1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * LatentSemanticAnalysis.java |
---|
19 | * Copyright (C) 2008 Amri Napolitano |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.Check; |
---|
28 | import weka.core.CheckOptionHandler; |
---|
29 | import weka.core.FastVector; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.DenseInstance; |
---|
32 | import weka.core.Instances; |
---|
33 | import weka.core.matrix.Matrix; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.OptionHandler; |
---|
36 | import weka.core.RevisionUtils; |
---|
37 | import weka.core.SparseInstance; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.Capabilities.Capability; |
---|
40 | import weka.core.matrix.SingularValueDecomposition; |
---|
41 | import weka.filters.Filter; |
---|
42 | import weka.filters.unsupervised.attribute.NominalToBinary; |
---|
43 | import weka.filters.unsupervised.attribute.Normalize; |
---|
44 | import weka.filters.unsupervised.attribute.Remove; |
---|
45 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
46 | |
---|
47 | import java.io.BufferedReader; |
---|
48 | import java.io.File; |
---|
49 | import java.io.FileReader; |
---|
50 | import java.util.Enumeration; |
---|
51 | import java.util.Vector; |
---|
52 | |
---|
53 | /** |
---|
54 | <!-- globalinfo-start --> |
---|
55 | * Performs latent semantic analysis and transformation of the data. |
---|
56 | * Use in conjunction with a Ranker search. A low-rank approximation |
---|
57 | * of the full data is found by specifying the number of singular values |
---|
58 | * to use. The dataset may be transformed to give the relation of either |
---|
59 | * the attributes or the instances (default) to the concept space created |
---|
60 | * by the transformation. |
---|
61 | * <p/> |
---|
62 | <!-- globalinfo-end --> |
---|
63 | * |
---|
64 | <!-- options-start --> |
---|
65 | * Valid options are: <p/> |
---|
66 | * |
---|
67 | * <pre> -N |
---|
68 | * Normalize input data.</pre> |
---|
69 | * |
---|
70 | * <pre> -R |
---|
71 | * Rank approximation used in LSA. May be actual number of |
---|
72 | * LSA attributes to include (if greater than 1) or a proportion |
---|
73 | * of total singular values to account for (if between 0 and 1). |
---|
74 | * A value less than or equal to zero means use all latent variables. |
---|
75 | * (default = 0.95)</pre> |
---|
76 | * |
---|
77 | * <pre> -A |
---|
78 | * Maximum number of attributes to include in |
---|
79 | * transformed attribute names. (-1 = include all)</pre> |
---|
80 | * |
---|
81 | <!-- options-end --> |
---|
82 | * |
---|
83 | * @author Amri Napolitano |
---|
84 | * @version $Revision: 5987 $ |
---|
85 | */ |
---|
86 | |
---|
87 | public class LatentSemanticAnalysis |
---|
88 | extends UnsupervisedAttributeEvaluator |
---|
89 | implements AttributeTransformer, OptionHandler { |
---|
90 | |
---|
91 | /** For serialization */ |
---|
92 | static final long serialVersionUID = -8712112988018106198L; |
---|
93 | |
---|
94 | /** The data to transform analyse/transform */ |
---|
95 | private Instances m_trainInstances; |
---|
96 | |
---|
97 | /** |
---|
98 | * Keep a copy for the class attribute (if set) and for |
---|
99 | * checking for header compatibility |
---|
100 | */ |
---|
101 | private Instances m_trainHeader; |
---|
102 | |
---|
103 | /** The header for the transformed data format */ |
---|
104 | private Instances m_transformedFormat; |
---|
105 | |
---|
106 | /** Data has a class set */ |
---|
107 | private boolean m_hasClass; |
---|
108 | |
---|
109 | /** Class index */ |
---|
110 | private int m_classIndex; |
---|
111 | |
---|
112 | /** Number of attributes */ |
---|
113 | private int m_numAttributes; |
---|
114 | |
---|
115 | /** Number of instances */ |
---|
116 | private int m_numInstances; |
---|
117 | |
---|
118 | /** Is transpose necessary because numAttributes < numInstances? */ |
---|
119 | private boolean m_transpose = false; |
---|
120 | |
---|
121 | /** Will hold the left singular vectors */ |
---|
122 | private Matrix m_u = null; |
---|
123 | |
---|
124 | /** Will hold the singular values */ |
---|
125 | private Matrix m_s = null; |
---|
126 | |
---|
127 | /** Will hold the right singular values */ |
---|
128 | private Matrix m_v = null; |
---|
129 | |
---|
