1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Ranker.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Instances; |
---|
26 | import weka.core.Option; |
---|
27 | import weka.core.OptionHandler; |
---|
28 | import weka.core.Range; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.Utils; |
---|
31 | |
---|
32 | import java.util.Enumeration; |
---|
33 | import java.util.Vector; |
---|
34 | |
---|
35 | /** |
---|
36 | <!-- globalinfo-start --> |
---|
37 | * Ranker : <br/> |
---|
38 | * <br/> |
---|
39 | * Ranks attributes by their individual evaluations. Use in conjunction with attribute evaluators (ReliefF, GainRatio, Entropy etc).<br/> |
---|
40 | * <p/> |
---|
41 | <!-- globalinfo-end --> |
---|
42 | * |
---|
43 | <!-- options-start --> |
---|
44 | * Valid options are: <p/> |
---|
45 | * |
---|
46 | * <pre> -P <start set> |
---|
47 | * Specify a starting set of attributes. |
---|
48 | * Eg. 1,3,5-7. |
---|
49 | * Any starting attributes specified are |
---|
50 | * ignored during the ranking.</pre> |
---|
51 | * |
---|
52 | * <pre> -T <threshold> |
---|
53 | * Specify a theshold by which attributes |
---|
54 | * may be discarded from the ranking.</pre> |
---|
55 | * |
---|
56 | * <pre> -N <num to select> |
---|
57 | * Specify number of attributes to select</pre> |
---|
58 | * |
---|
59 | <!-- options-end --> |
---|
60 | * |
---|
61 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
62 | * @version $Revision: 1.26 $ |
---|
63 | */ |
---|
64 | public class Ranker |
---|
65 | extends ASSearch |
---|
66 | implements RankedOutputSearch, StartSetHandler, OptionHandler { |
---|
67 | |
---|
68 | /** for serialization */ |
---|
69 | static final long serialVersionUID = -9086714848510751934L; |
---|
70 | |
---|
71 | /** Holds the starting set as an array of attributes */ |
---|
72 | private int[] m_starting; |
---|
73 | |
---|
74 | /** Holds the start set for the search as a range */ |
---|
75 | private Range m_startRange; |
---|
76 | |
---|
77 | /** Holds the ordered list of attributes */ |
---|
78 | private int[] m_attributeList; |
---|
79 | |
---|
80 | /** Holds the list of attribute merit scores */ |
---|
81 | private double[] m_attributeMerit; |
---|
82 | |
---|
83 | /** Data has class attribute---if unsupervised evaluator then no class */ |
---|
84 | private boolean m_hasClass; |
---|
85 | |
---|
86 | /** Class index of the data if supervised evaluator */ |
---|
87 | private int m_classIndex; |
---|
88 | |
---|
89 | /** The number of attribtes */ |
---|
90 | private int m_numAttribs; |
---|
91 | |
---|
92 | /** |
---|
93 | * A threshold by which to discard attributes---used by the |
---|
94 | * AttributeSelection module |
---|
95 | */ |
---|
96 | private double m_threshold; |
---|
97 | |
---|
98 | /** The number of attributes to select. -1 indicates that all attributes |
---|
99 | are to be retained. Has precedence over m_threshold */ |
---|
100 | private int m_numToSelect = -1; |
---|
101 | |
---|
102 | /** Used to compute the number to select */ |
---|
103 | private int m_calculatedNumToSelect = -1; |
---|
104 | |
---|
105 | /** |
---|
106 | * Returns a string describing this search method |
---|
107 | * @return a description of the search suitable for |
---|
108 | * displaying in the explorer/experimenter gui |
---|
109 | */ |
---|
110 | public String globalInfo() { |
---|
111 | return "Ranker : \n\nRanks attributes by their individual evaluations. " |
---|
112 | +"Use in conjunction with attribute evaluators (ReliefF, GainRatio, " |
---|
113 | +"Entropy etc).\n"; |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * Constructor |
---|
118 | */ |
---|
119 | public Ranker () { |
---|
120 | resetOptions(); |
---|
121 | } |
---|
122 | |
---|
123 | /** |
---|
