[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * SignificanceAttributeEval.java |
---|
| 19 | * Copyright (C) 2009 Adrian Pino |
---|
| 20 | * Copyright (C) 2009 University of Waikato, Hamilton, NZ |
---|
| 21 | * |
---|
| 22 | */ |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import java.util.ArrayList; |
---|
| 26 | import java.util.Enumeration; |
---|
| 27 | import java.util.List; |
---|
| 28 | import java.util.Vector; |
---|
| 29 | |
---|
| 30 | import weka.core.Capabilities; |
---|
| 31 | import weka.core.Instance; |
---|
| 32 | import weka.core.Instances; |
---|
| 33 | import weka.core.Option; |
---|
| 34 | import weka.core.OptionHandler; |
---|
| 35 | import weka.core.RevisionUtils; |
---|
| 36 | import weka.core.TechnicalInformation; |
---|
| 37 | import weka.core.TechnicalInformationHandler; |
---|
| 38 | import weka.core.Utils; |
---|
| 39 | import weka.core.Capabilities.Capability; |
---|
| 40 | import weka.core.TechnicalInformation.Field; |
---|
| 41 | import weka.core.TechnicalInformation.Type; |
---|
| 42 | import weka.filters.Filter; |
---|
| 43 | import weka.filters.supervised.attribute.Discretize; |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | <!-- globalinfo-start --> |
---|
| 47 | * Significance :<br/> |
---|
| 48 | * <br/> |
---|
| 49 | * Evaluates the worth of an attribute by computing the Probabilistic Significance as a two-way function.<br/> |
---|
| 50 | * (attribute-classes and classes-attribute association)<br/> |
---|
| 51 | * <br/> |
---|
| 52 | * For more information see:<br/> |
---|
| 53 | * <br/> |
---|
| 54 | * Amir Ahmad, Lipika Dey (2004). A feature selection technique for classificatory analysis. |
---|
| 55 | * <p/> |
---|
| 56 | <!-- globalinfo-end --> |
---|
| 57 | * |
---|
| 58 | <!-- options-start --> |
---|
| 59 | * Valid options are: <p/> |
---|
| 60 | * |
---|
| 61 | * <pre> -M |
---|
| 62 | * treat missing values as a separate value.</pre> |
---|
| 63 | * |
---|
| 64 | <!-- options-end --> |
---|
| 65 | * |
---|
| 66 | <!-- technical-bibtex-start --> |
---|
| 67 | * BibTeX: |
---|
| 68 | * <pre> |
---|
| 69 | * @phdthesis{Ahmad2004, |
---|
| 70 | * author = {Amir Ahmad and Lipika Dey}, |
---|
| 71 | * month = {October}, |
---|
| 72 | * publisher = {ELSEVIER}, |
---|
| 73 | * title = {A feature selection technique for classificatory analysis}, |
---|
| 74 | * year = {2004} |
---|
| 75 | * } |
---|
| 76 | * </pre> |
---|
| 77 | * <p/> |
---|
| 78 | <!-- technical-bibtex-end --> |
---|
| 79 | * |
---|
| 80 | * @author Adrian Pino (apinoa@facinf.uho.edu.cu) |
---|
| 81 | * @version $Revision: 5447 $ |
---|
| 82 | */ |
---|
| 83 | public class SignificanceAttributeEval |
---|
| 84 | extends ASEvaluation |
---|
| 85 | implements AttributeEvaluator, OptionHandler, TechnicalInformationHandler { |
---|
| 86 | |
---|
| 87 | /** for serialization */ |
---|
| 88 | static final long serialVersionUID = -8504656625598579926L; |
---|
| 89 | |
---|
| 90 | /** The training instances */ |
---|
| 91 | private Instances m_trainInstances; |
---|
| 92 | |
---|
| 93 | /** The class index */ |
---|
| 94 | private int m_classIndex; |
---|
| 95 | |
---|
| 96 | /** The number of attributes */ |
---|
| 97 | private int m_numAttribs; |
---|
| 98 | |
---|
| 99 | /** The number of instances */ |
---|
| 100 | private int m_numInstances; |
---|
| 101 | |
---|
| 102 | /** The number of classes */ |
---|
| 103 | private int m_numClasses; |
---|
| 104 | |
---|
| 105 | /** Merge missing values */ |
---|
| 106 | private boolean m_missing_merge; |
---|
| 107 | |
---|
| 108 | /** |
---|
| 109 | * Returns a string describing this attribute evaluator |
---|
| 110 | * @return a description of the evaluator suitable for |
---|
| 111 | * displaying in the explorer/experimenter gui |
---|
| 112 | */ |
---|