130 | /** Will hold the matrix used to transform instances to the new feature space */ |
---|
131 | private Matrix m_transformationMatrix = null; |
---|
132 | |
---|
133 | /** Filters for original data */ |
---|
134 | private ReplaceMissingValues m_replaceMissingFilter; |
---|
135 | private Normalize m_normalizeFilter; |
---|
136 | private NominalToBinary m_nominalToBinaryFilter; |
---|
137 | private Remove m_attributeFilter; |
---|
138 | |
---|
139 | /** The number of attributes in the LSA transformed data */ |
---|
140 | private int m_outputNumAttributes = -1; |
---|
141 | |
---|
142 | /** Normalize the input data? */ |
---|
143 | private boolean m_normalize = false; |
---|
144 | |
---|
145 | /** The approximation rank to use (between 0 and 1 means coverage proportion) */ |
---|
146 | private double m_rank = 0.95; |
---|
147 | |
---|
148 | /** The sum of the squares of the singular values */ |
---|
149 | private double m_sumSquaredSingularValues = 0.0; |
---|
150 | |
---|
151 | /** The actual rank number to use for computation */ |
---|
152 | private int m_actualRank = -1; |
---|
153 | |
---|
154 | /** Maximum number of attributes in the transformed attribute name */ |
---|
155 | private int m_maxAttributesInName = 5; |
---|
156 | |
---|
157 | /** |
---|
158 | * Returns a string describing this attribute transformer |
---|
159 | * @return a description of the evaluator suitable for |
---|
160 | * displaying in the explorer/experimenter gui |
---|
161 | */ |
---|
162 | public String globalInfo() { |
---|
163 | return "Performs latent semantic analysis and transformation of the data. Use in " + |
---|
164 | "conjunction with a Ranker search. A low-rank approximation of the full data is " + |
---|
165 | "found by either specifying the number of singular values to use or specifying a " + |
---|
166 | "proportion of the singular values to cover."; |
---|
167 | } |
---|
168 | |
---|
169 | /** |
---|
170 | * Returns an enumeration describing the available options. <p> |
---|
171 | * |
---|
172 | * @return an enumeration of all the available options. |
---|
173 | **/ |
---|
174 | public Enumeration listOptions () { |
---|
175 | Vector options = new Vector(4); |
---|
176 | options.addElement(new Option("\tNormalize input data.", "N", 0, "-N")); |
---|
177 | |
---|
178 | options.addElement(new Option("\tRank approximation used in LSA. \n" + |
---|
179 | "\tMay be actual number of LSA attributes \n" + |
---|
180 | "\tto include (if greater than 1) or a \n" + |
---|
181 | "\tproportion of total singular values to \n" + |
---|
182 | "\taccount for (if between 0 and 1). \n" + |
---|
183 | "\tA value less than or equal to zero means \n" + |
---|
184 | "\tuse all latent variables.(default = 0.95)", |
---|
185 | "R",1,"-R")); |
---|
186 | |
---|
187 | options.addElement(new Option("\tMaximum number of attributes to include\n" + |
---|
188 | "\tin transformed attribute names.\n" + |
---|
189 | "\t(-1 = include all)" |
---|
190 | , "A", 1, "-A")); |
---|
191 | return options.elements(); |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * Parses a given list of options. <p/> |
---|
196 | * |
---|
197 | <!-- options-start --> |
---|
198 | * Valid options are: <p/> |
---|
199 | * |
---|
200 | * <pre> -N |
---|
201 | * Normalize input data.</pre> |
---|
202 | * |
---|
203 | * <pre> -R |
---|
204 | * Rank approximation used in LSA. May be actual number of |
---|
205 | * LSA attributes to include (if greater than 1) or a proportion |
---|
206 | * of total singular values to account for (if between 0 and 1). |
---|
207 | * A value less than or equal to zero means use all latent variables. |
---|
208 | * (default = 0.95)</pre> |
---|
209 | * |
---|
210 | * <pre> -A |
---|
211 | * Maximum number of attributes to include in |
---|
212 | * transformed attribute names. (-1 = include all)</pre> |
---|
213 | * |
---|
214 | <!-- options-end --> |
---|
215 | * |
---|
216 | * @param options the list of options as an array of strings |
---|
217 | * @throws Exception if an option is not supported |
---|
218 | */ |
---|
219 | public void setOptions (String[] options) |
---|
220 | throws Exception { |
---|
221 | resetOptions(); |
---|
222 | String optionString; |
---|
223 | |
---|
224 | //set approximation rank |
---|
