1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * InfoGainAttributeEval.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.ContingencyTables; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.Option; |
---|
30 | import weka.core.OptionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.Utils; |
---|
33 | import weka.core.Capabilities.Capability; |
---|
34 | import weka.filters.Filter; |
---|
35 | import weka.filters.supervised.attribute.Discretize; |
---|
36 | import weka.filters.unsupervised.attribute.NumericToBinary; |
---|
37 | |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Vector; |
---|
40 | |
---|
41 | /** |
---|
42 | <!-- globalinfo-start --> |
---|
43 | * InfoGainAttributeEval :<br/> |
---|
44 | * <br/> |
---|
45 | * Evaluates the worth of an attribute by measuring the information gain with respect to the class.<br/> |
---|
46 | * <br/> |
---|
47 | * InfoGain(Class,Attribute) = H(Class) - H(Class | Attribute).<br/> |
---|
48 | * <p/> |
---|
49 | <!-- globalinfo-end --> |
---|
50 | * |
---|
51 | <!-- options-start --> |
---|
52 | * Valid options are: <p/> |
---|
53 | * |
---|
54 | * <pre> -M |
---|
55 | * treat missing values as a seperate value.</pre> |
---|
56 | * |
---|
57 | * <pre> -B |
---|
58 | * just binarize numeric attributes instead |
---|
59 | * of properly discretizing them.</pre> |
---|
60 | * |
---|
61 | <!-- options-end --> |
---|
62 | * |
---|
63 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
64 | * @version $Revision: 5447 $ |
---|
65 | * @see Discretize |
---|
66 | * @see NumericToBinary |
---|
67 | */ |
---|
68 | public class InfoGainAttributeEval |
---|
69 | extends ASEvaluation |
---|
70 | implements AttributeEvaluator, OptionHandler { |
---|
71 | |
---|
72 | /** for serialization */ |
---|
73 | static final long serialVersionUID = -1949849512589218930L; |
---|
74 | |
---|
75 | /** Treat missing values as a seperate value */ |
---|
76 | private boolean m_missing_merge; |
---|
77 | |
---|
78 | /** Just binarize numeric attributes */ |
---|
79 | private boolean m_Binarize; |
---|
80 | |
---|
81 | /** The info gain for each attribute */ |
---|
82 | private double[] m_InfoGains; |
---|
83 | |
---|
84 | /** |
---|
85 | * Returns a string describing this attribute evaluator |
---|
86 | * @return a description of the evaluator suitable for |
---|
87 | * displaying in the explorer/experimenter gui |
---|
88 | */ |
---|
89 | public String globalInfo() { |
---|
90 | return "InfoGainAttributeEval :\n\nEvaluates the worth of an attribute " |
---|
91 | +"by measuring the information gain with respect to the class.\n\n" |
---|
92 | +"InfoGain(Class,Attribute) = H(Class) - H(Class | Attribute).\n"; |
---|
93 | } |
---|
94 | |
---|
95 | /** |
---|
96 | * Constructor |
---|
97 | */ |
---|
98 | public InfoGainAttributeEval () { |
---|
99 | resetOptions(); |
---|
100 | } |
---|
101 | |
---|
102 | /** |
---|
103 | * Returns an enumeration describing the available options. |
---|
104 | * @return an enumeration of all the available options. |
---|
105 | **/ |
---|
106 | public Enumeration listOptions () { |
---|
107 | Vector newVector = new Vector(2); |
---|
108 | newVector.addElement(new Option("\ttreat missing values as a seperate " |
---|
109 | + "value.", "M", 0, "-M")); |
---|
110 | newVector.addElement(new Option("\tjust binarize numeric attributes instead \n" |
---|
111 | +"\tof properly discretizing them.", "B", 0, |
---|
112 | "-B")); |
---|
113 | return newVector.elements(); |
---|
114 | } |
---|
115 | |
---|
116 | |
---|
117 | /** |
---|
118 | * Parses a given list of options. <p/> |
---|
119 | * |
---|
120 | <!-- options-start --> |
---|
121 | * Valid options are: <p/> |
---|
122 | * |
---|
123 | * <pre> -M |
---|
124 | * treat missing values as a seperate value.</pre> |
---|
125 | * |
---|
126 | * <pre> -B |
---|
127 | * just binarize numeric attributes instead |
---|
128 | * of properly discretizing them.</pre> |
---|
129 | * |
---|
130 | <!-- options-end --> |
---|
