1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * OneRAttributeEval.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.core.Capabilities; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.OptionHandler; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.core.Capabilities.Capability; |
---|
35 | import weka.filters.Filter; |
---|
36 | import weka.filters.unsupervised.attribute.Remove; |
---|
37 | |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Random; |
---|
40 | import java.util.Vector; |
---|
41 | |
---|
42 | /** |
---|
43 | <!-- globalinfo-start --> |
---|
44 | * OneRAttributeEval :<br/> |
---|
45 | * <br/> |
---|
46 | * Evaluates the worth of an attribute by using the OneR classifier.<br/> |
---|
47 | * <p/> |
---|
48 | <!-- globalinfo-end --> |
---|
49 | * |
---|
50 | <!-- options-start --> |
---|
51 | * Valid options are: <p/> |
---|
52 | * |
---|
53 | * <pre> -S <seed> |
---|
54 | * Random number seed for cross validation |
---|
55 | * (default = 1)</pre> |
---|
56 | * |
---|
57 | * <pre> -F <folds> |
---|
58 | * Number of folds for cross validation |
---|
59 | * (default = 10)</pre> |
---|
60 | * |
---|
61 | * <pre> -D |
---|
62 | * Use training data for evaluation rather than cross validaton</pre> |
---|
63 | * |
---|
64 | * <pre> -B <minimum bucket size> |
---|
65 | * Minimum number of objects in a bucket |
---|
66 | * (passed on to OneR, default = 6)</pre> |
---|
67 | * |
---|
68 | <!-- options-end --> |
---|
69 | * |
---|
70 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
71 | * @version $Revision: 5928 $ |
---|
72 | */ |
---|
73 | public class OneRAttributeEval |
---|
74 | extends ASEvaluation |
---|
75 | implements AttributeEvaluator, OptionHandler { |
---|
76 | |
---|
77 | /** for serialization */ |
---|
78 | static final long serialVersionUID = 4386514823886856980L; |
---|
79 | |
---|
80 | /** The training instances */ |
---|
81 | private Instances m_trainInstances; |
---|
82 | |
---|
83 | /** The class index */ |
---|
84 | private int m_classIndex; |
---|
85 | |
---|
86 | /** The number of attributes */ |
---|
87 | private int m_numAttribs; |
---|
88 | |
---|
89 | /** The number of instances */ |
---|
90 | private int m_numInstances; |
---|
91 | |
---|
92 | /** Random number seed */ |
---|
93 | private int m_randomSeed; |
---|
94 | |
---|
95 | /** Number of folds for cross validation */ |
---|
96 | private int m_folds; |
---|
97 | |
---|
98 | /** Use training data to evaluate merit rather than x-val */ |
---|
99 | private boolean m_evalUsingTrainingData; |
---|
100 | |
---|
101 | /** Passed on to OneR */ |
---|
102 | private int m_minBucketSize; |
---|
103 | |
---|
104 | |
---|
105 | /** |
---|
106 | * Returns a string describing this attribute evaluator |
---|
107 | * @return a description of the evaluator suitable for |
---|
108 | * displaying in the explorer/experimenter gui |
---|
109 | */ |
---|
110 | public String globalInfo() { |
---|
111 | return "OneRAttributeEval :\n\nEvaluates the worth of an attribute by " |
---|
112 | +"using the OneR classifier.\n"; |
---|
113 | } |
---|
114 | |
---|
115 | /** |
---|
116 | * Returns a string for this option suitable for display in the gui |
---|
117 | * as a tip text |
---|
118 | * |
---|
119 | * @return a string describing this option |
---|
120 | */ |
---|
121 | public String seedTipText() { |
---|
122 | return "Set the seed for use in cross validation."; |
---|
123 | } |
---|
124 | |
---|
125 | /** |
---|
126 | * Set the random number seed for cross validation |
---|
127 | * |
---|
128 | * @param seed the seed to use |
---|
129 | */ |
---|
130 | public void setSeed(int seed) { |
---|
131 | m_randomSeed = seed; |
---|
132 | } |
---|
133 | |
---|
134 | /** |
---|
135 | * Get the random number seed |
---|
136 | * |
---|
137 | * @return an <code>int</code> value |
---|
138 | */ |
---|
139 | public int getSeed() { |
---|
140 | return m_randomSeed; |
---|
141 | } |
---|
142 | |
---|
143 | /** |
---|
144 | * Returns a string for this option suitable for display in the gui |
---|
145 | * as a tip text |
