1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * PrincipalComponents.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import java.util.Enumeration; |
---|
26 | import java.util.Vector; |
---|
27 | |
---|
28 | import weka.core.Attribute; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.FastVector; |
---|
31 | import weka.core.Instance; |
---|
32 | import weka.core.DenseInstance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Matrix; |
---|
35 | import weka.core.Option; |
---|
36 | import weka.core.OptionHandler; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.SparseInstance; |
---|
39 | import weka.core.Utils; |
---|
40 | import weka.core.Capabilities.Capability; |
---|
41 | import weka.filters.Filter; |
---|
42 | import weka.filters.unsupervised.attribute.NominalToBinary; |
---|
43 | import weka.filters.unsupervised.attribute.Normalize; |
---|
44 | import weka.filters.unsupervised.attribute.Remove; |
---|
45 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
46 | |
---|
47 | /** |
---|
48 | <!-- globalinfo-start --> |
---|
49 | * Performs a principal components analysis and transformation of the data. Use in conjunction with a Ranker search. Dimensionality reduction is accomplished by choosing enough eigenvectors to account for some percentage of the variance in the original data---default 0.95 (95%). Attribute noise can be filtered by transforming to the PC space, eliminating some of the worst eigenvectors, and then transforming back to the original space. |
---|
50 | * <p/> |
---|
51 | <!-- globalinfo-end --> |
---|
52 | * |
---|
53 | <!-- options-start --> |
---|
54 | * Valid options are: <p/> |
---|
55 | * |
---|
56 | * <pre> -D |
---|
57 | * Don't normalize input data.</pre> |
---|
58 | * |
---|
59 | * <pre> -R |
---|
60 | * Retain enough PC attributes to account |
---|
61 | * for this proportion of variance in the original data. |
---|
62 | * (default = 0.95)</pre> |
---|
63 | * |
---|
64 | * <pre> -O |
---|
65 | * Transform through the PC space and |
---|
66 | * back to the original space.</pre> |
---|
67 | * |
---|
68 | * <pre> -A |
---|
69 | * Maximum number of attributes to include in |
---|
70 | * transformed attribute names. (-1 = include all)</pre> |
---|
71 | * |
---|
72 | <!-- options-end --> |
---|
73 | * |
---|
74 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
75 | * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) |
---|
76 | * @version $Revision: 5987 $ |
---|
77 | */ |
---|
78 | public class PrincipalComponents |
---|
79 | extends UnsupervisedAttributeEvaluator |
---|
80 | implements AttributeTransformer, OptionHandler { |
---|
81 | |
---|
82 | /** for serialization */ |
---|
83 | static final long serialVersionUID = 3310137541055815078L; |
---|
84 | |
---|
85 | /** The data to transform analyse/transform */ |
---|
86 | private Instances m_trainInstances; |
---|
87 | |
---|
88 | /** Keep a copy for the class attribute (if set) */ |
---|
89 | private Instances m_trainHeader; |
---|
90 | |
---|
91 | /** The header for the transformed data format */ |
---|
92 | private Instances m_transformedFormat; |
---|
93 | |
---|
94 | /** The header for data transformed back to the original space */ |
---|
95 | private Instances m_originalSpaceFormat; |
---|
96 | |
---|
97 | /** Data has a class set */ |
---|
98 | private boolean m_hasClass; |
---|
99 | |
---|
100 | /** Class index */ |
---|
101 | private int m_classIndex; |
---|
102 | |
---|
103 | /** Number of attributes */ |
---|
104 | private int m_numAttribs; |
---|
105 | |
---|
106 | /** Number of instances */ |
---|
107 | private int m_numInstances; |
---|
108 | |
---|
109 | /** Correlation matrix for the original data */ |
---|
110 | private double [][] m_correlation; |
---|
111 | |
---|
112 | /** Will hold the unordered linear transformations of the (normalized) |
---|
113 | original data */ |
---|
114 | private double [][] m_eigenvectors; |
---|
115 | |
---|
116 | /** Eigenvalues for the corresponding eigenvectors */ |
---|
117 | private double [] m_eigenvalues = null; |
---|
118 | |
---|
119 | /** Sorted eigenvalues */ |
---|
120 | private int [] m_sortedEigens; |
---|
121 | |
---|
122 | /** sum of the eigenvalues */ |
---|
123 | private double m_sumOfEigenValues = 0.0; |
---|
124 | |
---|
125 | /** Filters for original data */ |
---|
126 | private ReplaceMissingValues m_replaceMissingFilter; |
---|
127 | private Normalize m_normalizeFilter; |
---|
128 | private NominalToBinary m_nominalToBinFilter; |
---|
129 | private Remove m_attributeFilter; |
---|
130 | |
---|
131 | /** used to remove the class column if a class column is set */ |
---|
132 | private Remove m_attribFilter; |
---|
133 | |
---|
134 | /** The number of attributes in the pc transformed data */ |