124 | * Returns the tip text for this property |
---|
125 | * @return tip text for this property suitable for |
---|
126 | * displaying in the explorer/experimenter gui |
---|
127 | */ |
---|
128 | public String numToSelectTipText() { |
---|
129 | return "Specify the number of attributes to retain. The default value " |
---|
130 | +"(-1) indicates that all attributes are to be retained. Use either " |
---|
131 | +"this option or a threshold to reduce the attribute set."; |
---|
132 | } |
---|
133 | |
---|
134 | /** |
---|
135 | * Specify the number of attributes to select from the ranked list. -1 |
---|
136 | * indicates that all attributes are to be retained. |
---|
137 | * @param n the number of attributes to retain |
---|
138 | */ |
---|
139 | public void setNumToSelect(int n) { |
---|
140 | m_numToSelect = n; |
---|
141 | } |
---|
142 | |
---|
143 | /** |
---|
144 | * Gets the number of attributes to be retained. |
---|
145 | * @return the number of attributes to retain |
---|
146 | */ |
---|
147 | public int getNumToSelect() { |
---|
148 | return m_numToSelect; |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Gets the calculated number to select. This might be computed |
---|
153 | * from a threshold, or if < 0 is set as the number to select then |
---|
154 | * it is set to the number of attributes in the (transformed) data. |
---|
155 | * @return the calculated number of attributes to select |
---|
156 | */ |
---|
157 | public int getCalculatedNumToSelect() { |
---|
158 | if (m_numToSelect >= 0) { |
---|
159 | m_calculatedNumToSelect = m_numToSelect; |
---|
160 | } |
---|
161 | return m_calculatedNumToSelect; |
---|
162 | } |
---|
163 | |
---|
164 | /** |
---|
165 | * Returns the tip text for this property |
---|
166 | * @return tip text for this property suitable for |
---|
167 | * displaying in the explorer/experimenter gui |
---|
168 | */ |
---|
169 | public String thresholdTipText() { |
---|
170 | return "Set threshold by which attributes can be discarded. Default value " |
---|
171 | + "results in no attributes being discarded. Use either this option or " |
---|
172 | +"numToSelect to reduce the attribute set."; |
---|
173 | } |
---|
174 | |
---|
175 | /** |
---|
176 | * Set the threshold by which the AttributeSelection module can discard |
---|
177 | * attributes. |
---|
178 | * @param threshold the threshold. |
---|
179 | */ |
---|
180 | public void setThreshold(double threshold) { |
---|
181 | m_threshold = threshold; |
---|
182 | } |
---|
183 | |
---|
184 | /** |
---|
185 | * Returns the threshold so that the AttributeSelection module can |
---|
186 | * discard attributes from the ranking. |
---|
187 | */ |
---|
188 | public double getThreshold() { |
---|
189 | return m_threshold; |
---|
190 | } |
---|
191 | |
---|
192 | /** |
---|
193 | * Returns the tip text for this property |
---|
194 | * @return tip text for this property suitable for |
---|
195 | * displaying in the explorer/experimenter gui |
---|
196 | */ |
---|
197 | public String generateRankingTipText() { |
---|
198 | return "A constant option. Ranker is only capable of generating " |
---|
199 | +" attribute rankings."; |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * This is a dummy set method---Ranker is ONLY capable of producing |
---|
204 | * a ranked list of attributes for attribute evaluators. |
---|
205 | * @param doRank this parameter is N/A and is ignored |
---|
206 | */ |
---|
207 | public void setGenerateRanking(boolean doRank) { |
---|
208 | |
---|
209 | } |
---|
210 | |
---|
211 | /** |
---|
212 | * This is a dummy method. Ranker can ONLY be used with attribute |
---|
213 | * evaluators and as such can only produce a ranked list of attributes |
---|
214 | * @return true all the time. |
---|