| 113 | public String globalInfo() { |
---|
| 114 | return "Significance :\n\nEvaluates the worth of an attribute " |
---|
| 115 | +"by computing the Probabilistic Significance as a two-way function.\n" |
---|
| 116 | +"(atributte-classes and classes-atribute association)\n\n" |
---|
| 117 | + "For more information see:\n\n" |
---|
| 118 | + getTechnicalInformation().toString(); |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | /** |
---|
| 122 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 123 | * detailed information about the technical background of this class, |
---|
| 124 | * e.g., paper reference or book this class is based on. |
---|
| 125 | * |
---|
| 126 | * @return the technical information about this class |
---|
| 127 | */ |
---|
| 128 | public TechnicalInformation getTechnicalInformation() { |
---|
| 129 | TechnicalInformation result; |
---|
| 130 | |
---|
| 131 | result = new TechnicalInformation(Type.PHDTHESIS); |
---|
| 132 | result.setValue(Field.AUTHOR, "Amir Ahmad and Lipika Dey"); |
---|
| 133 | result.setValue(Field.YEAR, "2004"); |
---|
| 134 | result.setValue(Field.MONTH, "October"); |
---|
| 135 | result.setValue(Field.TITLE, "A feature selection technique for classificatory analysis"); |
---|
| 136 | result.setValue(Field.PUBLISHER, "ELSEVIER"); |
---|
| 137 | |
---|
| 138 | return result; |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | /** |
---|
| 143 | * Constructor |
---|
| 144 | */ |
---|
| 145 | public SignificanceAttributeEval () { |
---|
| 146 | resetOptions(); |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | /** |
---|
| 151 | * Returns an enumeration describing the available options. |
---|
| 152 | * @return an enumeration of all the available options. |
---|
| 153 | **/ |
---|
| 154 | public Enumeration listOptions () { |
---|
| 155 | Vector newVector = new Vector(1); |
---|
| 156 | newVector.addElement(new Option("\ttreat missing values as a separate " |
---|
| 157 | + "value.", "M", 0, "-M")); |
---|
| 158 | return newVector.elements(); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | /** |
---|
| 163 | * Parses a given list of options. <p/> |
---|
| 164 | * |
---|
| 165 | <!-- options-start --> |
---|
| 166 | * Valid options are: <p/> |
---|
| 167 | * |
---|
| 168 | * <pre> -M |
---|
| 169 | * treat missing values as a separate value.</pre> |
---|
| 170 | * |
---|
| 171 | <!-- options-end --> |
---|
| 172 | * |
---|
| 173 | * @param options the list of options as an array of strings |
---|
| 174 | * @throws Exception if an option is not supported |
---|
| 175 | **/ |
---|
| 176 | public void setOptions (String[] options) |
---|
| 177 | throws Exception { |
---|
| 178 | resetOptions(); |
---|
| 179 | setMissingMerge(!(Utils.getFlag('M', options))); |
---|
| 180 | } |
---|
| 181 | |
---|
| 182 | /** |
---|
| 183 | * Returns the tip text for this property |
---|
| 184 | * @return tip text for this property suitable for |
---|
| 185 | * displaying in the explorer/experimenter gui |
---|
| 186 | */ |
---|
| 187 | public String missingMergeTipText() { |
---|
| 188 | return "Distribute counts for missing values. Counts are distributed " |
---|
| 189 | +"across other values in proportion to their frequency. Otherwise, " |
---|
| 190 | +"missing is treated as a separate value."; |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | /** |
---|
| 194 | * distribute the counts for missing values across observed values |
---|
| 195 | * |
---|
| 196 | * @param b true=distribute missing values. |
---|
| 197 | */ |
---|
| 198 | public void setMissingMerge (boolean b) { |
---|
| 199 | m_missing_merge = b; |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | /** |
---|
| 204 | * get whether missing values are being distributed or not |
---|
| 205 | * |
---|