---|
146 | * |
---|
147 | * @return a string describing this option |
---|
148 | */ |
---|
149 | public String foldsTipText() { |
---|
150 | return "Set the number of folds for cross validation."; |
---|
151 | } |
---|
152 | |
---|
153 | /** |
---|
154 | * Set the number of folds to use for cross validation |
---|
155 | * |
---|
156 | * @param folds the number of folds |
---|
157 | */ |
---|
158 | public void setFolds(int folds) { |
---|
159 | m_folds = folds; |
---|
160 | if (m_folds < 2) { |
---|
161 | m_folds = 2; |
---|
162 | } |
---|
163 | } |
---|
164 | |
---|
165 | /** |
---|
166 | * Get the number of folds used for cross validation |
---|
167 | * |
---|
168 | * @return the number of folds |
---|
169 | */ |
---|
170 | public int getFolds() { |
---|
171 | return m_folds; |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * Returns a string for this option suitable for display in the gui |
---|
176 | * as a tip text |
---|
177 | * |
---|
178 | * @return a string describing this option |
---|
179 | */ |
---|
180 | public String evalUsingTrainingDataTipText() { |
---|
181 | return "Use the training data to evaluate attributes rather than " |
---|
182 | + "cross validation."; |
---|
183 | } |
---|
184 | |
---|
185 | /** |
---|
186 | * Use the training data to evaluate attributes rather than cross validation |
---|
187 | * |
---|
188 | * @param e true if training data is to be used for evaluation |
---|
189 | */ |
---|
190 | public void setEvalUsingTrainingData(boolean e) { |
---|
191 | m_evalUsingTrainingData = e; |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * Returns a string for this option suitable for display in the gui |
---|
196 | * as a tip text |
---|
197 | * |
---|
198 | * @return a string describing this option |
---|
199 | */ |
---|
200 | public String minimumBucketSizeTipText() { |
---|
201 | return "The minimum number of objects in a bucket " |
---|
202 | + "(passed to OneR)."; |
---|
203 | } |
---|
204 | |
---|
205 | /** |
---|
206 | * Set the minumum bucket size used by OneR |
---|
207 | * |
---|
208 | * @param minB the minimum bucket size to use |
---|
209 | */ |
---|
210 | public void setMinimumBucketSize(int minB) { |
---|
211 | m_minBucketSize = minB; |
---|
212 | } |
---|
213 | |
---|
214 | /** |
---|
215 | * Get the minimum bucket size used by oneR |
---|
216 | * |
---|
217 | * @return the minimum bucket size used |
---|
218 | */ |
---|
219 | public int getMinimumBucketSize() { |
---|
220 | return m_minBucketSize; |
---|
221 | } |
---|
222 | |
---|
223 | /** |
---|
224 | * Returns true if the training data is to be used for evaluation |
---|
225 | * |
---|
226 | * @return true if training data is to be used for evaluation |
---|
227 | */ |
---|
228 | public boolean getEvalUsingTrainingData() { |
---|
229 | return m_evalUsingTrainingData; |
---|
230 | } |
---|
231 | |
---|
232 | /** |
---|
233 | * Returns an enumeration describing the available options. |
---|
234 | * |
---|
235 | * @return an enumeration of all the available options. |
---|
236 | */ |
---|
237 | public Enumeration listOptions() { |
---|
238 | |
---|
239 | Vector newVector = new Vector(4); |
---|
240 | |
---|
241 | newVector.addElement(new Option( |
---|
242 | "\tRandom number seed for cross validation\n" |
---|
243 | + "\t(default = 1)", |
---|
244 | "S", 1, "-S <seed>")); |
---|
245 | |
---|
246 | newVector.addElement(new Option( |
---|
247 | "\tNumber of folds for cross validation\n" |
---|
248 | + "\t(default = 10)", |
---|
249 | "F", 1, "-F <folds>")); |
---|
250 | |
---|
251 | newVector.addElement(new Option( |
---|
252 | "\tUse training data for evaluation rather than cross validaton", |
---|
253 | "D", 0, "-D")); |
---|
254 | |
---|
255 | newVector.addElement(new Option( |
---|
256 | "\tMinimum number of objects in a bucket\n" |
---|
257 | + "\t(passed on to " |
---|
258 | +"OneR, default = 6)", |
---|
259 | "B", 1, "-B <minimum bucket size>")); |
---|
260 | |
---|
261 | return newVector.elements(); |
---|
262 | } |
---|
263 | |
---|
264 | /** |
---|