131 | * |
---|
132 | * @param options the list of options as an array of strings |
---|
133 | * @throws Exception if an option is not supported |
---|
134 | */ |
---|
135 | public void setOptions (String[] options) |
---|
136 | throws Exception { |
---|
137 | |
---|
138 | resetOptions(); |
---|
139 | setMissingMerge(!(Utils.getFlag('M', options))); |
---|
140 | setBinarizeNumericAttributes(Utils.getFlag('B', options)); |
---|
141 | } |
---|
142 | |
---|
143 | |
---|
144 | /** |
---|
145 | * Gets the current settings of WrapperSubsetEval. |
---|
146 | * |
---|
147 | * @return an array of strings suitable for passing to setOptions() |
---|
148 | */ |
---|
149 | public String[] getOptions () { |
---|
150 | String[] options = new String[2]; |
---|
151 | int current = 0; |
---|
152 | |
---|
153 | if (!getMissingMerge()) { |
---|
154 | options[current++] = "-M"; |
---|
155 | } |
---|
156 | if (getBinarizeNumericAttributes()) { |
---|
157 | options[current++] = "-B"; |
---|
158 | } |
---|
159 | |
---|
160 | while (current < options.length) { |
---|
161 | options[current++] = ""; |
---|
162 | } |
---|
163 | |
---|
164 | return options; |
---|
165 | } |
---|
166 | |
---|
167 | /** |
---|
168 | * Returns the tip text for this property |
---|
169 | * @return tip text for this property suitable for |
---|
170 | * displaying in the explorer/experimenter gui |
---|
171 | */ |
---|
172 | public String binarizeNumericAttributesTipText() { |
---|
173 | return "Just binarize numeric attributes instead of properly discretizing them."; |
---|
174 | } |
---|
175 | |
---|
176 | /** |
---|
177 | * Binarize numeric attributes. |
---|
178 | * |
---|
179 | * @param b true=binarize numeric attributes |
---|
180 | */ |
---|
181 | public void setBinarizeNumericAttributes (boolean b) { |
---|
182 | m_Binarize = b; |
---|
183 | } |
---|
184 | |
---|
185 | |
---|
186 | /** |
---|
187 | * get whether numeric attributes are just being binarized. |
---|
188 | * |
---|
189 | * @return true if missing values are being distributed. |
---|
190 | */ |
---|
191 | public boolean getBinarizeNumericAttributes () { |
---|
192 | return m_Binarize; |
---|
193 | } |
---|
194 | |
---|
195 | /** |
---|
196 | * Returns the tip text for this property |
---|
197 | * @return tip text for this property suitable for |
---|
198 | * displaying in the explorer/experimenter gui |
---|
199 | */ |
---|
200 | public String missingMergeTipText() { |
---|
201 | return "Distribute counts for missing values. Counts are distributed " |
---|
202 | +"across other values in proportion to their frequency. Otherwise, " |
---|
203 | +"missing is treated as a separate value."; |
---|
204 | } |
---|
205 | |
---|
206 | /** |
---|
207 | * distribute the counts for missing values across observed values |
---|
208 | * |
---|
209 | * @param b true=distribute missing values. |
---|
210 | */ |
---|
211 | public void setMissingMerge (boolean b) { |
---|
212 | m_missing_merge = b; |
---|
213 | } |
---|
214 | |
---|
215 | |
---|
216 | /** |
---|
217 | * get whether missing values are being distributed or not |
---|
218 | * |
---|
219 | * @return true if missing values are being distributed. |
---|
220 | */ |
---|
221 | public boolean getMissingMerge () { |
---|
222 | return m_missing_merge; |
---|
223 | } |
---|
224 | |
---|
225 | /** |
---|
226 | * Returns the capabilities of this evaluator. |
---|
227 | * |
---|
228 | * @return the capabilities of this evaluator |
---|
229 | * @see Capabilities |
---|
230 | */ |
---|
231 | public Capabilities getCapabilities() { |
---|
232 | Capabilities result = super.getCapabilities(); |
---|
233 | result.disableAll(); |
---|
234 | |
---|
235 | // attributes |
---|
236 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
237 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
238 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
239 | result.enable(Capability.MISSING_VALUES); |
---|
240 | |
---|
241 | // class |
---|
242 | result.enable(Capability.NOMINAL_CLASS); |
