|
436 | |
---|
437 | /** |
---|
438 | * evaluates an individual attribute by measuring the attribute-classes |
---|
439 | * association |
---|
440 | * |
---|
441 | * @param counts the Contingency table where are the frecuency counts values |
---|
442 | * @return the discriminating power of the attribute |
---|
443 | */ |
---|
444 | public double associationAttributeClasses(double[][] counts){ |
---|
445 | |
---|
446 | List<Integer> supportSet = new ArrayList<Integer>(); |
---|
447 | List<Integer> not_supportSet = new ArrayList<Integer>(); |
---|
448 | |
---|
449 | double discriminatingPower = 0; |
---|
450 | |
---|
451 | |
---|
452 | int numValues = counts.length; |
---|
453 | int numClasses = counts[0].length; |
---|
454 | |
---|
455 | int total = 0; |
---|
456 | |
---|
457 | double[] sumRows = new double[numValues]; |
---|
458 | double[] sumCols = new double[numClasses]; |
---|
459 | |
---|
460 | // get the row totals |
---|
461 | for (int i = 0; i < numValues; i++) { |
---|
462 | sumRows[i] = 0.0; |
---|
463 | |
---|
464 | for (int j = 0; j < numClasses; j++) { |
---|
465 | sumRows[i] += counts[i][j]; |
---|
466 | total += counts[i][j]; |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | // get the column totals |
---|
471 | for (int j = 0; j < numClasses; j++) { |
---|
472 | sumCols[j] = 0.0; |
---|
473 | |
---|
474 | for (int i = 0; i < numValues; i++) { |
---|
475 | sumCols[j] += counts[i][j]; |
---|
476 | } |
---|
477 | } |
---|
478 | |
---|
479 | for (int i = 0; i < numClasses; i++) { |
---|
480 | for (int j = 0; j < numValues; j++) { |
---|
481 | |
---|
482 | //Computing Conditional Probability P(Clasei | Valuej) |
---|
483 | double numerator1 = counts[j][i]; |
---|
484 | double denominator1 = sumRows[j]; |
---|
485 | double result1; |
---|
486 | |
---|
487 | if(denominator1 != 0) |
---|
488 | result1 = numerator1/denominator1; |
---|
489 | else |
---|
490 | result1 = 0; |
---|
491 | |
---|
492 | //Computing Conditional Probability P(Clasei | ^Valuej) |
---|
493 | double numerator2 = sumCols[i] - counts[j][i]; |
---|
494 | double denominator2 = total - sumRows[j]; |
---|
495 | double result2; |
---|
496 | |
---|
497 | if(denominator2 != 0) |
---|
498 | result2 = numerator2/denominator2; |
---|
499 | else |
---|
500 | result2 = 0; |
---|
501 | |
---|
502 | |
---|
503 | if(result1 > result2){ |
---|
504 | supportSet.add (i); |
---|
505 | discriminatingPower +=result1; |
---|
506 | } |
---|
507 | else{ |
---|
508 | not_supportSet.add (i); |
---|
509 | discriminatingPower +=result2; |
---|
510 | } |
---|
511 | } |
---|
512 | |
---|
513 | } |
---|
514 | |
---|
515 | return discriminatingPower/numValues - 1.0; |
---|
516 | } |
---|
517 | |
---|
518 | /** |
---|
519 | * evaluates an individual attribute by measuring the classes-attribute |
---|
520 | * association |
---|
521 | * |
---|
522 | * @param counts the Contingency table where are the frecuency counts values |
---|
523 | * @return the separability power of the classes |
---|
524 | */ |
---|
525 | public double associationClassesAttribute(double[][] counts){ |
---|
526 | |
---|
527 | List<Integer> supportSet = new ArrayList<Integer>(); |
---|
528 | List<Integer> not_supportSet = new ArrayList<Integer>(); |
---|
529 | |
---|
530 | double separability = 0; |
---|
531 | |
---|
532 | |
---|