215 | */ |
---|
216 | public boolean getGenerateRanking() { |
---|
217 | return true; |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Returns the tip text for this property |
---|
222 | * @return tip text for this property suitable for |
---|
223 | * displaying in the explorer/experimenter gui |
---|
224 | */ |
---|
225 | public String startSetTipText() { |
---|
226 | return "Specify a set of attributes to ignore. " |
---|
227 | +" When generating the ranking, Ranker will not evaluate the attributes " |
---|
228 | +" in this list. " |
---|
229 | +"This is specified as a comma " |
---|
230 | +"seperated list off attribute indexes starting at 1. It can include " |
---|
231 | +"ranges. Eg. 1,2,5-9,17."; |
---|
232 | } |
---|
233 | |
---|
234 | /** |
---|
235 | * Sets a starting set of attributes for the search. It is the |
---|
236 | * search method's responsibility to report this start set (if any) |
---|
237 | * in its toString() method. |
---|
238 | * @param startSet a string containing a list of attributes (and or ranges), |
---|
239 | * eg. 1,2,6,10-15. |
---|
240 | * @throws Exception if start set can't be set. |
---|
241 | */ |
---|
242 | public void setStartSet (String startSet) throws Exception { |
---|
243 | m_startRange.setRanges(startSet); |
---|
244 | } |
---|
245 | |
---|
246 | /** |
---|
247 | * Returns a list of attributes (and or attribute ranges) as a String |
---|
248 | * @return a list of attributes (and or attribute ranges) |
---|
249 | */ |
---|
250 | public String getStartSet () { |
---|
251 | return m_startRange.getRanges(); |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * Returns an enumeration describing the available options. |
---|
256 | * @return an enumeration of all the available options. |
---|
257 | **/ |
---|
258 | public Enumeration listOptions () { |
---|
259 | Vector newVector = new Vector(3); |
---|
260 | |
---|
261 | newVector |
---|
262 | .addElement(new Option("\tSpecify a starting set of attributes.\n" |
---|
263 | + "\tEg. 1,3,5-7.\n" |
---|
264 | +"\tAny starting attributes specified are\n" |
---|
265 | +"\tignored during the ranking." |
---|
266 | ,"P",1 |
---|
267 | , "-P <start set>")); |
---|
268 | newVector |
---|
269 | .addElement(new Option("\tSpecify a theshold by which attributes\n" |
---|
270 | + "\tmay be discarded from the ranking.","T",1 |
---|
271 | , "-T <threshold>")); |
---|
272 | |
---|
273 | newVector |
---|
274 | .addElement(new Option("\tSpecify number of attributes to select" |
---|
275 | ,"N",1 |
---|
276 | , "-N <num to select>")); |
---|
277 | |
---|
278 | return newVector.elements(); |
---|
279 | |
---|
280 | } |
---|
281 | |
---|
282 | /** |
---|
283 | * Parses a given list of options. <p/> |
---|
284 | * |
---|
285 | <!-- options-start --> |
---|
286 | * Valid options are: <p/> |
---|
287 | * |
---|
288 | * <pre> -P <start set> |
---|
289 | * Specify a starting set of attributes. |
---|
290 | * Eg. 1,3,5-7. |
---|
291 | * Any starting attributes specified are |
---|
292 | * ignored during the ranking.</pre> |
---|
293 | * |
---|
294 | * <pre> -T <threshold> |
---|
295 | * Specify a theshold by which attributes |
---|
296 | * may be discarded from the ranking.</pre> |
---|
297 | * |
---|
298 | * <pre> -N <num to select> |
---|
299 | * Specify number of attributes to select</pre> |
---|
300 | * |
---|
301 | <!-- options-end --> |
---|
302 | * |
---|
303 | * @param options the list of options as an array of strings |
---|
304 | * @throws Exception if an option is not supported |
---|
305 | */ |
---|
306 | public void setOptions (String[] options) |
---|
307 | throws Exception { |
---|
308 | String optionString; |
---|
309 | resetOptions(); |
---|
310 | |
---|
311 | optionString = Utils.getOption('P', options); |
