[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * OneRAttributeEval.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Evaluation; |
---|
| 28 | import weka.core.Capabilities; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.Utils; |
---|
| 34 | import weka.core.Capabilities.Capability; |
---|
| 35 | import weka.filters.Filter; |
---|
| 36 | import weka.filters.unsupervised.attribute.Remove; |
---|
| 37 | |
---|
| 38 | import java.util.Enumeration; |
---|
| 39 | import java.util.Random; |
---|
| 40 | import java.util.Vector; |
---|
| 41 | |
---|
| 42 | /** |
---|
| 43 | <!-- globalinfo-start --> |
---|
| 44 | * OneRAttributeEval :<br/> |
---|
| 45 | * <br/> |
---|
| 46 | * Evaluates the worth of an attribute by using the OneR classifier.<br/> |
---|
| 47 | * <p/> |
---|
| 48 | <!-- globalinfo-end --> |
---|
| 49 | * |
---|
| 50 | <!-- options-start --> |
---|
| 51 | * Valid options are: <p/> |
---|
| 52 | * |
---|
| 53 | * <pre> -S <seed> |
---|
| 54 | * Random number seed for cross validation |
---|
| 55 | * (default = 1)</pre> |
---|
| 56 | * |
---|
| 57 | * <pre> -F <folds> |
---|
| 58 | * Number of folds for cross validation |
---|
| 59 | * (default = 10)</pre> |
---|
| 60 | * |
---|
| 61 | * <pre> -D |
---|
| 62 | * Use training data for evaluation rather than cross validaton</pre> |
---|
| 63 | * |
---|
| 64 | * <pre> -B <minimum bucket size> |
---|
| 65 | * Minimum number of objects in a bucket |
---|
| 66 | * (passed on to OneR, default = 6)</pre> |
---|
| 67 | * |
---|
| 68 | <!-- options-end --> |
---|
| 69 | * |
---|
| 70 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 71 | * @version $Revision: 5928 $ |
---|
| 72 | */ |
---|
| 73 | public class OneRAttributeEval |
---|
| 74 | extends ASEvaluation |
---|
| 75 | implements AttributeEvaluator, OptionHandler { |
---|
| 76 | |
---|
| 77 | /** for serialization */ |
---|
| 78 | static final long serialVersionUID = 4386514823886856980L; |
---|
| 79 | |
---|
| 80 | /** The training instances */ |
---|
| 81 | private Instances m_trainInstances; |
---|
| 82 | |
---|
| 83 | /** The class index */ |
---|
| 84 | private int m_classIndex; |
---|
| 85 | |
---|
| 86 | /** The number of attributes */ |
---|
| 87 | private int m_numAttribs; |
---|
| 88 | |
---|
| 89 | /** The number of instances */ |
---|
| 90 | private int m_numInstances; |
---|
| 91 | |
---|
| 92 | /** Random number seed */ |
---|
| 93 | private int m_randomSeed; |
---|
| 94 | |
---|
| 95 | /** Number of folds for cross validation */ |
---|
| 96 | private int m_folds; |
---|
| 97 | |
---|
| 98 | /** Use training data to evaluate merit rather than x-val */ |
---|
| 99 | private boolean m_evalUsingTrainingData; |
---|
| 100 | |
---|
| 101 | /** Passed on to OneR */ |
---|
| 102 | private int m_minBucketSize; |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | /** |
---|
| 106 | * Returns a string describing this attribute evaluator |
---|
| 107 | * @return a description of the evaluator suitable for |
---|
| 108 | * displaying in the explorer/experimenter gui |
---|
| 109 | */ |
---|
| 110 | public String globalInfo() { |
---|
| 111 | return "OneRAttributeEval :\n\nEvaluates the worth of an attribute by " |
---|
| 112 | +"using the OneR classifier.\n"; |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | /** |
---|
| 116 | * Returns a string for this option suitable for display in the gui |
---|
| 117 | * as a tip text |
---|
| 118 | * |
---|
| 119 | * @return a string describing this option |
---|
| 120 | */ |
---|
| 121 | public String seedTipText() { |
---|
| 122 | return "Set the seed for use in cross validation."; |
---|
| 123 | } |
---|
| 124 | |
---|
| 125 | /** |
---|
| 126 | * Set the random number seed for cross validation |
---|
| 127 | * |
---|
| 128 | * @param seed the seed to use |
---|
| 129 | */ |
---|
| 130 | public void setSeed(int seed) { |
---|
| 131 | m_randomSeed = seed; |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | /** |
---|
| 135 | * Get the random number seed |
---|
| 136 | * |
---|
| 137 | * @return an <code>int</code> value |
---|
| 138 | */ |
---|
| 139 | public int getSeed() { |
---|
| 140 | return m_randomSeed; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | /** |
---|
| 144 | * Returns a string for this option suitable for display in the gui |
---|