225 | optionString = Utils.getOption('R', options); |
---|
226 | if (optionString.length() != 0) { |
---|
227 | double temp; |
---|
228 | temp = Double.valueOf(optionString).doubleValue(); |
---|
229 | setRank(temp); |
---|
230 | } |
---|
231 | |
---|
232 | //set number of attributes to use in transformed names |
---|
233 | optionString = Utils.getOption('A', options); |
---|
234 | if (optionString.length() != 0) { |
---|
235 | setMaximumAttributeNames(Integer.parseInt(optionString)); |
---|
236 | } |
---|
237 | |
---|
238 | //set normalize option |
---|
239 | setNormalize(Utils.getFlag('N', options)); |
---|
240 | } |
---|
241 | |
---|
242 | /** |
---|
243 | * Reset to defaults |
---|
244 | */ |
---|
245 | private void resetOptions() { |
---|
246 | m_rank = 0.95; |
---|
247 | m_normalize = true; |
---|
248 | m_maxAttributesInName = 5; |
---|
249 | } |
---|
250 | |
---|
251 | /** |
---|
252 | * Returns the tip text for this property |
---|
253 | * @return tip text for this property suitable for |
---|
254 | * displaying in the explorer/experimenter gui |
---|
255 | */ |
---|
256 | public String normalizeTipText() { |
---|
257 | return "Normalize input data."; |
---|
258 | } |
---|
259 | |
---|
260 | /** |
---|
261 | * Set whether input data will be normalized. |
---|
262 | * @param newNormalize true if input data is to be normalized |
---|
263 | */ |
---|
264 | public void setNormalize(boolean newNormalize) { |
---|
265 | m_normalize = newNormalize; |
---|
266 | } |
---|
267 | |
---|
268 | /** |
---|
269 | * Gets whether or not input data is to be normalized |
---|
270 | * @return true if input data is to be normalized |
---|
271 | */ |
---|
272 | public boolean getNormalize() { |
---|
273 | return m_normalize; |
---|
274 | } |
---|
275 | |
---|
276 | /** |
---|
277 | * Returns the tip text for this property |
---|
278 | * @return tip text for this property suitable for |
---|
279 | * displaying in the explorer/experimenter gui |
---|
280 | */ |
---|
281 | public String rankTipText() { |
---|
282 | return "Matrix rank to use for data reduction. Can be a" + |
---|
283 | " proportion to indicate desired coverage"; |
---|
284 | } |
---|
285 | |
---|
286 | /** |
---|
287 | * Sets the desired matrix rank (or coverage proportion) for feature-space reduction |
---|
288 | * @param newRank the desired rank (or coverage) for feature-space reduction |
---|
289 | */ |
---|
290 | public void setRank(double newRank) { |
---|
291 | m_rank = newRank; |
---|
292 | } |
---|
293 | |
---|
294 | /** |
---|
295 | * Gets the desired matrix rank (or coverage proportion) for feature-space reduction |
---|
296 | * @return the rank (or coverage) for feature-space reduction |
---|
297 | */ |
---|
298 | public double getRank() { |
---|
299 | return m_rank; |
---|
300 | } |
---|
301 | |
---|
302 | /** |
---|
303 | * Returns the tip text for this property |
---|
304 | * @return tip text for this property suitable for |
---|
305 | * displaying in the explorer/experimenter gui |
---|
306 | */ |
---|
307 | public String maximumAttributeNamesTipText() { |
---|
308 | return "The maximum number of attributes to include in transformed attribute names."; |
---|
309 | } |
---|
310 | |
---|
311 | /** |
---|
312 | * Sets maximum number of attributes to include in |
---|
313 | * transformed attribute names. |
---|
314 | * @param newMaxAttributes the maximum number of attributes |
---|
315 | */ |
---|
316 | public void setMaximumAttributeNames(int newMaxAttributes) { |
---|
317 | m_maxAttributesInName = newMaxAttributes; |
---|
318 | } |
---|
319 | |
---|
320 | /** |
---|
321 | * Gets maximum number of attributes to include in |
---|
322 | * transformed attribute names. |
---|
323 | * @return the maximum number of attributes |
---|
324 | */ |
---|
325 | public int getMaximumAttributeNames() { |
---|
326 | return m_maxAttributesInName; |
---|
327 | } |
---|
328 | |
---|
329 | /** |
---|
330 | * Gets the current settings of LatentSemanticAnalysis |
---|
331 | * |
---|
332 | * @return an array of strings suitable for passing to setOptions() |
---|
333 | */ |
---|
334 | public String[] getOptions () { |
---|
335 | |
---|
336 | String[] options = new String[5]; |
---|
337 | int current = 0; |
---|
338 | |
---|
339 | if (getNormalize()) { |
---|
