[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * PrincipalComponents.java |
---|
| 19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import java.util.Enumeration; |
---|
| 26 | import java.util.Vector; |
---|
| 27 | |
---|
| 28 | import weka.core.Attribute; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.FastVector; |
---|
| 31 | import weka.core.Instance; |
---|
| 32 | import weka.core.DenseInstance; |
---|
| 33 | import weka.core.Instances; |
---|
| 34 | import weka.core.Matrix; |
---|
| 35 | import weka.core.Option; |
---|
| 36 | import weka.core.OptionHandler; |
---|
| 37 | import weka.core.RevisionUtils; |
---|
| 38 | import weka.core.SparseInstance; |
---|
| 39 | import weka.core.Utils; |
---|
| 40 | import weka.core.Capabilities.Capability; |
---|
| 41 | import weka.filters.Filter; |
---|
| 42 | import weka.filters.unsupervised.attribute.NominalToBinary; |
---|
| 43 | import weka.filters.unsupervised.attribute.Normalize; |
---|
| 44 | import weka.filters.unsupervised.attribute.Remove; |
---|
| 45 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | <!-- globalinfo-start --> |
---|
| 49 | * Performs a principal components analysis and transformation of the data. Use in conjunction with a Ranker search. Dimensionality reduction is accomplished by choosing enough eigenvectors to account for some percentage of the variance in the original data---default 0.95 (95%). Attribute noise can be filtered by transforming to the PC space, eliminating some of the worst eigenvectors, and then transforming back to the original space. |
---|
| 50 | * <p/> |
---|
| 51 | <!-- globalinfo-end --> |
---|
| 52 | * |
---|
| 53 | <!-- options-start --> |
---|
| 54 | * Valid options are: <p/> |
---|
| 55 | * |
---|
| 56 | * <pre> -D |
---|
| 57 | * Don't normalize input data.</pre> |
---|
| 58 | * |
---|
| 59 | * <pre> -R |
---|
| 60 | * Retain enough PC attributes to account |
---|
| 61 | * for this proportion of variance in the original data. |
---|
| 62 | * (default = 0.95)</pre> |
---|
| 63 | * |
---|
| 64 | * <pre> -O |
---|
| 65 | * Transform through the PC space and |
---|
| 66 | * back to the original space.</pre> |
---|
| 67 | * |
---|
| 68 | * <pre> -A |
---|
| 69 | * Maximum number of attributes to include in |
---|
| 70 | * transformed attribute names. (-1 = include all)</pre> |
---|
| 71 | * |
---|
| 72 | <!-- options-end --> |
---|
| 73 | * |
---|
| 74 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 75 | * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) |
---|
| 76 | * @version $Revision: 5987 $ |
---|
| 77 | */ |
---|
| 78 | public class PrincipalComponents |
---|
| 79 | extends UnsupervisedAttributeEvaluator |
---|
| 80 | implements AttributeTransformer, OptionHandler { |
---|
| 81 | |
---|
| 82 | /** for serialization */ |
---|
| 83 | static final long serialVersionUID = 3310137541055815078L; |
---|
| 84 | |
---|
| 85 | /** The data to transform analyse/transform */ |
---|
| 86 | private Instances m_trainInstances; |
---|
| 87 | |
---|
| 88 | /** Keep a copy for the class attribute (if set) */ |
---|
| 89 | private Instances m_trainHeader; |
---|
| 90 | |
---|
| 91 | /** The header for the transformed data format */ |
---|
| 92 | private Instances m_transformedFormat; |
---|
| 93 | |
---|
| 94 | /** The header for data transformed back to the original space */ |
---|
| 95 | private Instances m_originalSpaceFormat; |
---|
| 96 | |
---|
| 97 | /** Data has a class set */ |
---|
| 98 | private boolean m_hasClass; |
---|
| 99 | |
---|
| 100 | /** Class index */ |
---|
| 101 | private int m_classIndex; |
---|
| 102 | |
---|
| 103 | /** Number of attributes */ |
---|
| 104 | private int m_numAttribs; |
---|
| 105 | |
---|
| 106 | /** Number of instances */ |
---|
| 107 | private int m_numInstances; |
---|
| 108 | |
---|
| 109 | /** Correlation matrix for the original data */ |
---|
| 110 | private double [][] m_correlation; |
---|
| 111 | |
---|
| 112 | /** Will hold the unordered linear transformations of the (normalized) |
---|
| 113 | original data */ |
---|
| 114 | private double [][] m_eigenvectors; |
---|
| 115 | |
---|
| 116 | /** Eigenvalues for the corresponding eigenvectors */ |
---|
| 117 | private double [] m_eigenvalues = null; |
---|
| 118 | |
---|
| 119 | /** Sorted eigenvalues */ |
---|
| 120 | private int [] m_sortedEigens; |
---|
| 121 | |
---|
| 122 | /** sum of the eigenvalues */ |
---|
| 123 | private double m_sumOfEigenValues = 0.0; |
---|
| 124 | |
---|
| 125 | /** Filters for original data */ |
---|
| 126 | private ReplaceMissingValues m_replaceMissingFilter; |
---|
| 127 | private Normalize m_normalizeFilter; |
---|
| 128 | private NominalToBinary m_nominalToBinFilter; |
---|
| 129 | private Remove m_attributeFilter; |
---|
| 130 | |
---|
| 131 | /** used to remove the class column if a class column is set */ |
---|
| 132 | private Remove m_attribFilter; |
---|
| 133 | |
---|
| 134 | /** The number of attributes in the pc transformed data */ |