| 206 | * @return true if missing values are being distributed. |
---|
| 207 | */ |
---|
| 208 | public boolean getMissingMerge () { |
---|
| 209 | return m_missing_merge; |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | /** |
---|
| 214 | * Gets the current settings of WrapperSubsetEval. |
---|
| 215 | * @return an array of strings suitable for passing to setOptions() |
---|
| 216 | */ |
---|
| 217 | public String[] getOptions () { |
---|
| 218 | String[] options = new String[1]; |
---|
| 219 | int current = 0; |
---|
| 220 | |
---|
| 221 | if (!getMissingMerge()) { |
---|
| 222 | options[current++] = "-M"; |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | while (current < options.length) { |
---|
| 226 | options[current++] = ""; |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | return options; |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | /** |
---|
| 233 | * Returns the capabilities of this evaluator. |
---|
| 234 | * |
---|
| 235 | * @return the capabilities of this evaluator |
---|
| 236 | * @see Capabilities |
---|
| 237 | */ |
---|
| 238 | public Capabilities getCapabilities() { |
---|
| 239 | Capabilities result = super.getCapabilities(); |
---|
| 240 | result.disableAll(); |
---|
| 241 | |
---|
| 242 | // attributes |
---|
| 243 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 244 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 245 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 246 | result.enable(Capability.MISSING_VALUES); |
---|
| 247 | |
---|
| 248 | // class |
---|
| 249 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 250 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 251 | |
---|
| 252 | return result; |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | /** |
---|
| 256 | * Initializes the Significance attribute evaluator. |
---|
| 257 | * Discretizes all attributes that are numeric. |
---|
| 258 | * |
---|
| 259 | * @param data set of instances serving as training data |
---|
| 260 | * @throws Exception if the evaluator has not been |
---|
| 261 | * generated successfully |
---|
| 262 | */ |
---|
| 263 | public void buildEvaluator (Instances data) |
---|
| 264 | throws Exception { |
---|
| 265 | |
---|
| 266 | // can evaluator handle data? |
---|
| 267 | getCapabilities().testWithFail(data); |
---|
| 268 | |
---|
| 269 | m_trainInstances = data; |
---|
| 270 | m_classIndex = m_trainInstances.classIndex(); |
---|
| 271 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
| 272 | m_numInstances = m_trainInstances.numInstances(); |
---|
| 273 | Discretize disTransform = new Discretize(); |
---|
| 274 | disTransform.setUseBetterEncoding(true); |
---|
| 275 | disTransform.setInputFormat(m_trainInstances); |
---|
| 276 | m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); |
---|
| 277 | m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | /** |
---|
| 282 | * reset options to default values |
---|
| 283 | */ |
---|
| 284 | protected void resetOptions () { |
---|
| 285 | m_trainInstances = null; |
---|
| 286 | m_missing_merge = true; |
---|
| 287 | } |
---|
| 288 | |
---|
| 289 | |
---|
| 290 | /** |
---|
| 291 | * evaluates an individual attribute by measuring the Significance |
---|
| 292 | * |
---|
| 293 | * @param attribute the index of the attribute to be evaluated |
---|
| 294 | * @return the Significance of the attribute in the data base |
---|
| 295 | * @throws Exception if the attribute could not be evaluated |
---|
| 296 | */ |
---|
| 297 | public double evaluateAttribute (int attribute) |
---|
| 298 | throws Exception { |
---|
| 299 | int i, j, ii, jj; |
---|
| 300 | int ni, nj; |
---|
| 301 | double sum = 0.0; |
---|
| 302 | ni = m_trainInstances.attribute(attribute).numValues() + 1; |
---|
| 303 | nj = m_numClasses + 1; |
---|
| 304 | double[] sumi, sumj; |
---|