| 145 | * as a tip text |
---|
| 146 | * |
---|
| 147 | * @return a string describing this option |
---|
| 148 | */ |
---|
| 149 | public String foldsTipText() { |
---|
| 150 | return "Set the number of folds for cross validation."; |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | /** |
---|
| 154 | * Set the number of folds to use for cross validation |
---|
| 155 | * |
---|
| 156 | * @param folds the number of folds |
---|
| 157 | */ |
---|
| 158 | public void setFolds(int folds) { |
---|
| 159 | m_folds = folds; |
---|
| 160 | if (m_folds < 2) { |
---|
| 161 | m_folds = 2; |
---|
| 162 | } |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /** |
---|
| 166 | * Get the number of folds used for cross validation |
---|
| 167 | * |
---|
| 168 | * @return the number of folds |
---|
| 169 | */ |
---|
| 170 | public int getFolds() { |
---|
| 171 | return m_folds; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | /** |
---|
| 175 | * Returns a string for this option suitable for display in the gui |
---|
| 176 | * as a tip text |
---|
| 177 | * |
---|
| 178 | * @return a string describing this option |
---|
| 179 | */ |
---|
| 180 | public String evalUsingTrainingDataTipText() { |
---|
| 181 | return "Use the training data to evaluate attributes rather than " |
---|
| 182 | + "cross validation."; |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | /** |
---|
| 186 | * Use the training data to evaluate attributes rather than cross validation |
---|
| 187 | * |
---|
| 188 | * @param e true if training data is to be used for evaluation |
---|
| 189 | */ |
---|
| 190 | public void setEvalUsingTrainingData(boolean e) { |
---|
| 191 | m_evalUsingTrainingData = e; |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | /** |
---|
| 195 | * Returns a string for this option suitable for display in the gui |
---|
| 196 | * as a tip text |
---|
| 197 | * |
---|
| 198 | * @return a string describing this option |
---|
| 199 | */ |
---|
| 200 | public String minimumBucketSizeTipText() { |
---|
| 201 | return "The minimum number of objects in a bucket " |
---|
| 202 | + "(passed to OneR)."; |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * Set the minumum bucket size used by OneR |
---|
| 207 | * |
---|
| 208 | * @param minB the minimum bucket size to use |
---|
| 209 | */ |
---|
| 210 | public void setMinimumBucketSize(int minB) { |
---|
| 211 | m_minBucketSize = minB; |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | /** |
---|
| 215 | * Get the minimum bucket size used by oneR |
---|
| 216 | * |
---|
| 217 | * @return the minimum bucket size used |
---|
| 218 | */ |
---|
| 219 | public int getMinimumBucketSize() { |
---|
| 220 | return m_minBucketSize; |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | /** |
---|
| 224 | * Returns true if the training data is to be used for evaluation |
---|
| 225 | * |
---|
| 226 | * @return true if training data is to be used for evaluation |
---|
| 227 | */ |
---|
| 228 | public boolean getEvalUsingTrainingData() { |
---|
| 229 | return m_evalUsingTrainingData; |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | /** |
---|
| 233 | * Returns an enumeration describing the available options. |
---|
| 234 | * |
---|
| 235 | * @return an enumeration of all the available options. |
---|
| 236 | */ |
---|
| 237 | public Enumeration listOptions() { |
---|
| 238 | |
---|
| 239 | Vector newVector = new Vector(4); |
---|
| 240 | |
---|
| 241 | newVector.addElement(new Option( |
---|
| 242 | "\tRandom number seed for cross validation\n" |
---|
| 243 | + "\t(default = 1)", |
---|
| 244 | "S", 1, "-S <seed>")); |
---|
| 245 | |
---|
| 246 | newVector.addElement(new Option( |
---|
| 247 | "\tNumber of folds for cross validation\n" |
---|
| 248 | + "\t(default = 10)", |
---|
| 249 | "F", 1, "-F <folds>")); |
---|
| 250 | |
---|
| 251 | newVector.addElement(new Option( |
---|
| 252 | "\tUse training data for evaluation rather than cross validaton", |
---|
| 253 | "D", 0, "-D")); |
---|
| 254 | |
---|
| 255 | newVector.addElement(new Option( |
---|
| 256 | "\tMinimum number of objects in a bucket\n" |
---|
| 257 | + "\t(passed on to " |
---|
| 258 | +"OneR, default = 6)", |
---|
| 259 | "B", 1, "-B <minimum bucket size>")); |
---|
| 260 | |
---|
| 261 | return newVector.elements(); |
---|
| 262 | } |
---|
| 263 | |