340 | options[current++] = "-N"; |
---|
341 | } |
---|
342 | |
---|
343 | options[current++] = "-R"; |
---|
344 | options[current++] = "" + getRank(); |
---|
345 | |
---|
346 | options[current++] = "-A"; |
---|
347 | options[current++] = "" + getMaximumAttributeNames(); |
---|
348 | |
---|
349 | while (current < options.length) { |
---|
350 | options[current++] = ""; |
---|
351 | } |
---|
352 | |
---|
353 | return options; |
---|
354 | } |
---|
355 | |
---|
356 | /** |
---|
357 | * Returns the capabilities of this evaluator. |
---|
358 | * |
---|
359 | * @return the capabilities of this evaluator |
---|
360 | * @see Capabilities |
---|
361 | */ |
---|
362 | public Capabilities getCapabilities() { |
---|
363 | Capabilities result = super.getCapabilities(); |
---|
364 | result.disableAll(); |
---|
365 | |
---|
366 | // attributes |
---|
367 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
368 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
369 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
370 | result.enable(Capability.MISSING_VALUES); |
---|
371 | |
---|
372 | // class |
---|
373 | result.enable(Capability.NOMINAL_CLASS); |
---|
374 | result.enable(Capability.NUMERIC_CLASS); |
---|
375 | result.enable(Capability.DATE_CLASS); |
---|
376 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
377 | result.enable(Capability.NO_CLASS); |
---|
378 | |
---|
379 | return result; |
---|
380 | } |
---|
381 | |
---|
382 | /** |
---|
383 | * Initializes the singular values/vectors and performs the analysis |
---|
384 | * @param data the instances to analyse/transform |
---|
385 | * @throws Exception if analysis fails |
---|
386 | */ |
---|
387 | public void buildEvaluator(Instances data) throws Exception { |
---|
388 | // can evaluator handle data? |
---|
389 | getCapabilities().testWithFail(data); |
---|
390 | |
---|
391 | buildAttributeConstructor(data); |
---|
392 | } |
---|
393 | |
---|
394 | /** |
---|
395 | * Initializes the singular values/vectors and performs the analysis |
---|
396 | * @param data the instances to analyse/transform |
---|
397 | * @throws Exception if analysis fails |
---|
398 | */ |
---|
399 | private void buildAttributeConstructor (Instances data) throws Exception { |
---|
400 | // initialize attributes for performing analysis |
---|
401 | m_transpose = false; |
---|
402 | m_s = null; |
---|
403 | m_u = null; |
---|
404 | m_v = null; |
---|
405 | m_outputNumAttributes = -1; |
---|
406 | m_actualRank = -1; |
---|
407 | m_sumSquaredSingularValues = 0.0; |
---|
408 | |
---|
409 | m_trainInstances = new Instances(data); |
---|
410 | m_trainHeader = null; |
---|
411 | |
---|
412 | m_attributeFilter = null; |
---|
413 | m_nominalToBinaryFilter = null; |
---|
414 | |
---|
415 | m_replaceMissingFilter = new ReplaceMissingValues(); |
---|
416 | m_replaceMissingFilter.setInputFormat(m_trainInstances); |
---|
417 | m_trainInstances = Filter.useFilter(m_trainInstances, m_replaceMissingFilter); |
---|
418 | |
---|
419 | // vector to hold indices of attributes to delete (class attribute, |
---|
420 | // attributes that are all missing, or attributes with one distinct value) |
---|
421 | Vector attributesToRemove = new Vector(); |
---|
422 | |
---|
423 | // if data has a class attribute |
---|
424 | if (m_trainInstances.classIndex() >= 0) { |
---|
425 | |
---|
426 | m_hasClass = true; |
---|
427 | m_classIndex = m_trainInstances.classIndex(); |
---|
428 | |
---|
429 | // set class attribute to be removed |
---|
430 | attributesToRemove.addElement(new Integer(m_classIndex)); |
---|
431 | } |
---|
432 | // make copy of training data so the class values (if set) can be appended to final |
---|
433 | // transformed instances and so that we can check header compatibility |
---|
434 | m_trainHeader = new Instances(m_trainInstances, 0); |
---|
435 | |
---|
436 | // normalize data if desired |
---|
437 | if (m_normalize) { |
---|
438 | m_normalizeFilter = new Normalize(); |
---|
439 | m_normalizeFilter.setInputFormat(m_trainInstances); |
---|
440 | m_trainInstances = Filter.useFilter(m_trainInstances, m_normalizeFilter); |
---|
441 | } |
---|
442 | |
---|
443 | // convert any nominal attributes to binary numeric attributes |
---|
444 | m_nominalToBinaryFilter = new NominalToBinary(); |