---|
135 | private int m_outputNumAtts = -1; |
---|
136 | |
---|
137 | /** normalize the input data? */ |
---|
138 | private boolean m_normalize = true; |
---|
139 | |
---|
140 | /** the amount of varaince to cover in the original data when |
---|
141 | retaining the best n PC's */ |
---|
142 | private double m_coverVariance = 0.95; |
---|
143 | |
---|
144 | /** transform the data through the pc space and back to the original |
---|
145 | space ? */ |
---|
146 | private boolean m_transBackToOriginal = false; |
---|
147 | |
---|
148 | /** maximum number of attributes in the transformed attribute name */ |
---|
149 | private int m_maxAttrsInName = 5; |
---|
150 | |
---|
151 | /** holds the transposed eigenvectors for converting back to the |
---|
152 | original space */ |
---|
153 | private double [][] m_eTranspose; |
---|
154 | |
---|
155 | /** |
---|
156 | * Returns a string describing this attribute transformer |
---|
157 | * @return a description of the evaluator suitable for |
---|
158 | * displaying in the explorer/experimenter gui |
---|
159 | */ |
---|
160 | public String globalInfo() { |
---|
161 | return "Performs a principal components analysis and transformation of " |
---|
162 | +"the data. Use in conjunction with a Ranker search. Dimensionality " |
---|
163 | +"reduction is accomplished by choosing enough eigenvectors to " |
---|
164 | +"account for some percentage of the variance in the original data---" |
---|
165 | +"default 0.95 (95%). Attribute noise can be filtered by transforming " |
---|
166 | +"to the PC space, eliminating some of the worst eigenvectors, and " |
---|
167 | +"then transforming back to the original space."; |
---|
168 | } |
---|
169 | |
---|
170 | /** |
---|
171 | * Returns an enumeration describing the available options. <p> |
---|
172 | * |
---|
173 | * @return an enumeration of all the available options. |
---|
174 | **/ |
---|
175 | public Enumeration listOptions () { |
---|
176 | Vector newVector = new Vector(3); |
---|
177 | newVector.addElement(new Option("\tDon't normalize input data." |
---|
178 | , "D", 0, "-D")); |
---|
179 | |
---|
180 | newVector.addElement(new Option("\tRetain enough PC attributes to account " |
---|
181 | +"\n\tfor this proportion of variance in " |
---|
182 | +"the original data.\n" |
---|
183 | + "\t(default = 0.95)", |
---|
184 | "R",1,"-R")); |
---|
185 | |
---|
186 | newVector.addElement(new Option("\tTransform through the PC space and " |
---|
187 | +"\n\tback to the original space." |
---|
188 | , "O", 0, "-O")); |
---|
189 | |
---|
190 | newVector.addElement(new Option("\tMaximum number of attributes to include in " |
---|
191 | + "\n\ttransformed attribute names. (-1 = include all)" |
---|
192 | , "A", 1, "-A")); |
---|
193 | return newVector.elements(); |
---|
194 | } |
---|
195 | |
---|
196 | /** |
---|
197 | * Parses a given list of options. <p/> |
---|
198 | * |
---|
199 | <!-- options-start --> |
---|
200 | * Valid options are: <p/> |
---|
201 | * |
---|
202 | * <pre> -D |
---|
203 | * Don't normalize input data.</pre> |
---|
204 | * |
---|
205 | * <pre> -R |
---|
206 | * Retain enough PC attributes to account |
---|
207 | * for this proportion of variance in the original data. |
---|
208 | * (default = 0.95)</pre> |
---|
209 | * |
---|
210 | * <pre> -O |
---|
211 | * Transform through the PC space and |
---|
212 | * back to the original space.</pre> |
---|
213 | * |
---|
214 | * <pre> -A |
---|
215 | * Maximum number of attributes to include in |
---|
216 | * transformed attribute names. (-1 = include all)</pre> |
---|
217 | * |
---|
218 | <!-- options-end --> |
---|
219 | * |
---|
220 | * @param options the list of options as an array of strings |
---|
221 | * @throws Exception if an option is not supported |
---|
222 | */ |
---|
223 | public void setOptions (String[] options) |
---|
224 | throws Exception { |
---|
225 | resetOptions(); |
---|
226 | String optionString; |
---|
227 | |
---|
228 | optionString = Utils.getOption('R', options); |
---|
229 | if (optionString.length() != 0) { |
---|
230 | Double temp; |
---|
231 | temp = Double.valueOf(optionString); |
---|
232 | setVarianceCovered(temp.doubleValue()); |
---|
233 | } |
---|
234 | optionString = Utils.getOption('A', options); |
---|
235 | if (optionString.length() != 0) { |
---|
236 | setMaximumAttributeNames(Integer.parseInt(optionString)); |
---|
237 | } |
---|
238 | setNormalize(!Utils.getFlag('D', options)); |
---|
239 | |
---|
240 | setTransformBackToOriginal(Utils.getFlag('O', options)); |
---|
241 | } |
---|
242 | |
---|
243 | /** |
---|
244 | * Reset to defaults |
---|
245 | */ |
---|
246 | private void resetOptions() { |
---|
247 | m_coverVariance = 0.95; |
---|