---|
| 135 | private int m_outputNumAtts = -1; |
---|
| 136 | |
---|
| 137 | /** normalize the input data? */ |
---|
| 138 | private boolean m_normalize = true; |
---|
| 139 | |
---|
| 140 | /** the amount of varaince to cover in the original data when |
---|
| 141 | retaining the best n PC's */ |
---|
| 142 | private double m_coverVariance = 0.95; |
---|
| 143 | |
---|
| 144 | /** transform the data through the pc space and back to the original |
---|
| 145 | space ? */ |
---|
| 146 | private boolean m_transBackToOriginal = false; |
---|
| 147 | |
---|
| 148 | /** maximum number of attributes in the transformed attribute name */ |
---|
| 149 | private int m_maxAttrsInName = 5; |
---|
| 150 | |
---|
| 151 | /** holds the transposed eigenvectors for converting back to the |
---|
| 152 | original space */ |
---|
| 153 | private double [][] m_eTranspose; |
---|
| 154 | |
---|
| 155 | /** |
---|
| 156 | * Returns a string describing this attribute transformer |
---|
| 157 | * @return a description of the evaluator suitable for |
---|
| 158 | * displaying in the explorer/experimenter gui |
---|
| 159 | */ |
---|
| 160 | public String globalInfo() { |
---|
| 161 | return "Performs a principal components analysis and transformation of " |
---|
| 162 | +"the data. Use in conjunction with a Ranker search. Dimensionality " |
---|
| 163 | +"reduction is accomplished by choosing enough eigenvectors to " |
---|
| 164 | +"account for some percentage of the variance in the original data---" |
---|
| 165 | +"default 0.95 (95%). Attribute noise can be filtered by transforming " |
---|
| 166 | +"to the PC space, eliminating some of the worst eigenvectors, and " |
---|
| 167 | +"then transforming back to the original space."; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | /** |
---|
| 171 | * Returns an enumeration describing the available options. <p> |
---|
| 172 | * |
---|
| 173 | * @return an enumeration of all the available options. |
---|
| 174 | **/ |
---|
| 175 | public Enumeration listOptions () { |
---|
| 176 | Vector newVector = new Vector(3); |
---|
| 177 | newVector.addElement(new Option("\tDon't normalize input data." |
---|
| 178 | , "D", 0, "-D")); |
---|
| 179 | |
---|
| 180 | newVector.addElement(new Option("\tRetain enough PC attributes to account " |
---|
| 181 | +"\n\tfor this proportion of variance in " |
---|
| 182 | +"the original data.\n" |
---|
| 183 | + "\t(default = 0.95)", |
---|
| 184 | "R",1,"-R")); |
---|
| 185 | |
---|
| 186 | newVector.addElement(new Option("\tTransform through the PC space and " |
---|
| 187 | +"\n\tback to the original space." |
---|
| 188 | , "O", 0, "-O")); |
---|
| 189 | |
---|
| 190 | newVector.addElement(new Option("\tMaximum number of attributes to include in " |
---|
| 191 | + "\n\ttransformed attribute names. (-1 = include all)" |
---|
| 192 | , "A", 1, "-A")); |
---|
| 193 | return newVector.elements(); |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | /** |
---|
| 197 | * Parses a given list of options. <p/> |
---|
| 198 | * |
---|
| 199 | <!-- options-start --> |
---|
| 200 | * Valid options are: <p/> |
---|
| 201 | * |
---|
| 202 | * <pre> -D |
---|
| 203 | * Don't normalize input data.</pre> |
---|
| 204 | * |
---|
| 205 | * <pre> -R |
---|
| 206 | * Retain enough PC attributes to account |
---|
| 207 | * for this proportion of variance in the original data. |
---|
| 208 | * (default = 0.95)</pre> |
---|
| 209 | * |
---|
| 210 | * <pre> -O |
---|
| 211 | * Transform through the PC space and |
---|
| 212 | * back to the original space.</pre> |
---|
| 213 | * |
---|
| 214 | * <pre> -A |
---|
| 215 | * Maximum number of attributes to include in |
---|
| 216 | * transformed attribute names. (-1 = include all)</pre> |
---|
| 217 | * |
---|
| 218 | <!-- options-end --> |
---|
| 219 | * |
---|
| 220 | * @param options the list of options as an array of strings |
---|
| 221 | * @throws Exception if an option is not supported |
---|
| 222 | */ |
---|
| 223 | public void setOptions (String[] options) |
---|
| 224 | throws Exception { |
---|
| 225 | resetOptions(); |
---|
| 226 | String optionString; |
---|
| 227 | |
---|
| 228 | optionString = Utils.getOption('R', options); |
---|
| 229 | if (optionString.length() != 0) { |
---|
| 230 | Double temp; |
---|
| 231 | temp = Double.valueOf(optionString); |
---|
| 232 | setVarianceCovered(temp.doubleValue()); |
---|
| 233 | } |
---|
| 234 | optionString = Utils.getOption('A', options); |
---|
| 235 | if (optionString.length() != 0) { |
---|
| 236 | setMaximumAttributeNames(Integer.parseInt(optionString)); |
---|
| 237 | } |
---|
| 238 | setNormalize(!Utils.getFlag('D', options)); |
---|
| 239 | |
---|
| 240 | setTransformBackToOriginal(Utils.getFlag('O', options)); |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | /** |
---|
| 244 | * Reset to defaults |
---|
| 245 | */ |
---|
| 246 | private void resetOptions() { |
---|
| 247 | m_coverVariance = 0.95; |
---|
| 248 | m_normalize = true; |