---|
312 | if (optionString.length() != 0) { |
---|
313 | setStartSet(optionString); |
---|
314 | } |
---|
315 | |
---|
316 | optionString = Utils.getOption('T', options); |
---|
317 | if (optionString.length() != 0) { |
---|
318 | Double temp; |
---|
319 | temp = Double.valueOf(optionString); |
---|
320 | setThreshold(temp.doubleValue()); |
---|
321 | } |
---|
322 | |
---|
323 | optionString = Utils.getOption('N', options); |
---|
324 | if (optionString.length() != 0) { |
---|
325 | setNumToSelect(Integer.parseInt(optionString)); |
---|
326 | } |
---|
327 | } |
---|
328 | |
---|
329 | /** |
---|
330 | * Gets the current settings of ReliefFAttributeEval. |
---|
331 | * |
---|
332 | * @return an array of strings suitable for passing to setOptions() |
---|
333 | */ |
---|
334 | public String[] getOptions () { |
---|
335 | String[] options = new String[6]; |
---|
336 | int current = 0; |
---|
337 | |
---|
338 | if (!(getStartSet().equals(""))) { |
---|
339 | options[current++] = "-P"; |
---|
340 | options[current++] = ""+startSetToString(); |
---|
341 | } |
---|
342 | |
---|
343 | options[current++] = "-T"; |
---|
344 | options[current++] = "" + getThreshold(); |
---|
345 | |
---|
346 | options[current++] = "-N"; |
---|
347 | options[current++] = ""+getNumToSelect(); |
---|
348 | |
---|
349 | while (current < options.length) { |
---|
350 | options[current++] = ""; |
---|
351 | } |
---|
352 | return options; |
---|
353 | } |
---|
354 | |
---|
355 | /** |
---|
356 | * converts the array of starting attributes to a string. This is |
---|
357 | * used by getOptions to return the actual attributes specified |
---|
358 | * as the starting set. This is better than using m_startRanges.getRanges() |
---|
359 | * as the same start set can be specified in different ways from the |
---|
360 | * command line---eg 1,2,3 == 1-3. This is to ensure that stuff that |
---|
361 | * is stored in a database is comparable. |
---|
362 | * @return a comma seperated list of individual attribute numbers as a String |
---|
363 | */ |
---|
364 | private String startSetToString() { |
---|
365 | StringBuffer FString = new StringBuffer(); |
---|
366 | boolean didPrint; |
---|
367 | |
---|
368 | if (m_starting == null) { |
---|
369 | return getStartSet(); |
---|
370 | } |
---|
371 | |
---|
372 | for (int i = 0; i < m_starting.length; i++) { |
---|
373 | didPrint = false; |
---|
374 | |
---|
375 | if ((m_hasClass == false) || |
---|
376 | (m_hasClass == true && i != m_classIndex)) { |
---|
377 | FString.append((m_starting[i] + 1)); |
---|
378 | didPrint = true; |
---|
379 | } |
---|
380 | |
---|
381 | if (i == (m_starting.length - 1)) { |
---|
382 | FString.append(""); |
---|
383 | } |
---|
384 | else { |
---|
385 | if (didPrint) { |
---|
386 | FString.append(","); |
---|
387 | } |
---|
388 | } |
---|
389 | } |
---|
390 | |
---|
391 | return FString.toString(); |
---|
392 | } |
---|
393 | |
---|
394 | /** |
---|
395 | * Kind of a dummy search algorithm. Calls a Attribute evaluator to |
---|
396 | * evaluate each attribute not included in the startSet and then sorts |
---|
397 | * them to produce a ranked list of attributes. |
---|
398 | * |
---|
399 | * @param ASEval the attribute evaluator to guide the search |
---|
400 | * @param data the training instances. |
---|
401 | * @return an array (not necessarily ordered) of selected attribute indexes |
---|
402 | * @throws Exception if the search can't be completed |
---|
403 | */ |
---|
404 | public int[] search (ASEvaluation ASEval, Instances data) |
---|
405 | throws Exception { |
---|
406 | int i, j; |
---|
407 | |
---|
408 | if (!(ASEval instanceof AttributeEvaluator)) { |
---|
409 | throw new Exception(ASEval.getClass().getName() |
---|
410 | + " is not a" |