---|
445 | m_nominalToBinaryFilter.setInputFormat(m_trainInstances); |
---|
446 | m_trainInstances = Filter.useFilter(m_trainInstances, m_nominalToBinaryFilter); |
---|
447 | |
---|
448 | // delete any attributes with only one distinct value or are all missing |
---|
449 | for (int i = 0; i < m_trainInstances.numAttributes(); i++) { |
---|
450 | if (m_trainInstances.numDistinctValues(i) <= 1) { |
---|
451 | attributesToRemove.addElement(new Integer(i)); |
---|
452 | } |
---|
453 | } |
---|
454 | |
---|
455 | // remove columns from the data if necessary |
---|
456 | if (attributesToRemove.size() > 0) { |
---|
457 | m_attributeFilter = new Remove(); |
---|
458 | int [] todelete = new int[attributesToRemove.size()]; |
---|
459 | for (int i = 0; i < attributesToRemove.size(); i++) { |
---|
460 | todelete[i] = ((Integer)(attributesToRemove.elementAt(i))).intValue(); |
---|
461 | } |
---|
462 | m_attributeFilter.setAttributeIndicesArray(todelete); |
---|
463 | m_attributeFilter.setInvertSelection(false); |
---|
464 | m_attributeFilter.setInputFormat(m_trainInstances); |
---|
465 | m_trainInstances = Filter.useFilter(m_trainInstances, m_attributeFilter); |
---|
466 | } |
---|
467 | |
---|
468 | // can evaluator handle the processed data ? e.g., enough attributes? |
---|
469 | getCapabilities().testWithFail(m_trainInstances); |
---|
470 | |
---|
471 | // record properties of final, ready-to-process data |
---|
472 | m_numInstances = m_trainInstances.numInstances(); |
---|
473 | m_numAttributes = m_trainInstances.numAttributes(); |
---|
474 | |
---|
475 | // create matrix of attribute values and compute singular value decomposition |
---|
476 | double [][] trainValues = new double[m_numAttributes][m_numInstances]; |
---|
477 | for (int i = 0; i < m_numAttributes; i++) { |
---|
478 | trainValues[i] = m_trainInstances.attributeToDoubleArray(i); |
---|
479 | } |
---|
480 | Matrix trainMatrix = new Matrix(trainValues); |
---|
481 | // svd requires rows >= columns, so transpose data if necessary |
---|
482 | if (m_numAttributes < m_numInstances) { |
---|
483 | m_transpose = true; |
---|
484 | trainMatrix = trainMatrix.transpose(); |
---|
485 | } |
---|
486 | SingularValueDecomposition trainSVD = trainMatrix.svd(); |
---|
487 | m_u = trainSVD.getU(); // left singular vectors |
---|
488 | m_s = trainSVD.getS(); // singular values |
---|
489 | m_v = trainSVD.getV(); // right singular vectors |
---|
490 | |
---|
491 | // find actual rank to use |
---|
492 | int maxSingularValues = trainSVD.rank(); |
---|
493 | for (int i = 0; i < m_s.getRowDimension(); i++) { |
---|
494 | m_sumSquaredSingularValues += m_s.get(i, i) * m_s.get(i, i); |
---|
495 | } |
---|
496 | if (maxSingularValues == 0) { // no nonzero singular values (shouldn't happen) |
---|
497 | // reset values from computation |
---|
498 | m_s = null; |
---|
499 | m_u = null; |
---|
500 | m_v = null; |
---|
501 | m_sumSquaredSingularValues = 0.0; |
---|
502 | |
---|
503 | throw new Exception("SVD computation produced no non-zero singular values."); |
---|
504 | } |
---|
505 | if (m_rank > maxSingularValues || m_rank <= 0) { // adjust rank if too high or too low |
---|
506 | m_actualRank = maxSingularValues; |
---|
507 | } else if (m_rank < 1.0) { // determine how many singular values to include for desired coverage |
---|
508 | double currentSumOfSquaredSingularValues = 0.0; |
---|
509 | for (int i = 0; i < m_s.getRowDimension() && m_actualRank == -1; i++) { |
---|
510 | currentSumOfSquaredSingularValues += m_s.get(i, i) * m_s.get(i, i); |
---|
511 | if (currentSumOfSquaredSingularValues / m_sumSquaredSingularValues >= m_rank) { |
---|
512 | m_actualRank = i + 1; |
---|
513 | } |
---|
514 | } |
---|
515 | } else { |
---|
516 | m_actualRank = (int) m_rank; |
---|
517 | } |
---|
518 | |
---|
519 | // lower matrix ranks, adjust for transposition (if necessary), and |
---|
520 | // compute matrix for transforming future instances |
---|
521 | if (m_transpose) { |
---|
522 | Matrix tempMatrix = m_u; |
---|
523 | m_u = m_v; |
---|
524 | m_v = tempMatrix; |
---|
525 | } |
---|
526 | m_u = m_u.getMatrix(0, m_u.getRowDimension() - 1, 0, m_actualRank - 1); |
---|
527 | m_s = m_s.getMatrix(0, m_actualRank - 1, 0, m_actualRank - 1); |
---|