248 | m_normalize = true; |
---|
249 | m_sumOfEigenValues = 0.0; |
---|
250 | m_transBackToOriginal = false; |
---|
251 | } |
---|
252 | |
---|
253 | /** |
---|
254 | * Returns the tip text for this property |
---|
255 | * @return tip text for this property suitable for |
---|
256 | * displaying in the explorer/experimenter gui |
---|
257 | */ |
---|
258 | public String normalizeTipText() { |
---|
259 | return "Normalize input data."; |
---|
260 | } |
---|
261 | |
---|
262 | /** |
---|
263 | * Set whether input data will be normalized. |
---|
264 | * @param n true if input data is to be normalized |
---|
265 | */ |
---|
266 | public void setNormalize(boolean n) { |
---|
267 | m_normalize = n; |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * Gets whether or not input data is to be normalized |
---|
272 | * @return true if input data is to be normalized |
---|
273 | */ |
---|
274 | public boolean getNormalize() { |
---|
275 | return m_normalize; |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | * Returns the tip text for this property |
---|
280 | * @return tip text for this property suitable for |
---|
281 | * displaying in the explorer/experimenter gui |
---|
282 | */ |
---|
283 | public String varianceCoveredTipText() { |
---|
284 | return "Retain enough PC attributes to account for this proportion of " |
---|
285 | +"variance."; |
---|
286 | } |
---|
287 | |
---|
288 | /** |
---|
289 | * Sets the amount of variance to account for when retaining |
---|
290 | * principal components |
---|
291 | * @param vc the proportion of total variance to account for |
---|
292 | */ |
---|
293 | public void setVarianceCovered(double vc) { |
---|
294 | m_coverVariance = vc; |
---|
295 | } |
---|
296 | |
---|
297 | /** |
---|
298 | * Gets the proportion of total variance to account for when |
---|
299 | * retaining principal components |
---|
300 | * @return the proportion of variance to account for |
---|
301 | */ |
---|
302 | public double getVarianceCovered() { |
---|
303 | return m_coverVariance; |
---|
304 | } |
---|
305 | |
---|
306 | /** |
---|
307 | * Returns the tip text for this property |
---|
308 | * @return tip text for this property suitable for |
---|
309 | * displaying in the explorer/experimenter gui |
---|
310 | */ |
---|
311 | public String maximumAttributeNamesTipText() { |
---|
312 | return "The maximum number of attributes to include in transformed attribute names."; |
---|
313 | } |
---|
314 | |
---|
315 | /** |
---|
316 | * Sets maximum number of attributes to include in |
---|
317 | * transformed attribute names. |
---|
318 | * @param m the maximum number of attributes |
---|
319 | */ |
---|
320 | public void setMaximumAttributeNames(int m) { |
---|
321 | m_maxAttrsInName = m; |
---|
322 | } |
---|
323 | |
---|
324 | /** |
---|
325 | * Gets maximum number of attributes to include in |
---|
326 | * transformed attribute names. |
---|
327 | * @return the maximum number of attributes |
---|
328 | */ |
---|
329 | public int getMaximumAttributeNames() { |
---|
330 | return m_maxAttrsInName; |
---|
331 | } |
---|
332 | |
---|
333 | /** |
---|
334 | * Returns the tip text for this property |
---|
335 | * @return tip text for this property suitable for |
---|
336 | * displaying in the explorer/experimenter gui |
---|
337 | */ |
---|
338 | public String transformBackToOriginalTipText() { |
---|
339 | return "Transform through the PC space and back to the original space. " |
---|
340 | +"If only the best n PCs are retained (by setting varianceCovered < 1) " |
---|
341 | +"then this option will give a dataset in the original space but with " |
---|
342 | +"less attribute noise."; |
---|
343 | } |
---|
344 | |
---|
345 | /** |
---|
346 | * Sets whether the data should be transformed back to the original |
---|
347 | * space |
---|
348 | * @param b true if the data should be transformed back to the |
---|
349 | * original space |
---|
350 | */ |
---|
351 | public void setTransformBackToOriginal(boolean b) { |
---|
352 | m_transBackToOriginal = b; |
---|
353 | } |
---|
354 | |
---|
355 | /** |
---|
356 | * Gets whether the data is to be transformed back to the original |
---|
357 | * space. |
---|
358 | * @return true if the data is to be transformed back to the original space |
---|
359 | */ |
---|
360 | public boolean getTransformBackToOriginal() { |
---|
361 | return m_transBackToOriginal; |
---|
362 | } |
---|
363 | |
---|
364 | /** |
---|
365 | * Gets the current settings of PrincipalComponents |
---|
366 | * |
---|
367 | * @return an array of strings suitable for passing to setOptions() |
---|
368 | */ |
---|
369 | public String[] getOptions () { |
---|
370 | |
---|
371 | String[] options = new String[6]; |
---|
372 | int current = 0; |