265 | * Parses a given list of options. <p/> |
---|
266 | * |
---|
267 | <!-- options-start --> |
---|
268 | * Valid options are: <p/> |
---|
269 | * |
---|
270 | * <pre> -S <seed> |
---|
271 | * Random number seed for cross validation |
---|
272 | * (default = 1)</pre> |
---|
273 | * |
---|
274 | * <pre> -F <folds> |
---|
275 | * Number of folds for cross validation |
---|
276 | * (default = 10)</pre> |
---|
277 | * |
---|
278 | * <pre> -D |
---|
279 | * Use training data for evaluation rather than cross validaton</pre> |
---|
280 | * |
---|
281 | * <pre> -B <minimum bucket size> |
---|
282 | * Minimum number of objects in a bucket |
---|
283 | * (passed on to OneR, default = 6)</pre> |
---|
284 | * |
---|
285 | <!-- options-end --> |
---|
286 | * |
---|
287 | * @param options the list of options as an array of strings |
---|
288 | * @throws Exception if an option is not supported |
---|
289 | */ |
---|
290 | public void setOptions(String [] options) throws Exception { |
---|
291 | String temp = Utils.getOption('S', options); |
---|
292 | |
---|
293 | if (temp.length() != 0) { |
---|
294 | setSeed(Integer.parseInt(temp)); |
---|
295 | } |
---|
296 | |
---|
297 | temp = Utils.getOption('F', options); |
---|
298 | if (temp.length() != 0) { |
---|
299 | setFolds(Integer.parseInt(temp)); |
---|
300 | } |
---|
301 | |
---|
302 | temp = Utils.getOption('B', options); |
---|
303 | if (temp.length() != 0) { |
---|
304 | setMinimumBucketSize(Integer.parseInt(temp)); |
---|
305 | } |
---|
306 | |
---|
307 | setEvalUsingTrainingData(Utils.getFlag('D', options)); |
---|
308 | Utils.checkForRemainingOptions(options); |
---|
309 | } |
---|
310 | |
---|
311 | /** |
---|
312 | * returns the current setup. |
---|
313 | * |
---|
314 | * @return the options of the current setup |
---|
315 | */ |
---|
316 | public String[] getOptions() { |
---|
317 | String [] options = new String [7]; |
---|
318 | int current = 0; |
---|
319 | |
---|
320 | if (getEvalUsingTrainingData()) { |
---|
321 | options[current++] = "-D"; |
---|
322 | } |
---|
323 | |
---|
324 | options[current++] = "-S"; |
---|
325 | options[current++] = "" + getSeed(); |
---|
326 | options[current++] = "-F"; |
---|
327 | options[current++] = "" + getFolds(); |
---|
328 | options[current++] = "-B"; |
---|
329 | options[current++] = "" + getMinimumBucketSize(); |
---|
330 | |
---|
331 | while (current < options.length) { |
---|
332 | options[current++] = ""; |
---|
333 | } |
---|
334 | return options; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * Constructor |
---|
339 | */ |
---|
340 | public OneRAttributeEval () { |
---|
341 | resetOptions(); |
---|
342 | } |
---|
343 | |
---|
344 | /** |
---|
345 | * Returns the capabilities of this evaluator. |
---|
346 | * |
---|
347 | * @return the capabilities of this evaluator |
---|
348 | * @see Capabilities |
---|
349 | */ |
---|
350 | public Capabilities getCapabilities() { |
---|
351 | Capabilities result = super.getCapabilities(); |
---|
352 | result.disableAll(); |
---|
353 | |
---|
354 | // attributes |
---|
355 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
356 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
357 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
358 | result.enable(Capability.MISSING_VALUES); |
---|
359 | |
---|
360 | // class |
---|
361 | result.enable(Capability.NOMINAL_CLASS); |
---|
362 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
363 | |
---|
364 | return result; |
---|
365 | } |
---|
366 | |
---|
367 | /** |
---|
368 | * Initializes a OneRAttribute attribute evaluator. |
---|
369 | * Discretizes all attributes that are numeric. |
---|
370 | * |
---|
371 | * @param data set of instances serving as training data |
---|
372 | * @throws Exception if the evaluator has not been |
---|
373 | * generated successfully |
---|
374 | */ |
---|
375 | public void buildEvaluator (Instances data) |
---|
376 | throws Exception { |
---|
377 | |
---|
378 | // can evaluator handle data? |
---|
379 | getCapabilities().testWithFail(data); |
---|
380 | |
---|