---|
| 249 | m_sumOfEigenValues = 0.0; |
---|
| 250 | m_transBackToOriginal = false; |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | /** |
---|
| 254 | * Returns the tip text for this property |
---|
| 255 | * @return tip text for this property suitable for |
---|
| 256 | * displaying in the explorer/experimenter gui |
---|
| 257 | */ |
---|
| 258 | public String normalizeTipText() { |
---|
| 259 | return "Normalize input data."; |
---|
| 260 | } |
---|
| 261 | |
---|
| 262 | /** |
---|
| 263 | * Set whether input data will be normalized. |
---|
| 264 | * @param n true if input data is to be normalized |
---|
| 265 | */ |
---|
| 266 | public void setNormalize(boolean n) { |
---|
| 267 | m_normalize = n; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * Gets whether or not input data is to be normalized |
---|
| 272 | * @return true if input data is to be normalized |
---|
| 273 | */ |
---|
| 274 | public boolean getNormalize() { |
---|
| 275 | return m_normalize; |
---|
| 276 | } |
---|
| 277 | |
---|
| 278 | /** |
---|
| 279 | * Returns the tip text for this property |
---|
| 280 | * @return tip text for this property suitable for |
---|
| 281 | * displaying in the explorer/experimenter gui |
---|
| 282 | */ |
---|
| 283 | public String varianceCoveredTipText() { |
---|
| 284 | return "Retain enough PC attributes to account for this proportion of " |
---|
| 285 | +"variance."; |
---|
| 286 | } |
---|
| 287 | |
---|
| 288 | /** |
---|
| 289 | * Sets the amount of variance to account for when retaining |
---|
| 290 | * principal components |
---|
| 291 | * @param vc the proportion of total variance to account for |
---|
| 292 | */ |
---|
| 293 | public void setVarianceCovered(double vc) { |
---|
| 294 | m_coverVariance = vc; |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | /** |
---|
| 298 | * Gets the proportion of total variance to account for when |
---|
| 299 | * retaining principal components |
---|
| 300 | * @return the proportion of variance to account for |
---|
| 301 | */ |
---|
| 302 | public double getVarianceCovered() { |
---|
| 303 | return m_coverVariance; |
---|
| 304 | } |
---|
| 305 | |
---|
| 306 | /** |
---|
| 307 | * Returns the tip text for this property |
---|
| 308 | * @return tip text for this property suitable for |
---|
| 309 | * displaying in the explorer/experimenter gui |
---|
| 310 | */ |
---|
| 311 | public String maximumAttributeNamesTipText() { |
---|
| 312 | return "The maximum number of attributes to include in transformed attribute names."; |
---|
| 313 | } |
---|
| 314 | |
---|
| 315 | /** |
---|
| 316 | * Sets maximum number of attributes to include in |
---|
| 317 | * transformed attribute names. |
---|
| 318 | * @param m the maximum number of attributes |
---|
| 319 | */ |
---|
| 320 | public void setMaximumAttributeNames(int m) { |
---|
| 321 | m_maxAttrsInName = m; |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | /** |
---|
| 325 | * Gets maximum number of attributes to include in |
---|
| 326 | * transformed attribute names. |
---|
| 327 | * @return the maximum number of attributes |
---|
| 328 | */ |
---|
| 329 | public int getMaximumAttributeNames() { |
---|
| 330 | return m_maxAttrsInName; |
---|
| 331 | } |
---|
| 332 | |
---|
| 333 | /** |
---|
| 334 | * Returns the tip text for this property |
---|
| 335 | * @return tip text for this property suitable for |
---|
| 336 | * displaying in the explorer/experimenter gui |
---|
| 337 | */ |
---|
| 338 | public String transformBackToOriginalTipText() { |
---|
| 339 | return "Transform through the PC space and back to the original space. " |
---|
| 340 | +"If only the best n PCs are retained (by setting varianceCovered < 1) " |
---|
| 341 | +"then this option will give a dataset in the original space but with " |
---|
| 342 | +"less attribute noise."; |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | /** |
---|
| 346 | * Sets whether the data should be transformed back to the original |
---|
| 347 | * space |
---|
| 348 | * @param b true if the data should be transformed back to the |
---|
| 349 | * original space |
---|
| 350 | */ |
---|
| 351 | public void setTransformBackToOriginal(boolean b) { |
---|
| 352 | m_transBackToOriginal = b; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | /** |
---|
| 356 | * Gets whether the data is to be transformed back to the original |
---|
| 357 | * space. |
---|
| 358 | * @return true if the data is to be transformed back to the original space |
---|
| 359 | */ |
---|
| 360 | public boolean getTransformBackToOriginal() { |
---|
| 361 | return m_transBackToOriginal; |
---|
| 362 | } |
---|
| 363 | |
---|
| 364 | /** |
---|
| 365 | * Gets the current settings of PrincipalComponents |
---|
| 366 | * |
---|
| 367 | * @return an array of strings suitable for passing to setOptions() |
---|
| 368 | */ |
---|
| 369 | public String[] getOptions () { |
---|
| 370 | |
---|
| 371 | String[] options = new String[6]; |
---|