---|
373 | |
---|
374 | if (!getNormalize()) { |
---|
375 | options[current++] = "-D"; |
---|
376 | } |
---|
377 | |
---|
378 | options[current++] = "-R"; |
---|
379 | options[current++] = ""+getVarianceCovered(); |
---|
380 | |
---|
381 | options[current++] = "-A"; |
---|
382 | options[current++] = ""+getMaximumAttributeNames(); |
---|
383 | |
---|
384 | if (getTransformBackToOriginal()) { |
---|
385 | options[current++] = "-O"; |
---|
386 | } |
---|
387 | |
---|
388 | while (current < options.length) { |
---|
389 | options[current++] = ""; |
---|
390 | } |
---|
391 | |
---|
392 | return options; |
---|
393 | } |
---|
394 | |
---|
395 | /** |
---|
396 | * Returns the capabilities of this evaluator. |
---|
397 | * |
---|
398 | * @return the capabilities of this evaluator |
---|
399 | * @see Capabilities |
---|
400 | */ |
---|
401 | public Capabilities getCapabilities() { |
---|
402 | Capabilities result = super.getCapabilities(); |
---|
403 | result.disableAll(); |
---|
404 | |
---|
405 | // attributes |
---|
406 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
407 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
408 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
409 | result.enable(Capability.MISSING_VALUES); |
---|
410 | |
---|
411 | // class |
---|
412 | result.enable(Capability.NOMINAL_CLASS); |
---|
413 | result.enable(Capability.NUMERIC_CLASS); |
---|
414 | result.enable(Capability.DATE_CLASS); |
---|
415 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
416 | result.enable(Capability.NO_CLASS); |
---|
417 | |
---|
418 | return result; |
---|
419 | } |
---|
420 | |
---|
421 | /** |
---|
422 | * Initializes principal components and performs the analysis |
---|
423 | * @param data the instances to analyse/transform |
---|
424 | * @throws Exception if analysis fails |
---|
425 | */ |
---|
426 | public void buildEvaluator(Instances data) throws Exception { |
---|
427 | // can evaluator handle data? |
---|
428 | getCapabilities().testWithFail(data); |
---|
429 | |
---|
430 | buildAttributeConstructor(data); |
---|
431 | } |
---|
432 | |
---|
433 | private void buildAttributeConstructor (Instances data) throws Exception { |
---|
434 | m_eigenvalues = null; |
---|
435 | m_outputNumAtts = -1; |
---|
436 | m_attributeFilter = null; |
---|
437 | m_nominalToBinFilter = null; |
---|
438 | m_sumOfEigenValues = 0.0; |
---|
439 | m_trainInstances = new Instances(data); |
---|
440 | |
---|
441 | // make a copy of the training data so that we can get the class |
---|
442 | // column to append to the transformed data (if necessary) |
---|
443 | m_trainHeader = new Instances(m_trainInstances, 0); |
---|
444 | |
---|
445 | m_replaceMissingFilter = new ReplaceMissingValues(); |
---|
446 | m_replaceMissingFilter.setInputFormat(m_trainInstances); |
---|
447 | m_trainInstances = Filter.useFilter(m_trainInstances, |
---|
448 | m_replaceMissingFilter); |
---|
449 | |
---|
450 | if (m_normalize) { |
---|
451 | m_normalizeFilter = new Normalize(); |
---|
452 | m_normalizeFilter.setInputFormat(m_trainInstances); |
---|
453 | m_trainInstances = Filter.useFilter(m_trainInstances, m_normalizeFilter); |
---|
454 | } |
---|
455 | |
---|
456 | m_nominalToBinFilter = new NominalToBinary(); |
---|
457 | m_nominalToBinFilter.setInputFormat(m_trainInstances); |
---|
458 | m_trainInstances = Filter.useFilter(m_trainInstances, |
---|
459 | m_nominalToBinFilter); |
---|
460 | |
---|
461 | // delete any attributes with only one distinct value or are all missing |
---|
462 | Vector deleteCols = new Vector(); |
---|
463 | for (int i=0;i<m_trainInstances.numAttributes();i++) { |
---|
464 | if (m_trainInstances.numDistinctValues(i) <=1) { |
---|
465 | deleteCols.addElement(new Integer(i)); |
---|
466 | } |
---|
467 | } |
---|
468 | |
---|
469 | if (m_trainInstances.classIndex() >=0) { |
---|
470 | // get rid of the class column |
---|
471 | m_hasClass = true; |
---|
472 | m_classIndex = m_trainInstances.classIndex(); |
---|
473 | deleteCols.addElement(new Integer(m_classIndex)); |
---|
474 | } |
---|
475 | |
---|
476 | // remove columns from the data if necessary |
---|
477 | if (deleteCols.size() > 0) { |
---|
478 | m_attributeFilter = new Remove(); |
---|
479 | int [] todelete = new int [deleteCols.size()]; |
---|
480 | for (int i=0;i<deleteCols.size();i++) { |
---|
481 | todelete[i] = ((Integer)(deleteCols.elementAt(i))).intValue(); |
---|
482 | } |
---|
483 | m_attributeFilter.setAttributeIndicesArray(todelete); |
---|
484 | m_attributeFilter.setInvertSelection(false); |
---|
485 | m_attributeFilter.setInputFormat(m_trainInstances); |
---|
486 | m_trainInstances = Filter.useFilter(m_trainInstances, m_attributeFilter); |
---|
487 | } |
---|