---|
411 | + "Attribute evaluator!"); |
---|
412 | } |
---|
413 | |
---|
414 | m_numAttribs = data.numAttributes(); |
---|
415 | |
---|
416 | if (ASEval instanceof UnsupervisedAttributeEvaluator) { |
---|
417 | m_hasClass = false; |
---|
418 | } |
---|
419 | else { |
---|
420 | m_classIndex = data.classIndex(); |
---|
421 | if (m_classIndex >= 0) { |
---|
422 | m_hasClass = true; |
---|
423 | } else { |
---|
424 | m_hasClass = false; |
---|
425 | } |
---|
426 | } |
---|
427 | |
---|
428 | // get the transformed data and check to see if the transformer |
---|
429 | // preserves a class index |
---|
430 | if (ASEval instanceof AttributeTransformer) { |
---|
431 | data = ((AttributeTransformer)ASEval).transformedHeader(); |
---|
432 | if (m_classIndex >= 0 && data.classIndex() >= 0) { |
---|
433 | m_classIndex = data.classIndex(); |
---|
434 | m_hasClass = true; |
---|
435 | } |
---|
436 | } |
---|
437 | |
---|
438 | |
---|
439 | m_startRange.setUpper(m_numAttribs - 1); |
---|
440 | if (!(getStartSet().equals(""))) { |
---|
441 | m_starting = m_startRange.getSelection(); |
---|
442 | } |
---|
443 | |
---|
444 | int sl=0; |
---|
445 | if (m_starting != null) { |
---|
446 | sl = m_starting.length; |
---|
447 | } |
---|
448 | if ((m_starting != null) && (m_hasClass == true)) { |
---|
449 | // see if the supplied list contains the class index |
---|
450 | boolean ok = false; |
---|
451 | for (i = 0; i < sl; i++) { |
---|
452 | if (m_starting[i] == m_classIndex) { |
---|
453 | ok = true; |
---|
454 | break; |
---|
455 | } |
---|
456 | } |
---|
457 | |
---|
458 | if (ok == false) { |
---|
459 | sl++; |
---|
460 | } |
---|
461 | } |
---|
462 | else { |
---|
463 | if (m_hasClass == true) { |
---|
464 | sl++; |
---|
465 | } |
---|
466 | } |
---|
467 | |
---|
468 | |
---|
469 | m_attributeList = new int[m_numAttribs - sl]; |
---|
470 | m_attributeMerit = new double[m_numAttribs - sl]; |
---|
471 | |
---|
472 | // add in those attributes not in the starting (omit list) |
---|
473 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
474 | if (!inStarting(i)) { |
---|
475 | m_attributeList[j++] = i; |
---|
476 | } |
---|
477 | } |
---|
478 | |
---|
479 | AttributeEvaluator ASEvaluator = (AttributeEvaluator)ASEval; |
---|
480 | |
---|
481 | for (i = 0; i < m_attributeList.length; i++) { |
---|
482 | m_attributeMerit[i] = ASEvaluator.evaluateAttribute(m_attributeList[i]); |
---|
483 | } |
---|
484 | |
---|
485 | double[][] tempRanked = rankedAttributes(); |
---|
486 | int[] rankedAttributes = new int[m_attributeList.length]; |
---|
487 | |
---|
488 | for (i = 0; i < m_attributeList.length; i++) { |
---|
489 | rankedAttributes[i] = (int)tempRanked[i][0]; |
---|
490 | } |
---|
491 | |
---|
492 | return rankedAttributes; |
---|
493 | } |
---|
494 | |
---|
495 | |
---|
496 | /** |
---|
497 | * Sorts the evaluated attribute list |
---|
498 | * |
---|
499 | * @return an array of sorted (highest eval to lowest) attribute indexes |
---|
500 | * @throws Exception of sorting can't be done. |
---|
501 | */ |
---|
502 | public double[][] rankedAttributes () |
---|
503 | throws Exception { |
---|
504 | int i, j; |
---|
505 | |
---|
506 | if (m_attributeList == null || m_attributeMerit == null) { |
---|
507 | throw new Exception("Search must be performed before a ranked " |
---|
508 | + "attribute list can be obtained"); |
---|
509 | } |
---|
510 | |
---|
511 | int[] ranked = Utils.sort(m_attributeMerit); |
---|
512 | // reverse the order of the ranked indexes |
---|
513 | double[][] bestToWorst = new double[ranked.length][2]; |
---|
514 | |
---|
515 | for (i = ranked.length - 1, j = 0; i >= 0; i--) { |
---|
516 | bestToWorst[j++][0] = ranked[i]; |
---|
517 | } |
---|
518 | |
---|
519 | // convert the indexes to attribute indexes |