| 305 | Instance inst; |
---|
| 306 | double temp = 0.0; |
---|
| 307 | sumi = new double[ni]; |
---|
| 308 | sumj = new double[nj]; |
---|
| 309 | double[][] counts = new double[ni][nj]; |
---|
| 310 | |
---|
| 311 | for (i = 0; i < ni; i++) { |
---|
| 312 | sumi[i] = 0.0; |
---|
| 313 | |
---|
| 314 | for (j = 0; j < nj; j++) { |
---|
| 315 | sumj[j] = 0.0; |
---|
| 316 | counts[i][j] = 0.0; |
---|
| 317 | } |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | // Fill the contingency table |
---|
| 321 | for (i = 0; i < m_numInstances; i++) { |
---|
| 322 | inst = m_trainInstances.instance(i); |
---|
| 323 | |
---|
| 324 | if (inst.isMissing(attribute)) { |
---|
| 325 | ii = ni - 1; |
---|
| 326 | } |
---|
| 327 | else { |
---|
| 328 | ii = (int)inst.value(attribute); |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | if (inst.isMissing(m_classIndex)) { |
---|
| 332 | jj = nj - 1; |
---|
| 333 | } |
---|
| 334 | else { |
---|
| 335 | jj = (int)inst.value(m_classIndex); |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | counts[ii][jj]++; |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | // get the row totals |
---|
| 342 | for (i = 0; i < ni; i++) { |
---|
| 343 | sumi[i] = 0.0; |
---|
| 344 | |
---|
| 345 | for (j = 0; j < nj; j++) { |
---|
| 346 | sumi[i] += counts[i][j]; |
---|
| 347 | sum += counts[i][j]; |
---|
| 348 | } |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | // get the column totals |
---|
| 352 | for (j = 0; j < nj; j++) { |
---|
| 353 | sumj[j] = 0.0; |
---|
| 354 | |
---|
| 355 | for (i = 0; i < ni; i++) { |
---|
| 356 | sumj[j] += counts[i][j]; |
---|
| 357 | } |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | |
---|
| 361 | // distribute missing counts |
---|
| 362 | if (m_missing_merge && |
---|
| 363 | (sumi[ni-1] < m_numInstances) && |
---|
| 364 | (sumj[nj-1] < m_numInstances)) { |
---|
| 365 | double[] i_copy = new double[sumi.length]; |
---|
| 366 | double[] j_copy = new double[sumj.length]; |
---|
| 367 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
| 368 | |
---|
| 369 | for (i = 0; i < ni; i++) { |
---|
| 370 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
| 374 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
| 375 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] - |
---|
| 376 | counts[ni - 1][nj - 1]); |
---|
| 377 | |
---|
| 378 | // do the missing i's |
---|
| 379 | if (sumi[ni - 1] > 0.0) { |
---|
| 380 | for (j = 0; j < nj - 1; j++) { |
---|
| 381 | if (counts[ni - 1][j] > 0.0) { |
---|
| 382 | for (i = 0; i < ni - 1; i++) { |
---|
| 383 | temp = ((i_copy[i]/(sum - i_copy[ni - 1]))*counts[ni - 1][j]); |
---|
| 384 | counts[i][j] += temp; |
---|
| 385 | sumi[i] += temp; |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | counts[ni - 1][j] = 0.0; |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | } |
---|
| 392 | |
---|
| 393 | sumi[ni - 1] = 0.0; |
---|
| 394 | |
---|
| 395 | // do the missing j's |
---|
| 396 | if (sumj[nj - 1] > 0.0) { |
---|
| 397 | for (i = 0; i < ni - 1; i++) { |
---|
| 398 | if (counts[i][nj - 1] > 0.0) { |
---|
| 399 | for (j = 0; j < nj - 1; j++) { |
---|
| 400 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
| 401 | counts[i][j] += temp; |
---|
| 402 | sumj[j] += temp; |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | counts[i][nj - 1] = 0.0; |
---|
| 406 | } |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | |
---|
| 410 | sumj[nj - 1] = 0.0; |
---|
| 411 | |
---|
| 412 | // do the both missing |
---|
| 413 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
| 414 | for (i = 0; i < ni - 1; i++) { |
---|
| 415 | for (j = 0; j < nj - 1; j++) { |
---|
| 416 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
| 417 | counts_copy[ni - 1][nj - 1]; |
---|
| 418 | counts[i][j] += temp; |
---|