| 372 | int current = 0; |
---|
| 373 | |
---|
| 374 | if (!getNormalize()) { |
---|
| 375 | options[current++] = "-D"; |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | options[current++] = "-R"; |
---|
| 379 | options[current++] = ""+getVarianceCovered(); |
---|
| 380 | |
---|
| 381 | options[current++] = "-A"; |
---|
| 382 | options[current++] = ""+getMaximumAttributeNames(); |
---|
| 383 | |
---|
| 384 | if (getTransformBackToOriginal()) { |
---|
| 385 | options[current++] = "-O"; |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | while (current < options.length) { |
---|
| 389 | options[current++] = ""; |
---|
| 390 | } |
---|
| 391 | |
---|
| 392 | return options; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | /** |
---|
| 396 | * Returns the capabilities of this evaluator. |
---|
| 397 | * |
---|
| 398 | * @return the capabilities of this evaluator |
---|
| 399 | * @see Capabilities |
---|
| 400 | */ |
---|
| 401 | public Capabilities getCapabilities() { |
---|
| 402 | Capabilities result = super.getCapabilities(); |
---|
| 403 | result.disableAll(); |
---|
| 404 | |
---|
| 405 | // attributes |
---|
| 406 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 407 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 408 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 409 | result.enable(Capability.MISSING_VALUES); |
---|
| 410 | |
---|
| 411 | // class |
---|
| 412 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 413 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 414 | result.enable(Capability.DATE_CLASS); |
---|
| 415 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 416 | result.enable(Capability.NO_CLASS); |
---|
| 417 | |
---|
| 418 | return result; |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | /** |
---|
| 422 | * Initializes principal components and performs the analysis |
---|
| 423 | * @param data the instances to analyse/transform |
---|
| 424 | * @throws Exception if analysis fails |
---|
| 425 | */ |
---|
| 426 | public void buildEvaluator(Instances data) throws Exception { |
---|
| 427 | // can evaluator handle data? |
---|
| 428 | getCapabilities().testWithFail(data); |
---|
| 429 | |
---|
| 430 | buildAttributeConstructor(data); |
---|
| 431 | } |
---|
| 432 | |
---|
| 433 | private void buildAttributeConstructor (Instances data) throws Exception { |
---|
| 434 | m_eigenvalues = null; |
---|
| 435 | m_outputNumAtts = -1; |
---|
| 436 | m_attributeFilter = null; |
---|
| 437 | m_nominalToBinFilter = null; |
---|
| 438 | m_sumOfEigenValues = 0.0; |
---|
| 439 | m_trainInstances = new Instances(data); |
---|
| 440 | |
---|
| 441 | // make a copy of the training data so that we can get the class |
---|
| 442 | // column to append to the transformed data (if necessary) |
---|
| 443 | m_trainHeader = new Instances(m_trainInstances, 0); |
---|
| 444 | |
---|
| 445 | m_replaceMissingFilter = new ReplaceMissingValues(); |
---|
| 446 | m_replaceMissingFilter.setInputFormat(m_trainInstances); |
---|
| 447 | m_trainInstances = Filter.useFilter(m_trainInstances, |
---|
| 448 | m_replaceMissingFilter); |
---|
| 449 | |
---|
| 450 | if (m_normalize) { |
---|
| 451 | m_normalizeFilter = new Normalize(); |
---|
| 452 | m_normalizeFilter.setInputFormat(m_trainInstances); |
---|
| 453 | m_trainInstances = Filter.useFilter(m_trainInstances, m_normalizeFilter); |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | m_nominalToBinFilter = new NominalToBinary(); |
---|
| 457 | m_nominalToBinFilter.setInputFormat(m_trainInstances); |
---|
| 458 | m_trainInstances = Filter.useFilter(m_trainInstances, |
---|
| 459 | m_nominalToBinFilter); |
---|
| 460 | |
---|
| 461 | // delete any attributes with only one distinct value or are all missing |
---|
| 462 | Vector deleteCols = new Vector(); |
---|
| 463 | for (int i=0;i<m_trainInstances.numAttributes();i++) { |
---|
| 464 | if (m_trainInstances.numDistinctValues(i) <=1) { |
---|
| 465 | deleteCols.addElement(new Integer(i)); |
---|
| 466 | } |
---|
| 467 | } |
---|
| 468 | |
---|
| 469 | if (m_trainInstances.classIndex() >=0) { |
---|
| 470 | // get rid of the class column |
---|
| 471 | m_hasClass = true; |
---|
| 472 | m_classIndex = m_trainInstances.classIndex(); |
---|
| 473 | deleteCols.addElement(new Integer(m_classIndex)); |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | // remove columns from the data if necessary |
---|
| 477 | if (deleteCols.size() > 0) { |
---|
| 478 | m_attributeFilter = new Remove(); |
---|
| 479 | int [] todelete = new int [deleteCols.size()]; |
---|
| 480 | for (int i=0;i<deleteCols.size();i++) { |
---|
| 481 | todelete[i] = ((Integer)(deleteCols.elementAt(i))).intValue(); |
---|
| 482 | } |
---|
| 483 | m_attributeFilter.setAttributeIndicesArray(todelete); |
---|
| 484 | m_attributeFilter.setInvertSelection(false); |
---|
| 485 | m_attributeFilter.setInputFormat(m_trainInstances); |
---|