528 | m_v = m_v.getMatrix(0, m_v.getRowDimension() - 1, 0, m_actualRank - 1); |
---|
529 | m_transformationMatrix = m_u.times(m_s.inverse()); |
---|
530 | |
---|
531 | //create dataset header for transformed instances |
---|
532 | m_transformedFormat = setOutputFormat(); |
---|
533 | } |
---|
534 | |
---|
535 | /** |
---|
536 | * Set the format for the transformed data |
---|
537 | * @return a set of empty Instances (header only) in the new format |
---|
538 | */ |
---|
539 | private Instances setOutputFormat() { |
---|
540 | // if analysis hasn't been performed (successfully) yet |
---|
541 | if (m_s == null) { |
---|
542 | return null; |
---|
543 | } |
---|
544 | |
---|
545 | // set up transformed attributes |
---|
546 | if (m_hasClass) { |
---|
547 | m_outputNumAttributes = m_actualRank + 1; |
---|
548 | } else { |
---|
549 | m_outputNumAttributes = m_actualRank; |
---|
550 | } |
---|
551 | int numAttributesInName = m_maxAttributesInName; |
---|
552 | if (numAttributesInName <= 0 || numAttributesInName >= m_numAttributes) { |
---|
553 | numAttributesInName = m_numAttributes; |
---|
554 | } |
---|
555 | FastVector attributes = new FastVector(m_outputNumAttributes); |
---|
556 | for (int i = 0; i < m_actualRank; i++) { |
---|
557 | // create attribute name |
---|
558 | String attributeName = ""; |
---|
559 | double [] attributeCoefficients = |
---|
560 | m_transformationMatrix.getMatrix(0, m_numAttributes - 1, i, i).getColumnPackedCopy(); |
---|
561 | for (int j = 0; j < numAttributesInName; j++) { |
---|
562 | if (j > 0) { |
---|
563 | attributeName += "+"; |
---|
564 | } |
---|
565 | attributeName += Utils.doubleToString(attributeCoefficients[j], 5, 3); |
---|
566 | attributeName += m_trainInstances.attribute(j).name(); |
---|
567 | } |
---|
568 | if (numAttributesInName < m_numAttributes) { |
---|
569 | attributeName += "..."; |
---|
570 | } |
---|
571 | // add attribute |
---|
572 | attributes.addElement(new Attribute(attributeName)); |
---|
573 | } |
---|
574 | // add original class attribute if present |
---|
575 | if (m_hasClass) { |
---|
576 | attributes.addElement(m_trainHeader.classAttribute().copy()); |
---|
577 | } |
---|
578 | // create blank header |
---|
579 | Instances outputFormat = new Instances(m_trainInstances.relationName() + "_LSA", |
---|
580 | attributes, 0); |
---|
581 | m_outputNumAttributes = outputFormat.numAttributes(); |
---|
582 | // set class attribute if applicable |
---|
583 | if (m_hasClass) { |
---|
584 | outputFormat.setClassIndex(m_outputNumAttributes - 1); |
---|
585 | } |
---|
586 | |
---|
587 | return outputFormat; |
---|
588 | } |
---|
589 | |
---|
590 | /** |
---|
591 | * Returns just the header for the transformed data (ie. an empty |
---|
592 | * set of instances. This is so that AttributeSelection can |
---|
593 | * determine the structure of the transformed data without actually |
---|
594 | * having to get all the transformed data through getTransformedData(). |
---|
595 | * @return the header of the transformed data. |
---|
596 | * @throws Exception if the header of the transformed data can't |
---|
597 | * be determined. |
---|
598 | */ |
---|
599 | public Instances transformedHeader() throws Exception { |
---|
600 | if (m_s == null) { |
---|
601 | throw new Exception("Latent Semantic Analysis hasn't been successfully performed."); |
---|
602 | } |
---|
603 | return m_transformedFormat; |
---|
604 | } |
---|
605 | |
---|
606 | /** |
---|
607 | * Transform the supplied data set (assumed to be the same format |
---|
608 | * as the training data) |
---|
609 | * @return the transformed training data |
---|
610 | * @throws Exception if transformed data can't be returned |
---|
611 | */ |
---|
612 | public Instances transformedData(Instances data) throws Exception { |
---|
613 | if (m_s == null) { |
---|
614 | throw new Exception("Latent Semantic Analysis hasn't been built yet"); |
---|
615 | } |
---|
616 | |
---|
617 | Instances output = new Instances(m_transformedFormat, m_numInstances); |
---|
618 | |
---|
619 | // the transformed version of instance i from the training data |
---|
620 | // is stored as the i'th row vector in v (the right singular vectors) |
---|
621 | for (int i = 0; i < data.numInstances(); i++) { |
---|
622 | Instance currentInstance = data.instance(i); |
