/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * SignificanceAttributeEval.java * Copyright (C) 2009 Adrian Pino * Copyright (C) 2009 University of Waikato, Hamilton, NZ * */ package weka.attributeSelection; import java.util.ArrayList; import java.util.Enumeration; import java.util.List; import java.util.Vector; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.filters.Filter; import weka.filters.supervised.attribute.Discretize; /** * Significance :
*
* Evaluates the worth of an attribute by computing the Probabilistic Significance as a two-way function.
* (attribute-classes and classes-attribute association)
*
* For more information see:
*
* Amir Ahmad, Lipika Dey (2004). A feature selection technique for classificatory analysis. *

* * Valid options are:

* *

 -M
 *  treat missing values as a separate value.
* * * BibTeX: *
 * @phdthesis{Ahmad2004,
 *    author = {Amir Ahmad and Lipika Dey},
 *    month = {October},
 *    publisher = {ELSEVIER},
 *    title = {A feature selection technique for classificatory analysis},
 *    year = {2004}
 * }
 * 
*

* * @author Adrian Pino (apinoa@facinf.uho.edu.cu) * @version $Revision: 5447 $ */ public class SignificanceAttributeEval extends ASEvaluation implements AttributeEvaluator, OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -8504656625598579926L; /** The training instances */ private Instances m_trainInstances; /** The class index */ private int m_classIndex; /** The number of attributes */ private int m_numAttribs; /** The number of instances */ private int m_numInstances; /** The number of classes */ private int m_numClasses; /** Merge missing values */ private boolean m_missing_merge; /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Significance :\n\nEvaluates the worth of an attribute " +"by computing the Probabilistic Significance as a two-way function.\n" +"(atributte-classes and classes-atribute association)\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.PHDTHESIS); result.setValue(Field.AUTHOR, "Amir Ahmad and Lipika Dey"); result.setValue(Field.YEAR, "2004"); result.setValue(Field.MONTH, "October"); result.setValue(Field.TITLE, "A feature selection technique for classificatory analysis"); result.setValue(Field.PUBLISHER, "ELSEVIER"); return result; } /** * Constructor */ public SignificanceAttributeEval () { resetOptions(); } /** * Returns an enumeration describing the available options. * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(1); newVector.addElement(new Option("\ttreat missing values as a separate " + "value.", "M", 0, "-M")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -M
   *  treat missing values as a separate value.
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported **/ public void setOptions (String[] options) throws Exception { resetOptions(); setMissingMerge(!(Utils.getFlag('M', options))); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String missingMergeTipText() { return "Distribute counts for missing values. Counts are distributed " +"across other values in proportion to their frequency. Otherwise, " +"missing is treated as a separate value."; } /** * distribute the counts for missing values across observed values * * @param b true=distribute missing values. */ public void setMissingMerge (boolean b) { m_missing_merge = b; } /** * get whether missing values are being distributed or not * * @return true if missing values are being distributed. */ public boolean getMissingMerge () { return m_missing_merge; } /** * Gets the current settings of WrapperSubsetEval. * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[1]; int current = 0; if (!getMissingMerge()) { options[current++] = "-M"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Initializes the Significance attribute evaluator. * Discretizes all attributes that are numeric. * * @param data set of instances serving as training data * @throws Exception if the evaluator has not been * generated successfully */ public void buildEvaluator (Instances data) throws Exception { // can evaluator handle data? getCapabilities().testWithFail(data); m_trainInstances = data; m_classIndex = m_trainInstances.classIndex(); m_numAttribs = m_trainInstances.numAttributes(); m_numInstances = m_trainInstances.numInstances(); Discretize disTransform = new Discretize(); disTransform.setUseBetterEncoding(true); disTransform.setInputFormat(m_trainInstances); m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); } /** * reset options to default values */ protected void resetOptions () { m_trainInstances = null; m_missing_merge = true; } /** * evaluates an individual attribute by measuring the Significance * * @param attribute the index of the attribute to be evaluated * @return the Significance of the attribute in the data base * @throws Exception if the attribute could not be evaluated */ public double evaluateAttribute (int attribute) throws Exception { int i, j, ii, jj; int ni, nj; double sum = 0.0; ni = m_trainInstances.attribute(attribute).numValues() + 1; nj = m_numClasses + 1; double[] sumi, sumj; Instance inst; double temp = 0.0; sumi = new double[ni]; sumj = new double[nj]; double[][] counts = new double[ni][nj]; for (i = 0; i < ni; i++) { sumi[i] = 0.0; for (j = 0; j < nj; j++) { sumj[j] = 0.0; counts[i][j] = 0.0; } } // Fill the contingency table for (i = 0; i < m_numInstances; i++) { inst = m_trainInstances.instance(i); if (inst.isMissing(attribute)) { ii = ni - 1; } else { ii = (int)inst.value(attribute); } if (inst.isMissing(m_classIndex)) { jj = nj - 1; } else { jj = (int)inst.value(m_classIndex); } counts[ii][jj]++; } // get the row totals for (i = 0; i < ni; i++) { sumi[i] = 0.0; for (j = 0; j < nj; j++) { sumi[i] += counts[i][j]; sum += counts[i][j]; } } // get the column totals for (j = 0; j < nj; j++) { sumj[j] = 0.0; for (i = 0; i < ni; i++) { sumj[j] += counts[i][j]; } } // distribute missing counts if (m_missing_merge && (sumi[ni-1] < m_numInstances) && (sumj[nj-1] < m_numInstances)) { double[] i_copy = new double[sumi.length]; double[] j_copy = new double[sumj.length]; double[][] counts_copy = new double[sumi.length][sumj.length]; for (i = 0; i < ni; i++) { System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); } System.arraycopy(sumi, 0, i_copy, 0, sumi.length); System.arraycopy(sumj, 0, j_copy, 0, sumj.length); double total_missing = (sumi[ni - 1] + sumj[nj - 1] - counts[ni - 1][nj - 1]); // do the missing i's if (sumi[ni - 1] > 0.0) { for (j = 0; j < nj - 1; j++) { if (counts[ni - 1][j] > 0.0) { for (i = 0; i < ni - 1; i++) { temp = ((i_copy[i]/(sum - i_copy[ni - 1]))*counts[ni - 1][j]); counts[i][j] += temp; sumi[i] += temp; } counts[ni - 1][j] = 0.0; } } } sumi[ni - 1] = 0.0; // do the missing j's if (sumj[nj - 1] > 0.0) { for (i = 0; i < ni - 1; i++) { if (counts[i][nj - 1] > 0.0) { for (j = 0; j < nj - 1; j++) { temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); counts[i][j] += temp; sumj[j] += temp; } counts[i][nj - 1] = 0.0; } } } sumj[nj - 1] = 0.0; // do the both missing if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { for (i = 0; i < ni - 1; i++) { for (j = 0; j < nj - 1; j++) { temp = (counts_copy[i][j]/(sum - total_missing)) * counts_copy[ni - 1][nj - 1]; counts[i][j] += temp; sumi[i] += temp; sumj[j] += temp; } } counts[ni - 1][nj - 1] = 0.0; } } /**Working on the ContingencyTables****/ double discriminatingPower = associationAttributeClasses(counts); double separability = associationClassesAttribute(counts); /*...*/ return discriminatingPower + separability / 2; } /** * evaluates an individual attribute by measuring the attribute-classes * association * * @param counts the Contingency table where are the frecuency counts values * @return the discriminating power of the attribute */ public double associationAttributeClasses(double[][] counts){ List supportSet = new ArrayList(); List not_supportSet = new ArrayList(); double discriminatingPower = 0; int numValues = counts.length; int numClasses = counts[0].length; int total = 0; double[] sumRows = new double[numValues]; double[] sumCols = new double[numClasses]; // get the row totals for (int i = 0; i < numValues; i++) { sumRows[i] = 0.0; for (int j = 0; j < numClasses; j++) { sumRows[i] += counts[i][j]; total += counts[i][j]; } } // get the column totals for (int j = 0; j < numClasses; j++) { sumCols[j] = 0.0; for (int i = 0; i < numValues; i++) { sumCols[j] += counts[i][j]; } } for (int i = 0; i < numClasses; i++) { for (int j = 0; j < numValues; j++) { //Computing Conditional Probability P(Clasei | Valuej) double numerator1 = counts[j][i]; double denominator1 = sumRows[j]; double result1; if(denominator1 != 0) result1 = numerator1/denominator1; else result1 = 0; //Computing Conditional Probability P(Clasei | ^Valuej) double numerator2 = sumCols[i] - counts[j][i]; double denominator2 = total - sumRows[j]; double result2; if(denominator2 != 0) result2 = numerator2/denominator2; else result2 = 0; if(result1 > result2){ supportSet.add (i); discriminatingPower +=result1; } else{ not_supportSet.add (i); discriminatingPower +=result2; } } } return discriminatingPower/numValues - 1.0; } /** * evaluates an individual attribute by measuring the classes-attribute * association * * @param counts the Contingency table where are the frecuency counts values * @return the separability power of the classes */ public double associationClassesAttribute(double[][] counts){ List supportSet = new ArrayList(); List not_supportSet = new ArrayList(); double separability = 0; int numValues = counts.length; int numClasses = counts[0].length; int total = 0; double[] sumRows = new double[numValues]; double[] sumCols = new double[numClasses]; // get the row totals for (int i = 0; i < numValues; i++) { sumRows[i] = 0.0; for (int j = 0; j < numClasses; j++) { sumRows[i] += counts[i][j]; total += counts[i][j]; } } // get the column totals for (int j = 0; j < numClasses; j++) { sumCols[j] = 0.0; for (int i = 0; i < numValues; i++) { sumCols[j] += counts[i][j]; } } for (int i = 0; i < numValues; i++) { for (int j = 0; j < numClasses; j++) { //Computing Conditional Probability P(Valuei | Clasej) double numerator1 = counts[i][j]; double denominator1 = sumCols[j]; double result1; if(denominator1 != 0) result1 = numerator1/denominator1; else result1 = 0; //Computing Conditional Probability P(Valuei | ^Clasej) double numerator2 = sumRows[i] - counts[i][j]; double denominator2 = total - sumCols[j]; double result2; if(denominator2 != 0) result2 = numerator2/denominator2; else result2 = 0; if(result1 > result2){ supportSet.add (i); separability +=result1; } else{ not_supportSet.add (i); separability +=result2; } } } return separability/numClasses - 1.0; } /** * Return a description of the evaluator * @return description as a string */ public String toString () { StringBuffer text = new StringBuffer(); if (m_trainInstances == null) { text.append("\tSignificance evaluator has not been built"); } else { text.append("\tSignificance feature evaluator"); if (!m_missing_merge) { text.append("\n\tMissing values treated as seperate"); } } text.append("\n"); return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5447 $"); } /** * Main method for testing this class. * * @param args the options */ public static void main (String[] args) { runEvaluator(new SignificanceAttributeEval(), args); } }