| 419 | sumi[i] += temp; |
---|
| 420 | sumj[j] += temp; |
---|
| 421 | } |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | counts[ni - 1][nj - 1] = 0.0; |
---|
| 425 | } |
---|
| 426 | } |
---|
| 427 | |
---|
| 428 | /**Working on the ContingencyTables****/ |
---|
| 429 | double discriminatingPower = associationAttributeClasses(counts); |
---|
| 430 | double separability = associationClassesAttribute(counts); |
---|
| 431 | /*...*/ |
---|
| 432 | |
---|
| 433 | |
---|
| 434 | return discriminatingPower + separability / 2; |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | /** |
---|
| 438 | * evaluates an individual attribute by measuring the attribute-classes |
---|
| 439 | * association |
---|
| 440 | * |
---|
| 441 | * @param counts the Contingency table where are the frecuency counts values |
---|
| 442 | * @return the discriminating power of the attribute |
---|
| 443 | */ |
---|
| 444 | public double associationAttributeClasses(double[][] counts){ |
---|
| 445 | |
---|
| 446 | List<Integer> supportSet = new ArrayList<Integer>(); |
---|
| 447 | List<Integer> not_supportSet = new ArrayList<Integer>(); |
---|
| 448 | |
---|
| 449 | double discriminatingPower = 0; |
---|
| 450 | |
---|
| 451 | |
---|
| 452 | int numValues = counts.length; |
---|
| 453 | int numClasses = counts[0].length; |
---|
| 454 | |
---|
| 455 | int total = 0; |
---|
| 456 | |
---|
| 457 | double[] sumRows = new double[numValues]; |
---|
| 458 | double[] sumCols = new double[numClasses]; |
---|
| 459 | |
---|
| 460 | // get the row totals |
---|
| 461 | for (int i = 0; i < numValues; i++) { |
---|
| 462 | sumRows[i] = 0.0; |
---|
| 463 | |
---|
| 464 | for (int j = 0; j < numClasses; j++) { |
---|
| 465 | sumRows[i] += counts[i][j]; |
---|
| 466 | total += counts[i][j]; |
---|
| 467 | } |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | // get the column totals |
---|
| 471 | for (int j = 0; j < numClasses; j++) { |
---|
| 472 | sumCols[j] = 0.0; |
---|
| 473 | |
---|
| 474 | for (int i = 0; i < numValues; i++) { |
---|
| 475 | sumCols[j] += counts[i][j]; |
---|
| 476 | } |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | for (int i = 0; i < numClasses; i++) { |
---|
| 480 | for (int j = 0; j < numValues; j++) { |
---|
| 481 | |
---|
| 482 | //Computing Conditional Probability P(Clasei | Valuej) |
---|
| 483 | double numerator1 = counts[j][i]; |
---|
| 484 | double denominator1 = sumRows[j]; |
---|
| 485 | double result1; |
---|
| 486 | |
---|
| 487 | if(denominator1 != 0) |
---|
| 488 | result1 = numerator1/denominator1; |
---|
| 489 | else |
---|
| 490 | result1 = 0; |
---|
| 491 | |
---|
| 492 | //Computing Conditional Probability P(Clasei | ^Valuej) |
---|
| 493 | double numerator2 = sumCols[i] - counts[j][i]; |
---|
| 494 | double denominator2 = total - sumRows[j]; |
---|
| 495 | double result2; |
---|
| 496 | |
---|
| 497 | if(denominator2 != 0) |
---|
| 498 | result2 = numerator2/denominator2; |
---|
| 499 | else |
---|
| 500 | result2 = 0; |
---|
| 501 | |
---|
| 502 | |
---|
| 503 | if(result1 > result2){ |
---|
| 504 | supportSet.add (i); |
---|
| 505 | discriminatingPower +=result1; |
---|
| 506 | } |
---|
| 507 | else{ |
---|
| 508 | not_supportSet.add (i); |
---|
| 509 | discriminatingPower +=result2; |
---|
| 510 | } |
---|
| 511 | } |
---|
| 512 | |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | return discriminatingPower/numValues - 1.0; |
---|
| 516 | } |
---|
| 517 | |
---|
| 518 | /** |
---|
| 519 | * evaluates an individual attribute by measuring the classes-attribute |
---|
| 520 | * association |
---|
| 521 | * |
---|
| 522 | * @param counts the Contingency table where are the frecuency counts values |
---|
| 523 | * @return the separability power of the classes |
---|
| 524 | */ |
---|