---|
520 | for (i = 0; i < bestToWorst.length; i++) { |
---|
521 | int temp = ((int)bestToWorst[i][0]); |
---|
522 | bestToWorst[i][0] = m_attributeList[temp]; |
---|
523 | bestToWorst[i][1] = m_attributeMerit[temp]; |
---|
524 | } |
---|
525 | |
---|
526 | if (m_numToSelect > bestToWorst.length) { |
---|
527 | throw new Exception("More attributes requested than exist in the data"); |
---|
528 | } |
---|
529 | |
---|
530 | if (m_numToSelect <= 0) { |
---|
531 | if (m_threshold == -Double.MAX_VALUE) { |
---|
532 | m_calculatedNumToSelect = bestToWorst.length; |
---|
533 | } else { |
---|
534 | determineNumToSelectFromThreshold(bestToWorst); |
---|
535 | } |
---|
536 | } |
---|
537 | /* if (m_numToSelect > 0) { |
---|
538 | determineThreshFromNumToSelect(bestToWorst); |
---|
539 | } */ |
---|
540 | |
---|
541 | return bestToWorst; |
---|
542 | } |
---|
543 | |
---|
544 | private void determineNumToSelectFromThreshold(double [][] ranking) { |
---|
545 | int count = 0; |
---|
546 | for (int i = 0; i < ranking.length; i++) { |
---|
547 | if (ranking[i][1] > m_threshold) { |
---|
548 | count++; |
---|
549 | } |
---|
550 | } |
---|
551 | m_calculatedNumToSelect = count; |
---|
552 | } |
---|
553 | |
---|
554 | private void determineThreshFromNumToSelect(double [][] ranking) |
---|
555 | throws Exception { |
---|
556 | if (m_numToSelect > ranking.length) { |
---|
557 | throw new Exception("More attributes requested than exist in the data"); |
---|
558 | } |
---|
559 | |
---|
560 | if (m_numToSelect == ranking.length) { |
---|
561 | return; |
---|
562 | } |
---|
563 | |
---|
564 | m_threshold = (ranking[m_numToSelect-1][1] + |
---|
565 | ranking[m_numToSelect][1]) / 2.0; |
---|
566 | } |
---|
567 | |
---|
568 | /** |
---|
569 | * returns a description of the search as a String |
---|
570 | * @return a description of the search |
---|
571 | */ |
---|
572 | public String toString () { |
---|
573 | StringBuffer BfString = new StringBuffer(); |
---|
574 | BfString.append("\tAttribute ranking.\n"); |
---|
575 | |
---|
576 | if (m_starting != null) { |
---|
577 | BfString.append("\tIgnored attributes: "); |
---|
578 | |
---|
579 | BfString.append(startSetToString()); |
---|
580 | BfString.append("\n"); |
---|
581 | } |
---|
582 | |
---|
583 | if (m_threshold != -Double.MAX_VALUE) { |
---|
584 | BfString.append("\tThreshold for discarding attributes: " |
---|
585 | + Utils.doubleToString(m_threshold,8,4)+"\n"); |
---|
586 | } |
---|
587 | |
---|
588 | return BfString.toString(); |
---|
589 | } |
---|
590 | |
---|
591 | |
---|
592 | /** |
---|
593 | * Resets stuff to default values |
---|
594 | */ |
---|
595 | protected void resetOptions () { |
---|
596 | m_starting = null; |
---|
597 | m_startRange = new Range(); |
---|
598 | m_attributeList = null; |
---|
599 | m_attributeMerit = null; |
---|
600 | m_threshold = -Double.MAX_VALUE; |
---|
601 | } |
---|
602 | |
---|
603 | |
---|
604 | private boolean inStarting (int feat) { |
---|
605 | // omit the class from the evaluation |
---|
606 | if ((m_hasClass == true) && (feat == m_classIndex)) { |
---|
607 | return true; |
---|
608 | } |
---|
609 | |
---|
610 | if (m_starting == null) { |
---|
611 | return false; |
---|
612 | } |
---|
613 | |
---|
614 | for (int i = 0; i < m_starting.length; i++) { |
---|
615 | if (m_starting[i] == feat) { |
---|
616 | return true; |
---|
617 | } |
---|
618 | } |
---|
619 | |
---|
620 | return false; |
---|
621 | } |
---|
622 | |
---|
623 | /** |
---|
624 | * Returns the revision string. |
---|
625 | * |
---|
626 | * @return the revision |
---|
627 | */ |
---|
628 | public String getRevision() { |
---|
629 | return RevisionUtils.extract("$Revision: 1.26 $"); |
---|
630 | } |
---|
631 | } |
---|