381 | m_trainInstances = data; |
---|
382 | m_classIndex = m_trainInstances.classIndex(); |
---|
383 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
384 | m_numInstances = m_trainInstances.numInstances(); |
---|
385 | } |
---|
386 | |
---|
387 | |
---|
388 | /** |
---|
389 | * rests to defaults. |
---|
390 | */ |
---|
391 | protected void resetOptions () { |
---|
392 | m_trainInstances = null; |
---|
393 | m_randomSeed = 1; |
---|
394 | m_folds = 10; |
---|
395 | m_evalUsingTrainingData = false; |
---|
396 | m_minBucketSize = 6; // default used by OneR |
---|
397 | } |
---|
398 | |
---|
399 | |
---|
400 | /** |
---|
401 | * evaluates an individual attribute by measuring the amount |
---|
402 | * of information gained about the class given the attribute. |
---|
403 | * |
---|
404 | * @param attribute the index of the attribute to be evaluated |
---|
405 | * @throws Exception if the attribute could not be evaluated |
---|
406 | */ |
---|
407 | public double evaluateAttribute (int attribute) |
---|
408 | throws Exception { |
---|
409 | int[] featArray = new int[2]; // feat + class |
---|
410 | double errorRate; |
---|
411 | Evaluation o_Evaluation; |
---|
412 | Remove delTransform = new Remove(); |
---|
413 | delTransform.setInvertSelection(true); |
---|
414 | // copy the instances |
---|
415 | Instances trainCopy = new Instances(m_trainInstances); |
---|
416 | featArray[0] = attribute; |
---|
417 | featArray[1] = trainCopy.classIndex(); |
---|
418 | delTransform.setAttributeIndicesArray(featArray); |
---|
419 | delTransform.setInputFormat(trainCopy); |
---|
420 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
421 | o_Evaluation = new Evaluation(trainCopy); |
---|
422 | String [] oneROpts = { "-B", ""+getMinimumBucketSize()}; |
---|
423 | Classifier oneR = AbstractClassifier.forName("weka.classifiers.rules.OneR", oneROpts); |
---|
424 | if (m_evalUsingTrainingData) { |
---|
425 | oneR.buildClassifier(trainCopy); |
---|
426 | o_Evaluation.evaluateModel(oneR, trainCopy); |
---|
427 | } else { |
---|
428 | /* o_Evaluation.crossValidateModel("weka.classifiers.rules.OneR", |
---|
429 | trainCopy, 10, |
---|
430 | null, new Random(m_randomSeed)); */ |
---|
431 | o_Evaluation.crossValidateModel(oneR, trainCopy, m_folds, new Random(m_randomSeed)); |
---|
432 | } |
---|
433 | errorRate = o_Evaluation.errorRate(); |
---|
434 | return (1 - errorRate)*100.0; |
---|
435 | } |
---|
436 | |
---|
437 | |
---|
438 | /** |
---|
439 | * Return a description of the evaluator |
---|
440 | * @return description as a string |
---|
441 | */ |
---|
442 | public String toString () { |
---|
443 | StringBuffer text = new StringBuffer(); |
---|
444 | |
---|
445 | if (m_trainInstances == null) { |
---|
446 | text.append("\tOneR feature evaluator has not been built yet"); |
---|
447 | } |
---|
448 | else { |
---|
449 | text.append("\tOneR feature evaluator.\n\n"); |
---|
450 | text.append("\tUsing "); |
---|
451 | if (m_evalUsingTrainingData) { |
---|
452 | text.append("training data for evaluation of attributes."); |
---|
453 | } else { |
---|
454 | text.append(""+getFolds()+" fold cross validation for evaluating " |
---|
455 | +"attributes."); |
---|
456 | } |
---|
457 | text.append("\n\tMinimum bucket size for OneR: " |
---|
458 | +getMinimumBucketSize()); |
---|
459 | } |
---|
460 | |
---|
461 | text.append("\n"); |
---|
462 | return text.toString(); |
---|
463 | } |
---|
464 | |
---|
465 | /** |
---|
466 | * Returns the revision string. |
---|
467 | * |
---|
468 | * @return the revision |
---|
469 | */ |
---|
470 | public String getRevision() { |
---|
471 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
472 | } |
---|
473 | |
---|
474 | // ============ |
---|
475 | // Test method. |
---|
476 | // ============ |
---|
477 | /** |
---|
478 | * Main method for testing this class. |
---|
479 | * |
---|
480 | * @param args the options |
---|
481 | */ |
---|
482 | public static void main (String[] args) { |
---|
483 | runEvaluator(new OneRAttributeEval(), args); |
---|
484 | } |
---|
485 | } |
---|