488 | |
---|
489 | // can evaluator handle the processed data ? e.g., enough attributes? |
---|
490 | getCapabilities().testWithFail(m_trainInstances); |
---|
491 | |
---|
492 | m_numInstances = m_trainInstances.numInstances(); |
---|
493 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
494 | |
---|
495 | fillCorrelation(); |
---|
496 | |
---|
497 | double [] d = new double[m_numAttribs]; |
---|
498 | double [][] v = new double[m_numAttribs][m_numAttribs]; |
---|
499 | |
---|
500 | Matrix corr = new Matrix(m_correlation); |
---|
501 | corr.eigenvalueDecomposition(v, d); |
---|
502 | m_eigenvectors = (double [][])v.clone(); |
---|
503 | m_eigenvalues = (double [])d.clone(); |
---|
504 | |
---|
505 | // any eigenvalues less than 0 are not worth anything --- change to 0 |
---|
506 | for (int i = 0; i < m_eigenvalues.length; i++) { |
---|
507 | if (m_eigenvalues[i] < 0) { |
---|
508 | m_eigenvalues[i] = 0.0; |
---|
509 | } |
---|
510 | } |
---|
511 | m_sortedEigens = Utils.sort(m_eigenvalues); |
---|
512 | m_sumOfEigenValues = Utils.sum(m_eigenvalues); |
---|
513 | |
---|
514 | m_transformedFormat = setOutputFormat(); |
---|
515 | if (m_transBackToOriginal) { |
---|
516 | m_originalSpaceFormat = setOutputFormatOriginal(); |
---|
517 | |
---|
518 | // new ordered eigenvector matrix |
---|
519 | int numVectors = (m_transformedFormat.classIndex() < 0) |
---|
520 | ? m_transformedFormat.numAttributes() |
---|
521 | : m_transformedFormat.numAttributes() - 1; |
---|
522 | |
---|
523 | double [][] orderedVectors = |
---|
524 | new double [m_eigenvectors.length][numVectors + 1]; |
---|
525 | |
---|
526 | // try converting back to the original space |
---|
527 | for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { |
---|
528 | for (int j = 0; j < m_numAttribs; j++) { |
---|
529 | orderedVectors[j][m_numAttribs - i] = |
---|
530 | m_eigenvectors[j][m_sortedEigens[i]]; |
---|
531 | } |
---|
532 | } |
---|
533 | |
---|
534 | // transpose the matrix |
---|
535 | int nr = orderedVectors.length; |
---|
536 | int nc = orderedVectors[0].length; |
---|
537 | m_eTranspose = |
---|
538 | new double [nc][nr]; |
---|
539 | for (int i = 0; i < nc; i++) { |
---|
540 | for (int j = 0; j < nr; j++) { |
---|
541 | m_eTranspose[i][j] = orderedVectors[j][i]; |
---|
542 | } |
---|
543 | } |
---|
544 | } |
---|
545 | } |
---|
546 | |
---|
547 | /** |
---|
548 | * Returns just the header for the transformed data (ie. an empty |
---|
549 | * set of instances. This is so that AttributeSelection can |
---|
550 | * determine the structure of the transformed data without actually |
---|
551 | * having to get all the transformed data through transformedData(). |
---|
552 | * @return the header of the transformed data. |
---|
553 | * @throws Exception if the header of the transformed data can't |
---|
554 | * be determined. |
---|
555 | */ |
---|
556 | public Instances transformedHeader() throws Exception { |
---|
557 | if (m_eigenvalues == null) { |
---|
558 | throw new Exception("Principal components hasn't been built yet"); |
---|
559 | } |
---|
560 | if (m_transBackToOriginal) { |
---|
561 | return m_originalSpaceFormat; |
---|
562 | } else { |
---|
563 | return m_transformedFormat; |
---|
564 | } |
---|
565 | } |
---|
566 | |
---|
567 | /** |
---|
568 | * Gets the transformed training data. |
---|
569 | * @return the transformed training data |
---|
570 | * @throws Exception if transformed data can't be returned |
---|
571 | */ |
---|
572 | public Instances transformedData(Instances data) throws Exception { |
---|
573 | if (m_eigenvalues == null) { |
---|
574 | throw new Exception("Principal components hasn't been built yet"); |
---|
575 | } |
---|
576 | |
---|
577 | Instances output = null; |
---|
578 | |
---|
579 | if (m_transBackToOriginal) { |
---|
580 | output = new Instances(m_originalSpaceFormat); |
---|
581 | } else { |
---|
582 | output = new Instances(m_transformedFormat); |
---|
583 | } |
---|
584 | for (int i = 0; i < data.numInstances(); i++) { |
---|
585 | Instance converted = convertInstance(data.instance(i)); |
---|
586 | output.add(converted); |
---|
587 | } |
---|
588 | |
---|
589 | return output; |
---|
590 | } |
---|
591 | |
---|
592 | /** |
---|
593 | * Evaluates the merit of a transformed attribute. This is defined |
---|
594 | * to be 1 minus the cumulative variance explained. Merit can't |
---|
595 | * be meaningfully evaluated if the data is to be transformed back |
---|
596 | * to the original space. |
---|
597 | * @param att the attribute to be evaluated |
---|
598 | * @return the merit of a transformed attribute |
---|
599 | * @throws Exception if attribute can't be evaluated |
---|
600 | */ |
---|
601 | public double evaluateAttribute(int att) throws Exception { |