| 486 | m_trainInstances = Filter.useFilter(m_trainInstances, m_attributeFilter); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | // can evaluator handle the processed data ? e.g., enough attributes? |
---|
| 490 | getCapabilities().testWithFail(m_trainInstances); |
---|
| 491 | |
---|
| 492 | m_numInstances = m_trainInstances.numInstances(); |
---|
| 493 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
| 494 | |
---|
| 495 | fillCorrelation(); |
---|
| 496 | |
---|
| 497 | double [] d = new double[m_numAttribs]; |
---|
| 498 | double [][] v = new double[m_numAttribs][m_numAttribs]; |
---|
| 499 | |
---|
| 500 | Matrix corr = new Matrix(m_correlation); |
---|
| 501 | corr.eigenvalueDecomposition(v, d); |
---|
| 502 | m_eigenvectors = (double [][])v.clone(); |
---|
| 503 | m_eigenvalues = (double [])d.clone(); |
---|
| 504 | |
---|
| 505 | // any eigenvalues less than 0 are not worth anything --- change to 0 |
---|
| 506 | for (int i = 0; i < m_eigenvalues.length; i++) { |
---|
| 507 | if (m_eigenvalues[i] < 0) { |
---|
| 508 | m_eigenvalues[i] = 0.0; |
---|
| 509 | } |
---|
| 510 | } |
---|
| 511 | m_sortedEigens = Utils.sort(m_eigenvalues); |
---|
| 512 | m_sumOfEigenValues = Utils.sum(m_eigenvalues); |
---|
| 513 | |
---|
| 514 | m_transformedFormat = setOutputFormat(); |
---|
| 515 | if (m_transBackToOriginal) { |
---|
| 516 | m_originalSpaceFormat = setOutputFormatOriginal(); |
---|
| 517 | |
---|
| 518 | // new ordered eigenvector matrix |
---|
| 519 | int numVectors = (m_transformedFormat.classIndex() < 0) |
---|
| 520 | ? m_transformedFormat.numAttributes() |
---|
| 521 | : m_transformedFormat.numAttributes() - 1; |
---|
| 522 | |
---|
| 523 | double [][] orderedVectors = |
---|
| 524 | new double [m_eigenvectors.length][numVectors + 1]; |
---|
| 525 | |
---|
| 526 | // try converting back to the original space |
---|
| 527 | for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { |
---|
| 528 | for (int j = 0; j < m_numAttribs; j++) { |
---|
| 529 | orderedVectors[j][m_numAttribs - i] = |
---|
| 530 | m_eigenvectors[j][m_sortedEigens[i]]; |
---|
| 531 | } |
---|
| 532 | } |
---|
| 533 | |
---|
| 534 | // transpose the matrix |
---|
| 535 | int nr = orderedVectors.length; |
---|
| 536 | int nc = orderedVectors[0].length; |
---|
| 537 | m_eTranspose = |
---|
| 538 | new double [nc][nr]; |
---|
| 539 | for (int i = 0; i < nc; i++) { |
---|
| 540 | for (int j = 0; j < nr; j++) { |
---|
| 541 | m_eTranspose[i][j] = orderedVectors[j][i]; |
---|
| 542 | } |
---|
| 543 | } |
---|
| 544 | } |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | /** |
---|
| 548 | * Returns just the header for the transformed data (ie. an empty |
---|
| 549 | * set of instances. This is so that AttributeSelection can |
---|
| 550 | * determine the structure of the transformed data without actually |
---|
| 551 | * having to get all the transformed data through transformedData(). |
---|
| 552 | * @return the header of the transformed data. |
---|
| 553 | * @throws Exception if the header of the transformed data can't |
---|
| 554 | * be determined. |
---|
| 555 | */ |
---|
| 556 | public Instances transformedHeader() throws Exception { |
---|
| 557 | if (m_eigenvalues == null) { |
---|
| 558 | throw new Exception("Principal components hasn't been built yet"); |
---|
| 559 | } |
---|
| 560 | if (m_transBackToOriginal) { |
---|
| 561 | return m_originalSpaceFormat; |
---|
| 562 | } else { |
---|
| 563 | return m_transformedFormat; |
---|
| 564 | } |
---|
| 565 | } |
---|
| 566 | |
---|
| 567 | /** |
---|
| 568 | * Gets the transformed training data. |
---|
| 569 | * @return the transformed training data |
---|
| 570 | * @throws Exception if transformed data can't be returned |
---|
| 571 | */ |
---|
| 572 | public Instances transformedData(Instances data) throws Exception { |
---|
| 573 | if (m_eigenvalues == null) { |
---|
| 574 | throw new Exception("Principal components hasn't been built yet"); |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | Instances output = null; |
---|
| 578 | |
---|
| 579 | if (m_transBackToOriginal) { |
---|
| 580 | output = new Instances(m_originalSpaceFormat); |
---|
| 581 | } else { |
---|
| 582 | output = new Instances(m_transformedFormat); |
---|
| 583 | } |
---|
| 584 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 585 | Instance converted = convertInstance(data.instance(i)); |
---|
| 586 | output.add(converted); |
---|
| 587 | } |
---|
| 588 | |
---|
| 589 | return output; |
---|
| 590 | } |
---|
| 591 | |
---|
| 592 | /** |
---|
| 593 | * Evaluates the merit of a transformed attribute. This is defined |
---|
| 594 | * to be 1 minus the cumulative variance explained. Merit can't |
---|
| 595 | * be meaningfully evaluated if the data is to be transformed back |
---|
| 596 | * to the original space. |
---|
| 597 | * @param att the attribute to be evaluated |
---|
| 598 | * @return the merit of a transformed attribute |
---|
| 599 | * @throws Exception if attribute can't be evaluated |
---|
| 600 | */ |
---|