533 | int numValues = counts.length; |
---|
534 | int numClasses = counts[0].length; |
---|
535 | |
---|
536 | int total = 0; |
---|
537 | |
---|
538 | double[] sumRows = new double[numValues]; |
---|
539 | double[] sumCols = new double[numClasses]; |
---|
540 | |
---|
541 | // get the row totals |
---|
542 | for (int i = 0; i < numValues; i++) { |
---|
543 | sumRows[i] = 0.0; |
---|
544 | |
---|
545 | for (int j = 0; j < numClasses; j++) { |
---|
546 | sumRows[i] += counts[i][j]; |
---|
547 | total += counts[i][j]; |
---|
548 | } |
---|
549 | } |
---|
550 | |
---|
551 | // get the column totals |
---|
552 | for (int j = 0; j < numClasses; j++) { |
---|
553 | sumCols[j] = 0.0; |
---|
554 | |
---|
555 | for (int i = 0; i < numValues; i++) { |
---|
556 | sumCols[j] += counts[i][j]; |
---|
557 | } |
---|
558 | } |
---|
559 | |
---|
560 | for (int i = 0; i < numValues; i++) { |
---|
561 | for (int j = 0; j < numClasses; j++) { |
---|
562 | |
---|
563 | //Computing Conditional Probability P(Valuei | Clasej) |
---|
564 | double numerator1 = counts[i][j]; |
---|
565 | double denominator1 = sumCols[j]; |
---|
566 | double result1; |
---|
567 | |
---|
568 | if(denominator1 != 0) |
---|
569 | result1 = numerator1/denominator1; |
---|
570 | else |
---|
571 | result1 = 0; |
---|
572 | |
---|
573 | //Computing Conditional Probability P(Valuei | ^Clasej) |
---|
574 | double numerator2 = sumRows[i] - counts[i][j]; |
---|
575 | double denominator2 = total - sumCols[j]; |
---|
576 | double result2; |
---|
577 | |
---|
578 | if(denominator2 != 0) |
---|
579 | result2 = numerator2/denominator2; |
---|
580 | else |
---|
581 | result2 = 0; |
---|
582 | |
---|
583 | |
---|
584 | if(result1 > result2){ |
---|
585 | supportSet.add (i); |
---|
586 | separability +=result1; |
---|
587 | } |
---|
588 | else{ |
---|
589 | not_supportSet.add (i); |
---|
590 | separability +=result2; |
---|
591 | } |
---|
592 | } |
---|
593 | |
---|
594 | } |
---|
595 | |
---|
596 | return separability/numClasses - 1.0; |
---|
597 | } |
---|
598 | |
---|
599 | |
---|
600 | /** |
---|
601 | * Return a description of the evaluator |
---|
602 | * @return description as a string |
---|
603 | */ |
---|
604 | public String toString () { |
---|
605 | StringBuffer text = new StringBuffer(); |
---|
606 | |
---|
607 | if (m_trainInstances == null) { |
---|
608 | text.append("\tSignificance evaluator has not been built"); |
---|
609 | } |
---|
610 | else { |
---|
611 | text.append("\tSignificance feature evaluator"); |
---|
612 | |
---|
613 | if (!m_missing_merge) { |
---|
614 | text.append("\n\tMissing values treated as seperate"); |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | text.append("\n"); |
---|
619 | return text.toString(); |
---|
620 | } |
---|
621 | |
---|
622 | /** |
---|
623 | * Returns the revision string. |
---|
624 | * |
---|
625 | * @return the revision |
---|
626 | */ |
---|
627 | public String getRevision() { |
---|
628 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
629 | } |
---|
630 | |
---|
631 | /** |
---|
632 | * Main method for testing this class. |
---|
633 | * |
---|
634 | * @param args the options |
---|
635 | */ |
---|
636 | public static void main (String[] args) { |
---|
637 | runEvaluator(new SignificanceAttributeEval(), args); |
---|
638 | } |
---|
639 | } |
---|
640 | |
---|