---|
602 | if (m_eigenvalues == null) { |
---|
603 | throw new Exception("Principal components hasn't been built yet!"); |
---|
604 | } |
---|
605 | |
---|
606 | if (m_transBackToOriginal) { |
---|
607 | return 1.0; // can't evaluate back in the original space! |
---|
608 | } |
---|
609 | |
---|
610 | // return 1-cumulative variance explained for this transformed att |
---|
611 | double cumulative = 0.0; |
---|
612 | for (int i = m_numAttribs - 1; i >= m_numAttribs - att - 1; i--) { |
---|
613 | cumulative += m_eigenvalues[m_sortedEigens[i]]; |
---|
614 | } |
---|
615 | |
---|
616 | return 1.0 - cumulative / m_sumOfEigenValues; |
---|
617 | } |
---|
618 | |
---|
619 | /** |
---|
620 | * Fill the correlation matrix |
---|
621 | */ |
---|
622 | private void fillCorrelation() { |
---|
623 | m_correlation = new double[m_numAttribs][m_numAttribs]; |
---|
624 | double [] att1 = new double [m_numInstances]; |
---|
625 | double [] att2 = new double [m_numInstances]; |
---|
626 | double corr; |
---|
627 | |
---|
628 | for (int i = 0; i < m_numAttribs; i++) { |
---|
629 | for (int j = 0; j < m_numAttribs; j++) { |
---|
630 | if (i == j) { |
---|
631 | m_correlation[i][j] = 1.0; |
---|
632 | } else { |
---|
633 | for (int k = 0; k < m_numInstances; k++) { |
---|
634 | att1[k] = m_trainInstances.instance(k).value(i); |
---|
635 | att2[k] = m_trainInstances.instance(k).value(j); |
---|
636 | } |
---|
637 | corr = Utils.correlation(att1,att2,m_numInstances); |
---|
638 | m_correlation[i][j] = corr; |
---|
639 | m_correlation[j][i] = corr; |
---|
640 | } |
---|
641 | } |
---|
642 | } |
---|
643 | } |
---|
644 | |
---|
645 | /** |
---|
646 | * Return a summary of the analysis |
---|
647 | * @return a summary of the analysis. |
---|
648 | */ |
---|
649 | private String principalComponentsSummary() { |
---|
650 | StringBuffer result = new StringBuffer(); |
---|
651 | double cumulative = 0.0; |
---|
652 | Instances output = null; |
---|
653 | int numVectors=0; |
---|
654 | |
---|
655 | try { |
---|
656 | output = setOutputFormat(); |
---|
657 | numVectors = (output.classIndex() < 0) |
---|
658 | ? output.numAttributes() |
---|
659 | : output.numAttributes()-1; |
---|
660 | } catch (Exception ex) { |
---|
661 | } |
---|
662 | //tomorrow |
---|
663 | result.append("Correlation matrix\n"+matrixToString(m_correlation) |
---|
664 | +"\n\n"); |
---|
665 | result.append("eigenvalue\tproportion\tcumulative\n"); |
---|
666 | for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { |
---|
667 | cumulative+=m_eigenvalues[m_sortedEigens[i]]; |
---|
668 | result.append(Utils.doubleToString(m_eigenvalues[m_sortedEigens[i]],9,5) |
---|
669 | +"\t"+Utils. |
---|
670 | doubleToString((m_eigenvalues[m_sortedEigens[i]] / |
---|
671 | m_sumOfEigenValues), |
---|
672 | 9,5) |
---|
673 | +"\t"+Utils.doubleToString((cumulative / |
---|
674 | m_sumOfEigenValues),9,5) |
---|
675 | +"\t"+output.attribute(m_numAttribs - i - 1).name()+"\n"); |
---|
676 | } |
---|
677 | |
---|
678 | result.append("\nEigenvectors\n"); |
---|
679 | for (int j = 1;j <= numVectors;j++) { |
---|
680 | result.append(" V"+j+'\t'); |
---|
681 | } |
---|
682 | result.append("\n"); |
---|
683 | for (int j = 0; j < m_numAttribs; j++) { |
---|
684 | |
---|
685 | for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { |
---|
686 | result.append(Utils. |
---|
687 | doubleToString(m_eigenvectors[j][m_sortedEigens[i]],7,4) |
---|
688 | +"\t"); |
---|
689 | } |
---|
690 | result.append(m_trainInstances.attribute(j).name()+'\n'); |
---|
691 | } |
---|
692 | |
---|
693 | if (m_transBackToOriginal) { |
---|
694 | result.append("\nPC space transformed back to original space.\n" |
---|
695 | +"(Note: can't evaluate attributes in the original " |
---|
696 | +"space)\n"); |
---|
697 | } |
---|
698 | return result.toString(); |
---|
699 | } |
---|
700 | |
---|
701 | /** |
---|
702 | * Returns a description of this attribute transformer |
---|
703 | * @return a String describing this attribute transformer |
---|
704 | */ |
---|
705 | public String toString() { |
---|
706 | if (m_eigenvalues == null) { |
---|
707 | return "Principal components hasn't been built yet!"; |
---|
708 | } else { |
---|
709 | return "\tPrincipal Components Attribute Transformer\n\n" |
---|
710 | +principalComponentsSummary(); |
---|
711 | } |
---|
712 | } |
---|
713 | |
---|
714 | /** |
---|
715 | * Return a matrix as a String |
---|
716 | * @param matrix that is decribed as a string |
---|
717 | * @return a String describing a matrix |
---|
718 | */ |
---|
719 | private String matrixToString(double [][] matrix) { |
---|
720 | StringBuffer result = new StringBuffer(); |
---|
721 | int last = matrix.length - 1; |
---|
722 | |
---|