| 601 | public double evaluateAttribute(int att) throws Exception { |
---|
| 602 | if (m_eigenvalues == null) { |
---|
| 603 | throw new Exception("Principal components hasn't been built yet!"); |
---|
| 604 | } |
---|
| 605 | |
---|
| 606 | if (m_transBackToOriginal) { |
---|
| 607 | return 1.0; // can't evaluate back in the original space! |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | // return 1-cumulative variance explained for this transformed att |
---|
| 611 | double cumulative = 0.0; |
---|
| 612 | for (int i = m_numAttribs - 1; i >= m_numAttribs - att - 1; i--) { |
---|
| 613 | cumulative += m_eigenvalues[m_sortedEigens[i]]; |
---|
| 614 | } |
---|
| 615 | |
---|
| 616 | return 1.0 - cumulative / m_sumOfEigenValues; |
---|
| 617 | } |
---|
| 618 | |
---|
| 619 | /** |
---|
| 620 | * Fill the correlation matrix |
---|
| 621 | */ |
---|
| 622 | private void fillCorrelation() { |
---|
| 623 | m_correlation = new double[m_numAttribs][m_numAttribs]; |
---|
| 624 | double [] att1 = new double [m_numInstances]; |
---|
| 625 | double [] att2 = new double [m_numInstances]; |
---|
| 626 | double corr; |
---|
| 627 | |
---|
| 628 | for (int i = 0; i < m_numAttribs; i++) { |
---|
| 629 | for (int j = 0; j < m_numAttribs; j++) { |
---|
| 630 | if (i == j) { |
---|
| 631 | m_correlation[i][j] = 1.0; |
---|
| 632 | } else { |
---|
| 633 | for (int k = 0; k < m_numInstances; k++) { |
---|
| 634 | att1[k] = m_trainInstances.instance(k).value(i); |
---|
| 635 | att2[k] = m_trainInstances.instance(k).value(j); |
---|
| 636 | } |
---|
| 637 | corr = Utils.correlation(att1,att2,m_numInstances); |
---|
| 638 | m_correlation[i][j] = corr; |
---|
| 639 | m_correlation[j][i] = corr; |
---|
| 640 | } |
---|
| 641 | } |
---|
| 642 | } |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | /** |
---|
| 646 | * Return a summary of the analysis |
---|
| 647 | * @return a summary of the analysis. |
---|
| 648 | */ |
---|
| 649 | private String principalComponentsSummary() { |
---|
| 650 | StringBuffer result = new StringBuffer(); |
---|
| 651 | double cumulative = 0.0; |
---|
| 652 | Instances output = null; |
---|
| 653 | int numVectors=0; |
---|
| 654 | |
---|
| 655 | try { |
---|
| 656 | output = setOutputFormat(); |
---|
| 657 | numVectors = (output.classIndex() < 0) |
---|
| 658 | ? output.numAttributes() |
---|
| 659 | : output.numAttributes()-1; |
---|
| 660 | } catch (Exception ex) { |
---|
| 661 | } |
---|
| 662 | //tomorrow |
---|
| 663 | result.append("Correlation matrix\n"+matrixToString(m_correlation) |
---|
| 664 | +"\n\n"); |
---|
| 665 | result.append("eigenvalue\tproportion\tcumulative\n"); |
---|
| 666 | for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { |
---|
| 667 | cumulative+=m_eigenvalues[m_sortedEigens[i]]; |
---|
| 668 | result.append(Utils.doubleToString(m_eigenvalues[m_sortedEigens[i]],9,5) |
---|
| 669 | +"\t"+Utils. |
---|
| 670 | doubleToString((m_eigenvalues[m_sortedEigens[i]] / |
---|
| 671 | m_sumOfEigenValues), |
---|
| 672 | 9,5) |
---|
| 673 | +"\t"+Utils.doubleToString((cumulative / |
---|
| 674 | m_sumOfEigenValues),9,5) |
---|
| 675 | +"\t"+output.attribute(m_numAttribs - i - 1).name()+"\n"); |
---|
| 676 | } |
---|
| 677 | |
---|
| 678 | result.append("\nEigenvectors\n"); |
---|
| 679 | for (int j = 1;j <= numVectors;j++) { |
---|
| 680 | result.append(" V"+j+'\t'); |
---|
| 681 | } |
---|
| 682 | result.append("\n"); |
---|
| 683 | for (int j = 0; j < m_numAttribs; j++) { |
---|
| 684 | |
---|
| 685 | for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { |
---|
| 686 | result.append(Utils. |
---|
| 687 | doubleToString(m_eigenvectors[j][m_sortedEigens[i]],7,4) |
---|
| 688 | +"\t"); |
---|
| 689 | } |
---|
| 690 | result.append(m_trainInstances.attribute(j).name()+'\n'); |
---|
| 691 | } |
---|
| 692 | |
---|
| 693 | if (m_transBackToOriginal) { |
---|
| 694 | result.append("\nPC space transformed back to original space.\n" |
---|
| 695 | +"(Note: can't evaluate attributes in the original " |
---|
| 696 | +"space)\n"); |
---|
| 697 | } |
---|
| 698 | return result.toString(); |
---|
| 699 | } |
---|
| 700 | |
---|
| 701 | /** |
---|
| 702 | * Returns a description of this attribute transformer |
---|
| 703 | * @return a String describing this attribute transformer |
---|
| 704 | */ |
---|
| 705 | public String toString() { |
---|
| 706 | if (m_eigenvalues == null) { |
---|
| 707 | return "Principal components hasn't been built yet!"; |
---|
| 708 | } else { |
---|
| 709 | return "\tPrincipal Components Attribute Transformer\n\n" |
---|
| 710 | +principalComponentsSummary(); |
---|
| 711 | } |
---|
| 712 | } |
---|
| 713 | |
---|
| 714 | /** |
---|
| 715 | * Return a matrix as a String |
---|
| 716 | * @param matrix that is decribed as a string |
---|
| 717 | * @return a String describing a matrix |
---|
| 718 | */ |
---|
| 719 | private String matrixToString(double [][] matrix) { |
---|
| 720 | StringBuffer result = new StringBuffer(); |
---|
| 721 | int last = matrix.length - 1; |