---|
623 | // record attribute values for converted instance |
---|
624 | double [] newValues = new double[m_outputNumAttributes]; |
---|
625 | for (int j = 0; j < m_actualRank; j++) { // fill in values from v |
---|
626 | newValues[j] = m_v.get(i, j); |
---|
627 | } |
---|
628 | if (m_hasClass) { // copy class value if applicable |
---|
629 | newValues[m_outputNumAttributes - 1] = currentInstance.classValue(); |
---|
630 | } |
---|
631 | //create new instance with recorded values and add to output dataset |
---|
632 | Instance newInstance; |
---|
633 | if (currentInstance instanceof SparseInstance) { |
---|
634 | newInstance = new SparseInstance(currentInstance.weight(), newValues); |
---|
635 | } else { |
---|
636 | newInstance = new DenseInstance(currentInstance.weight(), newValues); |
---|
637 | } |
---|
638 | output.add(newInstance); |
---|
639 | } |
---|
640 | |
---|
641 | return output; |
---|
642 | } |
---|
643 | |
---|
644 | /** |
---|
645 | * Evaluates the merit of a transformed attribute. This is defined |
---|
646 | * to be the square of the singular value for the latent variable |
---|
647 | * corresponding to the transformed attribute. |
---|
648 | * @param att the attribute to be evaluated |
---|
649 | * @return the merit of a transformed attribute |
---|
650 | * @throws Exception if attribute can't be evaluated |
---|
651 | */ |
---|
652 | public double evaluateAttribute(int att) throws Exception { |
---|
653 | if (m_s == null) { |
---|
654 | throw new Exception("Latent Semantic Analysis hasn't been successfully" + |
---|
655 | " performed yet!"); |
---|
656 | } |
---|
657 | |
---|
658 | //return the square of the corresponding singular value |
---|
659 | return (m_s.get(att, att) * m_s.get(att, att)) / m_sumSquaredSingularValues; |
---|
660 | } |
---|
661 | |
---|
662 | /** |
---|
663 | * Transform an instance in original (unnormalized) format |
---|
664 | * @param instance an instance in the original (unnormalized) format |
---|
665 | * @return a transformed instance |
---|
666 | * @throws Exception if instance can't be transformed |
---|
667 | */ |
---|
668 | public Instance convertInstance(Instance instance) throws Exception { |
---|
669 | if (m_s == null) { |
---|
670 | throw new Exception("convertInstance: Latent Semantic Analysis not " + |
---|
671 | "performed yet."); |
---|
672 | } |
---|
673 | |
---|
674 | // array to hold new attribute values |
---|
675 | double [] newValues = new double[m_outputNumAttributes]; |
---|
676 | |
---|
677 | // apply filters so new instance is in same format as training instances |
---|
678 | Instance tempInstance = (Instance)instance.copy(); |
---|
679 | if (!instance.dataset().equalHeaders(m_trainHeader)) { |
---|
680 | throw new Exception("Can't convert instance: headers don't match: " + |
---|
681 | "LatentSemanticAnalysis\n" + instance.dataset().equalHeadersMsg(m_trainHeader)); |
---|
682 | } |
---|
683 | // replace missing values |
---|
684 | m_replaceMissingFilter.input(tempInstance); |
---|
685 | m_replaceMissingFilter.batchFinished(); |
---|
686 | tempInstance = m_replaceMissingFilter.output(); |
---|
687 | // normalize |
---|
688 | if (m_normalize) { |
---|
689 | m_normalizeFilter.input(tempInstance); |
---|
690 | m_normalizeFilter.batchFinished(); |
---|
691 | tempInstance = m_normalizeFilter.output(); |
---|
692 | } |
---|
693 | // convert nominal attributes to binary |
---|
694 | m_nominalToBinaryFilter.input(tempInstance); |
---|
695 | m_nominalToBinaryFilter.batchFinished(); |
---|
696 | tempInstance = m_nominalToBinaryFilter.output(); |
---|
697 | // remove class/other attributes |
---|
698 | if (m_attributeFilter != null) { |
---|
699 | m_attributeFilter.input(tempInstance); |
---|
700 | m_attributeFilter.batchFinished(); |
---|
701 | tempInstance = m_attributeFilter.output(); |
---|
702 | } |
---|
703 | |
---|
704 | // record new attribute values |
---|
705 | if (m_hasClass) { // copy class value |
---|
706 | newValues[m_outputNumAttributes - 1] = instance.classValue(); |
---|
707 | } |
---|
708 | double [][] oldInstanceValues = new double[1][m_numAttributes]; |
---|
709 | oldInstanceValues[0] = tempInstance.toDoubleArray(); |
---|
710 | Matrix instanceVector = new Matrix(oldInstanceValues); // old attribute values |