723 | for (int i = 0; i <= last; i++) { |
---|
724 | for (int j = 0; j <= last; j++) { |
---|
725 | result.append(Utils.doubleToString(matrix[i][j],6,2)+" "); |
---|
726 | if (j == last) { |
---|
727 | result.append('\n'); |
---|
728 | } |
---|
729 | } |
---|
730 | } |
---|
731 | return result.toString(); |
---|
732 | } |
---|
733 | |
---|
734 | /** |
---|
735 | * Convert a pc transformed instance back to the original space |
---|
736 | * |
---|
737 | * @param inst the instance to convert |
---|
738 | * @return the processed instance |
---|
739 | * @throws Exception if something goes wrong |
---|
740 | */ |
---|
741 | private Instance convertInstanceToOriginal(Instance inst) |
---|
742 | throws Exception { |
---|
743 | double[] newVals = null; |
---|
744 | |
---|
745 | if (m_hasClass) { |
---|
746 | newVals = new double[m_numAttribs+1]; |
---|
747 | } else { |
---|
748 | newVals = new double[m_numAttribs]; |
---|
749 | } |
---|
750 | |
---|
751 | if (m_hasClass) { |
---|
752 | // class is always appended as the last attribute |
---|
753 | newVals[m_numAttribs] = inst.value(inst.numAttributes() - 1); |
---|
754 | } |
---|
755 | |
---|
756 | for (int i = 0; i < m_eTranspose[0].length; i++) { |
---|
757 | double tempval = 0.0; |
---|
758 | for (int j = 1; j < m_eTranspose.length; j++) { |
---|
759 | tempval += (m_eTranspose[j][i] * |
---|
760 | inst.value(j - 1)); |
---|
761 | } |
---|
762 | newVals[i] = tempval; |
---|
763 | } |
---|
764 | |
---|
765 | if (inst instanceof SparseInstance) { |
---|
766 | return new SparseInstance(inst.weight(), newVals); |
---|
767 | } else { |
---|
768 | return new DenseInstance(inst.weight(), newVals); |
---|
769 | } |
---|
770 | } |
---|
771 | |
---|
772 | /** |
---|
773 | * Transform an instance in original (unormalized) format. Convert back |
---|
774 | * to the original space if requested. |
---|
775 | * @param instance an instance in the original (unormalized) format |
---|
776 | * @return a transformed instance |
---|
777 | * @throws Exception if instance cant be transformed |
---|
778 | */ |
---|
779 | public Instance convertInstance(Instance instance) throws Exception { |
---|
780 | |
---|
781 | if (m_eigenvalues == null) { |
---|
782 | throw new Exception("convertInstance: Principal components not " |
---|
783 | +"built yet"); |
---|
784 | } |
---|
785 | |
---|
786 | double[] newVals = new double[m_outputNumAtts]; |
---|
787 | Instance tempInst = (Instance)instance.copy(); |
---|
788 | if (!instance.dataset().equalHeaders(m_trainHeader)) { |
---|
789 | throw new Exception("Can't convert instance: header's don't match: " |
---|
790 | +"PrincipalComponents\n" |
---|
791 | + instance.dataset().equalHeadersMsg(m_trainHeader)); |
---|
792 | } |
---|
793 | |
---|
794 | m_replaceMissingFilter.input(tempInst); |
---|
795 | m_replaceMissingFilter.batchFinished(); |
---|
796 | tempInst = m_replaceMissingFilter.output(); |
---|
797 | |
---|
798 | if (m_normalize) { |
---|
799 | m_normalizeFilter.input(tempInst); |
---|
800 | m_normalizeFilter.batchFinished(); |
---|
801 | tempInst = m_normalizeFilter.output(); |
---|
802 | } |
---|
803 | |
---|
804 | m_nominalToBinFilter.input(tempInst); |
---|
805 | m_nominalToBinFilter.batchFinished(); |
---|
806 | tempInst = m_nominalToBinFilter.output(); |
---|
807 | |
---|
808 | if (m_attributeFilter != null) { |
---|
809 | m_attributeFilter.input(tempInst); |
---|
810 | m_attributeFilter.batchFinished(); |
---|
811 | tempInst = m_attributeFilter.output(); |
---|
812 | } |
---|
813 | |
---|
814 | if (m_hasClass) { |
---|
815 | newVals[m_outputNumAtts - 1] = instance.value(instance.classIndex()); |
---|
816 | } |
---|
817 | |
---|
818 | double cumulative = 0; |
---|
819 | for (int i = m_numAttribs - 1; i >= 0; i--) { |
---|
820 | double tempval = 0.0; |
---|
821 | for (int j = 0; j < m_numAttribs; j++) { |
---|
822 | tempval += (m_eigenvectors[j][m_sortedEigens[i]] * |
---|
823 | tempInst.value(j)); |
---|
824 | } |
---|
825 | newVals[m_numAttribs - i - 1] = tempval; |
---|
826 | cumulative+=m_eigenvalues[m_sortedEigens[i]]; |
---|
827 | if ((cumulative / m_sumOfEigenValues) >= m_coverVariance) { |
---|
828 | break; |
---|
829 | } |
---|
830 | } |
---|
831 | |
---|
832 | if (!m_transBackToOriginal) { |
---|
833 | if (instance instanceof SparseInstance) { |
---|
834 | return new SparseInstance(instance.weight(), newVals); |
---|
835 | } else { |
---|
836 | return new DenseInstance(instance.weight(), newVals); |
---|
837 | } |
---|
838 | } else { |
---|
839 | if (instance instanceof SparseInstance) { |
---|
840 | return convertInstanceToOriginal(new SparseInstance(instance.weight(), |
---|
841 | newVals)); |
---|
842 | } else { |
---|
843 | return convertInstanceToOriginal(new DenseInstance(instance.weight(), |