---|
243 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
244 | |
---|
245 | return result; |
---|
246 | } |
---|
247 | |
---|
248 | /** |
---|
249 | * Initializes an information gain attribute evaluator. |
---|
250 | * Discretizes all attributes that are numeric. |
---|
251 | * |
---|
252 | * @param data set of instances serving as training data |
---|
253 | * @throws Exception if the evaluator has not been |
---|
254 | * generated successfully |
---|
255 | */ |
---|
256 | public void buildEvaluator (Instances data) |
---|
257 | throws Exception { |
---|
258 | |
---|
259 | // can evaluator handle data? |
---|
260 | getCapabilities().testWithFail(data); |
---|
261 | |
---|
262 | int classIndex = data.classIndex(); |
---|
263 | int numInstances = data.numInstances(); |
---|
264 | |
---|
265 | if (!m_Binarize) { |
---|
266 | Discretize disTransform = new Discretize(); |
---|
267 | disTransform.setUseBetterEncoding(true); |
---|
268 | disTransform.setInputFormat(data); |
---|
269 | data = Filter.useFilter(data, disTransform); |
---|
270 | } else { |
---|
271 | NumericToBinary binTransform = new NumericToBinary(); |
---|
272 | binTransform.setInputFormat(data); |
---|
273 | data = Filter.useFilter(data, binTransform); |
---|
274 | } |
---|
275 | int numClasses = data.attribute(classIndex).numValues(); |
---|
276 | |
---|
277 | // Reserve space and initialize counters |
---|
278 | double[][][] counts = new double[data.numAttributes()][][]; |
---|
279 | for (int k = 0; k < data.numAttributes(); k++) { |
---|
280 | if (k != classIndex) { |
---|
281 | int numValues = data.attribute(k).numValues(); |
---|
282 | counts[k] = new double[numValues + 1][numClasses + 1]; |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | // Initialize counters |
---|
287 | double[] temp = new double[numClasses + 1]; |
---|
288 | for (int k = 0; k < numInstances; k++) { |
---|
289 | Instance inst = data.instance(k); |
---|
290 | if (inst.classIsMissing()) { |
---|
291 | temp[numClasses] += inst.weight(); |
---|
292 | } else { |
---|
293 | temp[(int)inst.classValue()] += inst.weight(); |
---|
294 | } |
---|
295 | } |
---|
296 | for (int k = 0; k < counts.length; k++) { |
---|
297 | if (k != classIndex) { |
---|
298 | for (int i = 0; i < temp.length; i++) { |
---|
299 | counts[k][0][i] = temp[i]; |
---|
300 | } |
---|
301 | } |
---|
302 | } |
---|
303 | |
---|
304 | // Get counts |
---|
305 | for (int k = 0; k < numInstances; k++) { |
---|
306 | Instance inst = data.instance(k); |
---|
307 | for (int i = 0; i < inst.numValues(); i++) { |
---|
308 | if (inst.index(i) != classIndex) { |
---|
309 | if (inst.isMissingSparse(i) || inst.classIsMissing()) { |
---|
310 | if (!inst.isMissingSparse(i)) { |
---|
311 | counts[inst.index(i)][(int)inst.valueSparse(i)][numClasses] += |
---|
312 | inst.weight(); |
---|
313 | counts[inst.index(i)][0][numClasses] -= inst.weight(); |
---|
314 | } else if (!inst.classIsMissing()) { |
---|
315 | counts[inst.index(i)][data.attribute(inst.index(i)).numValues()] |
---|
316 | [(int)inst.classValue()] += inst.weight(); |
---|
317 | counts[inst.index(i)][0][(int)inst.classValue()] -= |
---|
318 | inst.weight(); |
---|
319 | } else { |
---|
320 | counts[inst.index(i)][data.attribute(inst.index(i)).numValues()] |
---|
321 | [numClasses] += inst.weight(); |
---|
322 | counts[inst.index(i)][0][numClasses] -= inst.weight(); |
---|
323 | } |
---|
324 | } else { |
---|
325 | counts[inst.index(i)][(int)inst.valueSparse(i)] |
---|
326 | [(int)inst.classValue()] += inst.weight(); |
---|
327 | counts[inst.index(i)][0][(int)inst.classValue()] -= inst.weight(); |
---|
328 | } |
---|
329 | } |
---|
330 | } |
---|
331 | } |
---|
332 | |
---|
333 | // distribute missing counts if required |
---|
334 | if (m_missing_merge) { |
---|
335 | |
---|
336 | for (int k = 0; k < data.numAttributes(); k++) { |
---|
337 | if (k != classIndex) { |
---|
338 | int numValues = data.attribute(k).numValues(); |
---|
339 | |
---|