---|
| 722 | |
---|
| 723 | for (int i = 0; i <= last; i++) { |
---|
| 724 | for (int j = 0; j <= last; j++) { |
---|
| 725 | result.append(Utils.doubleToString(matrix[i][j],6,2)+" "); |
---|
| 726 | if (j == last) { |
---|
| 727 | result.append('\n'); |
---|
| 728 | } |
---|
| 729 | } |
---|
| 730 | } |
---|
| 731 | return result.toString(); |
---|
| 732 | } |
---|
| 733 | |
---|
| 734 | /** |
---|
| 735 | * Convert a pc transformed instance back to the original space |
---|
| 736 | * |
---|
| 737 | * @param inst the instance to convert |
---|
| 738 | * @return the processed instance |
---|
| 739 | * @throws Exception if something goes wrong |
---|
| 740 | */ |
---|
| 741 | private Instance convertInstanceToOriginal(Instance inst) |
---|
| 742 | throws Exception { |
---|
| 743 | double[] newVals = null; |
---|
| 744 | |
---|
| 745 | if (m_hasClass) { |
---|
| 746 | newVals = new double[m_numAttribs+1]; |
---|
| 747 | } else { |
---|
| 748 | newVals = new double[m_numAttribs]; |
---|
| 749 | } |
---|
| 750 | |
---|
| 751 | if (m_hasClass) { |
---|
| 752 | // class is always appended as the last attribute |
---|
| 753 | newVals[m_numAttribs] = inst.value(inst.numAttributes() - 1); |
---|
| 754 | } |
---|
| 755 | |
---|
| 756 | for (int i = 0; i < m_eTranspose[0].length; i++) { |
---|
| 757 | double tempval = 0.0; |
---|
| 758 | for (int j = 1; j < m_eTranspose.length; j++) { |
---|
| 759 | tempval += (m_eTranspose[j][i] * |
---|
| 760 | inst.value(j - 1)); |
---|
| 761 | } |
---|
| 762 | newVals[i] = tempval; |
---|
| 763 | } |
---|
| 764 | |
---|
| 765 | if (inst instanceof SparseInstance) { |
---|
| 766 | return new SparseInstance(inst.weight(), newVals); |
---|
| 767 | } else { |
---|
| 768 | return new DenseInstance(inst.weight(), newVals); |
---|
| 769 | } |
---|
| 770 | } |
---|
| 771 | |
---|
| 772 | /** |
---|
| 773 | * Transform an instance in original (unormalized) format. Convert back |
---|
| 774 | * to the original space if requested. |
---|
| 775 | * @param instance an instance in the original (unormalized) format |
---|
| 776 | * @return a transformed instance |
---|
| 777 | * @throws Exception if instance cant be transformed |
---|
| 778 | */ |
---|
| 779 | public Instance convertInstance(Instance instance) throws Exception { |
---|
| 780 | |
---|
| 781 | if (m_eigenvalues == null) { |
---|
| 782 | throw new Exception("convertInstance: Principal components not " |
---|
| 783 | +"built yet"); |
---|
| 784 | } |
---|
| 785 | |
---|
| 786 | double[] newVals = new double[m_outputNumAtts]; |
---|
| 787 | Instance tempInst = (Instance)instance.copy(); |
---|
| 788 | if (!instance.dataset().equalHeaders(m_trainHeader)) { |
---|
| 789 | throw new Exception("Can't convert instance: header's don't match: " |
---|
| 790 | +"PrincipalComponents\n" |
---|
| 791 | + instance.dataset().equalHeadersMsg(m_trainHeader)); |
---|
| 792 | } |
---|
| 793 | |
---|
| 794 | m_replaceMissingFilter.input(tempInst); |
---|
| 795 | m_replaceMissingFilter.batchFinished(); |
---|
| 796 | tempInst = m_replaceMissingFilter.output(); |
---|
| 797 | |
---|
| 798 | if (m_normalize) { |
---|
| 799 | m_normalizeFilter.input(tempInst); |
---|
| 800 | m_normalizeFilter.batchFinished(); |
---|
| 801 | tempInst = m_normalizeFilter.output(); |
---|
| 802 | } |
---|
| 803 | |
---|
| 804 | m_nominalToBinFilter.input(tempInst); |
---|
| 805 | m_nominalToBinFilter.batchFinished(); |
---|
| 806 | tempInst = m_nominalToBinFilter.output(); |
---|
| 807 | |
---|
| 808 | if (m_attributeFilter != null) { |
---|
| 809 | m_attributeFilter.input(tempInst); |
---|
| 810 | m_attributeFilter.batchFinished(); |
---|
| 811 | tempInst = m_attributeFilter.output(); |
---|
| 812 | } |
---|
| 813 | |
---|
| 814 | if (m_hasClass) { |
---|
| 815 | newVals[m_outputNumAtts - 1] = instance.value(instance.classIndex()); |
---|
| 816 | } |
---|
| 817 | |
---|
| 818 | double cumulative = 0; |
---|
| 819 | for (int i = m_numAttribs - 1; i >= 0; i--) { |
---|
| 820 | double tempval = 0.0; |
---|
| 821 | for (int j = 0; j < m_numAttribs; j++) { |
---|
| 822 | tempval += (m_eigenvectors[j][m_sortedEigens[i]] * |
---|
| 823 | tempInst.value(j)); |
---|
| 824 | } |
---|
| 825 | newVals[m_numAttribs - i - 1] = tempval; |
---|
| 826 | cumulative+=m_eigenvalues[m_sortedEigens[i]]; |
---|
| 827 | if ((cumulative / m_sumOfEigenValues) >= m_coverVariance) { |
---|
| 828 | break; |
---|
| 829 | } |
---|
| 830 | } |
---|
| 831 | |
---|
| 832 | if (!m_transBackToOriginal) { |
---|
| 833 | if (instance instanceof SparseInstance) { |
---|
| 834 | return new SparseInstance(instance.weight(), newVals); |
---|
| 835 | } else { |
---|
| 836 | return new DenseInstance(instance.weight(), newVals); |
---|
| 837 | } |
---|
| 838 | } else { |
---|
| 839 | if (instance instanceof SparseInstance) { |
---|
| 840 | return convertInstanceToOriginal(new SparseInstance(instance.weight(), |
---|
| 841 | newVals)); |
---|
| 842 | } else { |
---|