---|
844 | newVals)); |
---|
845 | } |
---|
846 | } |
---|
847 | } |
---|
848 | |
---|
849 | /** |
---|
850 | * Set up the header for the PC->original space dataset |
---|
851 | * |
---|
852 | * @return the output format |
---|
853 | * @throws Exception if something goes wrong |
---|
854 | */ |
---|
855 | private Instances setOutputFormatOriginal() throws Exception { |
---|
856 | FastVector attributes = new FastVector(); |
---|
857 | |
---|
858 | for (int i = 0; i < m_numAttribs; i++) { |
---|
859 | String att = m_trainInstances.attribute(i).name(); |
---|
860 | attributes.addElement(new Attribute(att)); |
---|
861 | } |
---|
862 | |
---|
863 | if (m_hasClass) { |
---|
864 | attributes.addElement(m_trainHeader.classAttribute().copy()); |
---|
865 | } |
---|
866 | |
---|
867 | Instances outputFormat = |
---|
868 | new Instances(m_trainHeader.relationName()+"->PC->original space", |
---|
869 | attributes, 0); |
---|
870 | |
---|
871 | // set the class to be the last attribute if necessary |
---|
872 | if (m_hasClass) { |
---|
873 | outputFormat.setClassIndex(outputFormat.numAttributes()-1); |
---|
874 | } |
---|
875 | |
---|
876 | return outputFormat; |
---|
877 | } |
---|
878 | |
---|
879 | /** |
---|
880 | * Set the format for the transformed data |
---|
881 | * @return a set of empty Instances (header only) in the new format |
---|
882 | * @throws Exception if the output format can't be set |
---|
883 | */ |
---|
884 | private Instances setOutputFormat() throws Exception { |
---|
885 | if (m_eigenvalues == null) { |
---|
886 | return null; |
---|
887 | } |
---|
888 | |
---|
889 | double cumulative = 0.0; |
---|
890 | FastVector attributes = new FastVector(); |
---|
891 | for (int i = m_numAttribs - 1; i >= 0; i--) { |
---|
892 | StringBuffer attName = new StringBuffer(); |
---|
893 | // build array of coefficients |
---|
894 | double[] coeff_mags = new double[m_numAttribs]; |
---|
895 | for (int j = 0; j < m_numAttribs; j++) |
---|
896 | coeff_mags[j] = -Math.abs(m_eigenvectors[j][m_sortedEigens[i]]); |
---|
897 | int num_attrs = (m_maxAttrsInName > 0) ? Math.min(m_numAttribs, m_maxAttrsInName) : m_numAttribs; |
---|
898 | // this array contains the sorted indices of the coefficients |
---|
899 | int[] coeff_inds; |
---|
900 | if (m_numAttribs > 0) { |
---|
901 | // if m_maxAttrsInName > 0, sort coefficients by decreasing magnitude |
---|
902 | coeff_inds = Utils.sort(coeff_mags); |
---|
903 | } else { |
---|
904 | // if m_maxAttrsInName <= 0, use all coeffs in original order |
---|
905 | coeff_inds = new int[m_numAttribs]; |
---|
906 | for (int j=0; j<m_numAttribs; j++) |
---|
907 | coeff_inds[j] = j; |
---|
908 | } |
---|
909 | // build final attName string |
---|
910 | for (int j = 0; j < num_attrs; j++) { |
---|
911 | double coeff_value = m_eigenvectors[coeff_inds[j]][m_sortedEigens[i]]; |
---|
912 | if (j > 0 && coeff_value >= 0) |
---|
913 | attName.append("+"); |
---|
914 | attName.append(Utils.doubleToString(coeff_value,5,3) |
---|
915 | +m_trainInstances.attribute(coeff_inds[j]).name()); |
---|
916 | } |
---|
917 | if (num_attrs < m_numAttribs) |
---|
918 | attName.append("..."); |
---|
919 | |
---|
920 | attributes.addElement(new Attribute(attName.toString())); |
---|
921 | cumulative+=m_eigenvalues[m_sortedEigens[i]]; |
---|
922 | |
---|
923 | if ((cumulative / m_sumOfEigenValues) >= m_coverVariance) { |
---|
924 | break; |
---|
925 | } |
---|
926 | } |
---|
927 | |
---|
928 | if (m_hasClass) { |
---|
929 | attributes.addElement(m_trainHeader.classAttribute().copy()); |
---|
930 | } |
---|
931 | |
---|
932 | Instances outputFormat = |
---|
933 | new Instances(m_trainInstances.relationName()+"_principal components", |
---|
934 | attributes, 0); |
---|
935 | |
---|
936 | // set the class to be the last attribute if necessary |
---|
937 | if (m_hasClass) { |
---|
938 | outputFormat.setClassIndex(outputFormat.numAttributes()-1); |
---|
939 | } |
---|
940 | |
---|
941 | m_outputNumAtts = outputFormat.numAttributes(); |
---|
942 | return outputFormat; |
---|
943 | } |
---|
944 | |
---|
945 | /** |
---|
946 | * Returns the revision string. |
---|
947 | * |
---|
948 | * @return the revision |
---|
949 | */ |
---|
950 | public String getRevision() { |
---|
951 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
952 | } |
---|
953 | |
---|
954 | /** |
---|
955 | * Main method for testing this class |
---|
956 | * @param argv should contain the command line arguments to the |
---|
957 | * evaluator/transformer (see AttributeSelection) |
---|
958 | */ |
---|
959 | public static void main(String [] argv) { |
---|
960 | runEvaluator(new PrincipalComponents(), argv); |
---|
961 | } |
---|
962 | } |
---|