---|
711 | instanceVector = instanceVector.times(m_transformationMatrix); // new attribute values |
---|
712 | for (int i = 0; i < m_actualRank; i++) { |
---|
713 | newValues[i] = instanceVector.get(0, i); |
---|
714 | } |
---|
715 | |
---|
716 | // return newly transformed instance |
---|
717 | if (instance instanceof SparseInstance) { |
---|
718 | return new SparseInstance(instance.weight(), newValues); |
---|
719 | } else { |
---|
720 | return new DenseInstance(instance.weight(), newValues); |
---|
721 | } |
---|
722 | } |
---|
723 | |
---|
724 | /** |
---|
725 | * Returns a description of this attribute transformer |
---|
726 | * @return a String describing this attribute transformer |
---|
727 | */ |
---|
728 | public String toString() { |
---|
729 | if (m_s == null) { |
---|
730 | return "Latent Semantic Analysis hasn't been built yet!"; |
---|
731 | } else { |
---|
732 | return "\tLatent Semantic Analysis Attribute Transformer\n\n" |
---|
733 | + lsaSummary(); |
---|
734 | } |
---|
735 | } |
---|
736 | |
---|
737 | /** |
---|
738 | * Return a summary of the analysis |
---|
739 | * @return a summary of the analysis. |
---|
740 | */ |
---|
741 | private String lsaSummary() { |
---|
742 | StringBuffer result = new StringBuffer(); |
---|
743 | |
---|
744 | // print number of latent variables used |
---|
745 | result.append("Number of latent variables utilized: " + m_actualRank); |
---|
746 | |
---|
747 | // print singular values |
---|
748 | result.append("\n\nSingularValue\tLatentVariable#\n"); |
---|
749 | // create single array of singular values rather than diagonal matrix |
---|
750 | for (int i = 0; i < m_actualRank; i++) { |
---|
751 | result.append(Utils.doubleToString(m_s.get(i, i), 9, 5) + "\t" + (i + 1) + "\n"); |
---|
752 | } |
---|
753 | |
---|
754 | // print attribute vectors |
---|
755 | result.append("\nAttribute vectors (left singular vectors) -- row vectors show\n" + |
---|
756 | "the relation between the original attributes and the latent \n" + |
---|
757 | "variables computed by the singular value decomposition:\n"); |
---|
758 | for (int i = 0; i < m_actualRank; i++) { |
---|
759 | result.append("LatentVariable#" + (i + 1) + "\t"); |
---|
760 | } |
---|
761 | result.append("AttributeName\n"); |
---|
762 | for (int i = 0; i < m_u.getRowDimension(); i++) { // for each attribute |
---|
763 | for (int j = 0; j < m_u.getColumnDimension(); j++) { // for each latent variable |
---|
764 | result.append(Utils.doubleToString(m_u.get(i, j), 9, 5) + "\t\t"); |
---|
765 | } |
---|
766 | result.append(m_trainInstances.attribute(i).name() + "\n"); |
---|
767 | } |
---|
768 | |
---|
769 | // print instance vectors |
---|
770 | result.append("\n\nInstance vectors (right singular vectors) -- column\n" + |
---|
771 | "vectors show the relation between the original instances and the\n" + |
---|
772 | "latent variables computed by the singular value decomposition:\n"); |
---|
773 | for (int i = 0; i < m_numInstances; i++) { |
---|
774 | result.append("Instance#" + (i + 1) + "\t"); |
---|
775 | } |
---|
776 | result.append("LatentVariable#\n"); |
---|
777 | for (int i = 0; i < m_v.getColumnDimension(); i++) { // for each instance |
---|
778 | for (int j = 0; j < m_v.getRowDimension(); j++) { // for each latent variable |
---|
779 | // going down columns instead of across rows because we're |
---|
780 | // printing v' but have v stored |
---|
781 | result.append(Utils.doubleToString(m_v.get(j, i), 9, 5) + "\t"); |
---|
782 | } |
---|
783 | result.append((i + 1) + "\n"); |
---|
784 | } |
---|
785 | |
---|
786 | return result.toString(); |
---|
787 | } |
---|
788 | |
---|
789 | /** |
---|
790 | * Returns the revision string. |
---|
791 | * |
---|
792 | * @return the revision |
---|
793 | */ |
---|
794 | public String getRevision() { |
---|
795 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
796 | } |
---|
797 | |
---|
798 | /** |
---|
799 | * Main method for testing this class |
---|
800 | * @param argv should contain the command line arguments to the |
---|
801 | * evaluator/transformer (see AttributeSelection) |
---|
802 | */ |
---|
803 | public static void main(String [] argv) { |
---|
804 | runEvaluator(new LatentSemanticAnalysis(), argv); |
---|
805 | } |
---|
806 | } |
---|