| 525 | public double associationClassesAttribute(double[][] counts){ |
---|
| 526 | |
---|
| 527 | List<Integer> supportSet = new ArrayList<Integer>(); |
---|
| 528 | List<Integer> not_supportSet = new ArrayList<Integer>(); |
---|
| 529 | |
---|
| 530 | double separability = 0; |
---|
| 531 | |
---|
| 532 | |
---|
| 533 | int numValues = counts.length; |
---|
| 534 | int numClasses = counts[0].length; |
---|
| 535 | |
---|
| 536 | int total = 0; |
---|
| 537 | |
---|
| 538 | double[] sumRows = new double[numValues]; |
---|
| 539 | double[] sumCols = new double[numClasses]; |
---|
| 540 | |
---|
| 541 | // get the row totals |
---|
| 542 | for (int i = 0; i < numValues; i++) { |
---|
| 543 | sumRows[i] = 0.0; |
---|
| 544 | |
---|
| 545 | for (int j = 0; j < numClasses; j++) { |
---|
| 546 | sumRows[i] += counts[i][j]; |
---|
| 547 | total += counts[i][j]; |
---|
| 548 | } |
---|
| 549 | } |
---|
| 550 | |
---|
| 551 | // get the column totals |
---|
| 552 | for (int j = 0; j < numClasses; j++) { |
---|
| 553 | sumCols[j] = 0.0; |
---|
| 554 | |
---|
| 555 | for (int i = 0; i < numValues; i++) { |
---|
| 556 | sumCols[j] += counts[i][j]; |
---|
| 557 | } |
---|
| 558 | } |
---|
| 559 | |
---|
| 560 | for (int i = 0; i < numValues; i++) { |
---|
| 561 | for (int j = 0; j < numClasses; j++) { |
---|
| 562 | |
---|
| 563 | //Computing Conditional Probability P(Valuei | Clasej) |
---|
| 564 | double numerator1 = counts[i][j]; |
---|
| 565 | double denominator1 = sumCols[j]; |
---|
| 566 | double result1; |
---|
| 567 | |
---|
| 568 | if(denominator1 != 0) |
---|
| 569 | result1 = numerator1/denominator1; |
---|
| 570 | else |
---|
| 571 | result1 = 0; |
---|
| 572 | |
---|
| 573 | //Computing Conditional Probability P(Valuei | ^Clasej) |
---|
| 574 | double numerator2 = sumRows[i] - counts[i][j]; |
---|
| 575 | double denominator2 = total - sumCols[j]; |
---|
| 576 | double result2; |
---|
| 577 | |
---|
| 578 | if(denominator2 != 0) |
---|
| 579 | result2 = numerator2/denominator2; |
---|
| 580 | else |
---|
| 581 | result2 = 0; |
---|
| 582 | |
---|
| 583 | |
---|
| 584 | if(result1 > result2){ |
---|
| 585 | supportSet.add (i); |
---|
| 586 | separability +=result1; |
---|
| 587 | } |
---|
| 588 | else{ |
---|
| 589 | not_supportSet.add (i); |
---|
| 590 | separability +=result2; |
---|
| 591 | } |
---|
| 592 | } |
---|
| 593 | |
---|
| 594 | } |
---|
| 595 | |
---|
| 596 | return separability/numClasses - 1.0; |
---|
| 597 | } |
---|
| 598 | |
---|
| 599 | |
---|
| 600 | /** |
---|
| 601 | * Return a description of the evaluator |
---|
| 602 | * @return description as a string |
---|
| 603 | */ |
---|
| 604 | public String toString () { |
---|
| 605 | StringBuffer text = new StringBuffer(); |
---|
| 606 | |
---|
| 607 | if (m_trainInstances == null) { |
---|
| 608 | text.append("\tSignificance evaluator has not been built"); |
---|
| 609 | } |
---|
| 610 | else { |
---|
| 611 | text.append("\tSignificance feature evaluator"); |
---|
| 612 | |
---|
| 613 | if (!m_missing_merge) { |
---|
| 614 | text.append("\n\tMissing values treated as seperate"); |
---|
| 615 | } |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | text.append("\n"); |
---|
| 619 | return text.toString(); |
---|
| 620 | } |
---|
| 621 | |
---|
| 622 | /** |
---|
| 623 | * Returns the revision string. |
---|
| 624 | * |
---|
| 625 | * @return the revision |
---|
| 626 | */ |
---|
| 627 | public String getRevision() { |
---|
| 628 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | /** |
---|
| 632 | * Main method for testing this class. |
---|
| 633 | * |
---|
| 634 | * @param args the options |
---|
| 635 | */ |
---|
| 636 | public static void main (String[] args) { |
---|
| 637 | runEvaluator(new SignificanceAttributeEval(), args); |
---|
| 638 | } |
---|
| 639 | } |
---|
| 640 | |
---|