| 843 | return convertInstanceToOriginal(new DenseInstance(instance.weight(), |
---|
| 844 | newVals)); |
---|
| 845 | } |
---|
| 846 | } |
---|
| 847 | } |
---|
| 848 | |
---|
| 849 | /** |
---|
| 850 | * Set up the header for the PC->original space dataset |
---|
| 851 | * |
---|
| 852 | * @return the output format |
---|
| 853 | * @throws Exception if something goes wrong |
---|
| 854 | */ |
---|
| 855 | private Instances setOutputFormatOriginal() throws Exception { |
---|
| 856 | FastVector attributes = new FastVector(); |
---|
| 857 | |
---|
| 858 | for (int i = 0; i < m_numAttribs; i++) { |
---|
| 859 | String att = m_trainInstances.attribute(i).name(); |
---|
| 860 | attributes.addElement(new Attribute(att)); |
---|
| 861 | } |
---|
| 862 | |
---|
| 863 | if (m_hasClass) { |
---|
| 864 | attributes.addElement(m_trainHeader.classAttribute().copy()); |
---|
| 865 | } |
---|
| 866 | |
---|
| 867 | Instances outputFormat = |
---|
| 868 | new Instances(m_trainHeader.relationName()+"->PC->original space", |
---|
| 869 | attributes, 0); |
---|
| 870 | |
---|
| 871 | // set the class to be the last attribute if necessary |
---|
| 872 | if (m_hasClass) { |
---|
| 873 | outputFormat.setClassIndex(outputFormat.numAttributes()-1); |
---|
| 874 | } |
---|
| 875 | |
---|
| 876 | return outputFormat; |
---|
| 877 | } |
---|
| 878 | |
---|
| 879 | /** |
---|
| 880 | * Set the format for the transformed data |
---|
| 881 | * @return a set of empty Instances (header only) in the new format |
---|
| 882 | * @throws Exception if the output format can't be set |
---|
| 883 | */ |
---|
| 884 | private Instances setOutputFormat() throws Exception { |
---|
| 885 | if (m_eigenvalues == null) { |
---|
| 886 | return null; |
---|
| 887 | } |
---|
| 888 | |
---|
| 889 | double cumulative = 0.0; |
---|
| 890 | FastVector attributes = new FastVector(); |
---|
| 891 | for (int i = m_numAttribs - 1; i >= 0; i--) { |
---|
| 892 | StringBuffer attName = new StringBuffer(); |
---|
| 893 | // build array of coefficients |
---|
| 894 | double[] coeff_mags = new double[m_numAttribs]; |
---|
| 895 | for (int j = 0; j < m_numAttribs; j++) |
---|
| 896 | coeff_mags[j] = -Math.abs(m_eigenvectors[j][m_sortedEigens[i]]); |
---|
| 897 | int num_attrs = (m_maxAttrsInName > 0) ? Math.min(m_numAttribs, m_maxAttrsInName) : m_numAttribs; |
---|
| 898 | // this array contains the sorted indices of the coefficients |
---|
| 899 | int[] coeff_inds; |
---|
| 900 | if (m_numAttribs > 0) { |
---|
| 901 | // if m_maxAttrsInName > 0, sort coefficients by decreasing magnitude |
---|
| 902 | coeff_inds = Utils.sort(coeff_mags); |
---|
| 903 | } else { |
---|
| 904 | // if m_maxAttrsInName <= 0, use all coeffs in original order |
---|
| 905 | coeff_inds = new int[m_numAttribs]; |
---|
| 906 | for (int j=0; j<m_numAttribs; j++) |
---|
| 907 | coeff_inds[j] = j; |
---|
| 908 | } |
---|
| 909 | // build final attName string |
---|
| 910 | for (int j = 0; j < num_attrs; j++) { |
---|
| 911 | double coeff_value = m_eigenvectors[coeff_inds[j]][m_sortedEigens[i]]; |
---|
| 912 | if (j > 0 && coeff_value >= 0) |
---|
| 913 | attName.append("+"); |
---|
| 914 | attName.append(Utils.doubleToString(coeff_value,5,3) |
---|
| 915 | +m_trainInstances.attribute(coeff_inds[j]).name()); |
---|
| 916 | } |
---|
| 917 | if (num_attrs < m_numAttribs) |
---|
| 918 | attName.append("..."); |
---|
| 919 | |
---|
| 920 | attributes.addElement(new Attribute(attName.toString())); |
---|
| 921 | cumulative+=m_eigenvalues[m_sortedEigens[i]]; |
---|
| 922 | |
---|
| 923 | if ((cumulative / m_sumOfEigenValues) >= m_coverVariance) { |
---|
| 924 | break; |
---|
| 925 | } |
---|
| 926 | } |
---|
| 927 | |
---|
| 928 | if (m_hasClass) { |
---|
| 929 | attributes.addElement(m_trainHeader.classAttribute().copy()); |
---|
| 930 | } |
---|
| 931 | |
---|
| 932 | Instances outputFormat = |
---|
| 933 | new Instances(m_trainInstances.relationName()+"_principal components", |
---|
| 934 | attributes, 0); |
---|
| 935 | |
---|
| 936 | // set the class to be the last attribute if necessary |
---|
| 937 | if (m_hasClass) { |
---|
| 938 | outputFormat.setClassIndex(outputFormat.numAttributes()-1); |
---|
| 939 | } |
---|
| 940 | |
---|
| 941 | m_outputNumAtts = outputFormat.numAttributes(); |
---|
| 942 | return outputFormat; |
---|
| 943 | } |
---|
| 944 | |
---|
| 945 | /** |
---|
| 946 | * Returns the revision string. |
---|
| 947 | * |
---|
| 948 | * @return the revision |
---|
| 949 | */ |
---|
| 950 | public String getRevision() { |
---|
| 951 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 952 | } |
---|
| 953 | |
---|
| 954 | /** |
---|
| 955 | * Main method for testing this class |
---|
| 956 | * @param argv should contain the command line arguments to the |
---|
| 957 | * evaluator/transformer (see AttributeSelection) |
---|
| 958 | */ |
---|
| 959 | public static void main(String [] argv) { |
---|
| 960 | runEvaluator(new PrincipalComponents(), argv); |
---|
| 961 | } |
---|
| 962 | } |
---|