---|
| 264 | /** |
---|
| 265 | * Parses a given list of options. <p/> |
---|
| 266 | * |
---|
| 267 | <!-- options-start --> |
---|
| 268 | * Valid options are: <p/> |
---|
| 269 | * |
---|
| 270 | * <pre> -S <seed> |
---|
| 271 | * Random number seed for cross validation |
---|
| 272 | * (default = 1)</pre> |
---|
| 273 | * |
---|
| 274 | * <pre> -F <folds> |
---|
| 275 | * Number of folds for cross validation |
---|
| 276 | * (default = 10)</pre> |
---|
| 277 | * |
---|
| 278 | * <pre> -D |
---|
| 279 | * Use training data for evaluation rather than cross validaton</pre> |
---|
| 280 | * |
---|
| 281 | * <pre> -B <minimum bucket size> |
---|
| 282 | * Minimum number of objects in a bucket |
---|
| 283 | * (passed on to OneR, default = 6)</pre> |
---|
| 284 | * |
---|
| 285 | <!-- options-end --> |
---|
| 286 | * |
---|
| 287 | * @param options the list of options as an array of strings |
---|
| 288 | * @throws Exception if an option is not supported |
---|
| 289 | */ |
---|
| 290 | public void setOptions(String [] options) throws Exception { |
---|
| 291 | String temp = Utils.getOption('S', options); |
---|
| 292 | |
---|
| 293 | if (temp.length() != 0) { |
---|
| 294 | setSeed(Integer.parseInt(temp)); |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | temp = Utils.getOption('F', options); |
---|
| 298 | if (temp.length() != 0) { |
---|
| 299 | setFolds(Integer.parseInt(temp)); |
---|
| 300 | } |
---|
| 301 | |
---|
| 302 | temp = Utils.getOption('B', options); |
---|
| 303 | if (temp.length() != 0) { |
---|
| 304 | setMinimumBucketSize(Integer.parseInt(temp)); |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | setEvalUsingTrainingData(Utils.getFlag('D', options)); |
---|
| 308 | Utils.checkForRemainingOptions(options); |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | /** |
---|
| 312 | * returns the current setup. |
---|
| 313 | * |
---|
| 314 | * @return the options of the current setup |
---|
| 315 | */ |
---|
| 316 | public String[] getOptions() { |
---|
| 317 | String [] options = new String [7]; |
---|
| 318 | int current = 0; |
---|
| 319 | |
---|
| 320 | if (getEvalUsingTrainingData()) { |
---|
| 321 | options[current++] = "-D"; |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | options[current++] = "-S"; |
---|
| 325 | options[current++] = "" + getSeed(); |
---|
| 326 | options[current++] = "-F"; |
---|
| 327 | options[current++] = "" + getFolds(); |
---|
| 328 | options[current++] = "-B"; |
---|
| 329 | options[current++] = "" + getMinimumBucketSize(); |
---|
| 330 | |
---|
| 331 | while (current < options.length) { |
---|
| 332 | options[current++] = ""; |
---|
| 333 | } |
---|
| 334 | return options; |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /** |
---|
| 338 | * Constructor |
---|
| 339 | */ |
---|
| 340 | public OneRAttributeEval () { |
---|
| 341 | resetOptions(); |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | /** |
---|
| 345 | * Returns the capabilities of this evaluator. |
---|
| 346 | * |
---|
| 347 | * @return the capabilities of this evaluator |
---|
| 348 | * @see Capabilities |
---|
| 349 | */ |
---|
| 350 | public Capabilities getCapabilities() { |
---|
| 351 | Capabilities result = super.getCapabilities(); |
---|
| 352 | result.disableAll(); |
---|
| 353 | |
---|
| 354 | // attributes |
---|
| 355 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 356 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 357 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 358 | result.enable(Capability.MISSING_VALUES); |
---|
| 359 | |
---|
| 360 | // class |
---|
| 361 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 362 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 363 | |
---|
| 364 | return result; |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | /** |
---|
| 368 | * Initializes a OneRAttribute attribute evaluator. |
---|
| 369 | * Discretizes all attributes that are numeric. |
---|
| 370 | * |
---|
| 371 | * @param data set of instances serving as training data |
---|
| 372 | * @throws Exception if the evaluator has not been |
---|
| 373 | * generated successfully |
---|
| 374 | */ |
---|
| 375 | public void buildEvaluator (Instances data) |
---|
| 376 | throws Exception { |
---|
| 377 | |
---|
| 378 | // can evaluator handle data? |
---|
| 379 | getCapabilities().testWithFail(data); |
---|
| 380 | |
---|
| 381 | m_trainInstances = data; |
---|
| 382 | m_classIndex = m_trainInstances.classIndex(); |
---|
| 383 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
| 384 | m_numInstances = m_trainInstances.numInstances(); |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | /** |
---|
| 389 | * rests to defaults. |
---|
| 390 | */ |
---|
| 391 | protected void resetOptions () { |
---|
| 392 | m_trainInstances = null; |
---|
| 393 | m_randomSeed = 1; |
---|
| 394 | m_folds = 10; |
---|
| 395 | m_evalUsingTrainingData = false; |
---|
| 396 | m_minBucketSize = 6; // default used by OneR |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | /** |
---|
| 401 | * evaluates an individual attribute by measuring the amount |
---|
| 402 | * of information gained about the class given the attribute. |
---|
| 403 | * |
---|
| 404 | * @param attribute the index of the attribute to be evaluated |
---|
| 405 | * @throws Exception if the attribute could not be evaluated |
---|
| 406 | */ |
---|
| 407 | public double evaluateAttribute (int attribute) |
---|
| 408 | throws Exception { |
---|
| 409 | int[] featArray = new int[2]; // feat + class |
---|
| 410 | double errorRate; |
---|
| 411 | Evaluation o_Evaluation; |
---|
| 412 | Remove delTransform = new Remove(); |
---|
| 413 | delTransform.setInvertSelection(true); |
---|
| 414 | // copy the instances |
---|
| 415 | Instances trainCopy = new Instances(m_trainInstances); |
---|
| 416 | featArray[0] = attribute; |
---|
| 417 | featArray[1] = trainCopy.classIndex(); |
---|
| 418 | delTransform.setAttributeIndicesArray(featArray); |
---|
| 419 | delTransform.setInputFormat(trainCopy); |
---|
| 420 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
| 421 | o_Evaluation = new Evaluation(trainCopy); |
---|
| 422 | String [] oneROpts = { "-B", ""+getMinimumBucketSize()}; |
---|
| 423 | Classifier oneR = AbstractClassifier.forName("weka.classifiers.rules.OneR", oneROpts); |
---|
| 424 | if (m_evalUsingTrainingData) { |
---|
| 425 | oneR.buildClassifier(trainCopy); |
---|
| 426 | o_Evaluation.evaluateModel(oneR, trainCopy); |
---|
| 427 | } else { |
---|
| 428 | /* o_Evaluation.crossValidateModel("weka.classifiers.rules.OneR", |
---|
| 429 | trainCopy, 10, |
---|
| 430 | null, new Random(m_randomSeed)); */ |
---|
| 431 | o_Evaluation.crossValidateModel(oneR, trainCopy, m_folds, new Random(m_randomSeed)); |
---|
| 432 | } |
---|
| 433 | errorRate = o_Evaluation.errorRate(); |
---|
| 434 | return (1 - errorRate)*100.0; |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | |
---|
| 438 | /** |
---|
| 439 | * Return a description of the evaluator |
---|
| 440 | * @return description as a string |
---|
| 441 | */ |
---|
| 442 | public String toString () { |
---|
| 443 | StringBuffer text = new StringBuffer(); |
---|
| 444 | |
---|
| 445 | if (m_trainInstances == null) { |
---|
| 446 | text.append("\tOneR feature evaluator has not been built yet"); |
---|
| 447 | } |
---|
| 448 | else { |
---|
| 449 | text.append("\tOneR feature evaluator.\n\n"); |
---|
| 450 | text.append("\tUsing "); |
---|
| 451 | if (m_evalUsingTrainingData) { |
---|
| 452 | text.append("training data for evaluation of attributes."); |
---|
| 453 | } else { |
---|
| 454 | text.append(""+getFolds()+" fold cross validation for evaluating " |
---|
| 455 | +"attributes."); |
---|
| 456 | } |
---|
| 457 | text.append("\n\tMinimum bucket size for OneR: " |
---|
| 458 | +getMinimumBucketSize()); |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | text.append("\n"); |
---|
| 462 | return text.toString(); |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | /** |
---|
| 466 | * Returns the revision string. |
---|
| 467 | * |
---|
| 468 | * @return the revision |
---|
| 469 | */ |
---|
| 470 | public String getRevision() { |
---|
| 471 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 472 | } |
---|
| 473 | |
---|
| 474 | // ============ |
---|
| 475 | // Test method. |
---|
| 476 | // ============ |
---|
| 477 | /** |
---|
| 478 | * Main method for testing this class. |
---|
| 479 | * |
---|
| 480 | * @param args the options |
---|
| 481 | */ |
---|
| 482 | public static void main (String[] args) { |
---|
| 483 | runEvaluator(new OneRAttributeEval(), args); |
---|
| 484 | } |
---|
| 485 | } |
---|