340 | // Compute marginals |
---|
341 | double[] rowSums = new double[numValues]; |
---|
342 | double[] columnSums = new double[numClasses]; |
---|
343 | double sum = 0; |
---|
344 | for (int i = 0; i < numValues; i++) { |
---|
345 | for (int j = 0; j < numClasses; j++) { |
---|
346 | rowSums[i] += counts[k][i][j]; |
---|
347 | columnSums[j] += counts[k][i][j]; |
---|
348 | } |
---|
349 | sum += rowSums[i]; |
---|
350 | } |
---|
351 | |
---|
352 | if (Utils.gr(sum, 0)) { |
---|
353 | double[][] additions = new double[numValues][numClasses]; |
---|
354 | |
---|
355 | // Compute what needs to be added to each row |
---|
356 | for (int i = 0; i < numValues; i++) { |
---|
357 | for (int j = 0; j < numClasses; j++) { |
---|
358 | additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j]; |
---|
359 | } |
---|
360 | } |
---|
361 | |
---|
362 | // Compute what needs to be added to each column |
---|
363 | for (int i = 0; i < numClasses; i++) { |
---|
364 | for (int j = 0; j < numValues; j++) { |
---|
365 | additions[j][i] += (columnSums[i] / sum) * |
---|
366 | counts[k][j][numClasses]; |
---|
367 | } |
---|
368 | } |
---|
369 | |
---|
370 | // Compute what needs to be added to each cell |
---|
371 | for (int i = 0; i < numClasses; i++) { |
---|
372 | for (int j = 0; j < numValues; j++) { |
---|
373 | additions[j][i] += (counts[k][j][i] / sum) * |
---|
374 | counts[k][numValues][numClasses]; |
---|
375 | } |
---|
376 | } |
---|
377 | |
---|
378 | // Make new contingency table |
---|
379 | double[][] newTable = new double[numValues][numClasses]; |
---|
380 | for (int i = 0; i < numValues; i++) { |
---|
381 | for (int j = 0; j < numClasses; j++) { |
---|
382 | newTable[i][j] = counts[k][i][j] + additions[i][j]; |
---|
383 | } |
---|
384 | } |
---|
385 | counts[k] = newTable; |
---|
386 | } |
---|
387 | } |
---|
388 | } |
---|
389 | } |
---|
390 | |
---|
391 | // Compute info gains |
---|
392 | m_InfoGains = new double[data.numAttributes()]; |
---|
393 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
394 | if (i != classIndex) { |
---|
395 | m_InfoGains[i] = |
---|
396 | (ContingencyTables.entropyOverColumns(counts[i]) |
---|
397 | - ContingencyTables.entropyConditionedOnRows(counts[i])); |
---|
398 | } |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | /** |
---|
403 | * Reset options to their default values |
---|
404 | */ |
---|
405 | protected void resetOptions () { |
---|
406 | m_InfoGains = null; |
---|
407 | m_missing_merge = true; |
---|
408 | m_Binarize = false; |
---|
409 | } |
---|
410 | |
---|
411 | |
---|
412 | /** |
---|
413 | * evaluates an individual attribute by measuring the amount |
---|
414 | * of information gained about the class given the attribute. |
---|
415 | * |
---|
416 | * @param attribute the index of the attribute to be evaluated |
---|
417 | * @return the info gain |
---|
418 | * @throws Exception if the attribute could not be evaluated |
---|
419 | */ |
---|
420 | public double evaluateAttribute (int attribute) |
---|
421 | throws Exception { |
---|
422 | |
---|
423 | return m_InfoGains[attribute]; |
---|
424 | } |
---|
425 | |
---|
426 | /** |
---|
427 | * Describe the attribute evaluator |
---|
428 | * @return a description of the attribute evaluator as a string |
---|
429 | */ |
---|
430 | public String toString () { |
---|
431 | StringBuffer text = new StringBuffer(); |
---|
432 | |
---|
433 | if (m_InfoGains == null) { |
---|
434 | text.append("Information Gain attribute evaluator has not been built"); |
---|
435 | } |
---|
436 | else { |
---|
437 | text.append("\tInformation Gain Ranking Filter"); |
---|
438 | if (!m_missing_merge) { |
---|
439 | text.append("\n\tMissing values treated as seperate"); |
---|
440 | } |
---|
441 | if (m_Binarize) { |
---|
442 | text.append("\n\tNumeric attributes are just binarized"); |
---|
443 | } |
---|
444 | } |
---|
445 | |
---|
446 | text.append("\n"); |
---|
447 | return text.toString(); |
---|
448 | } |
---|
449 | |
---|
450 | /** |
---|
451 | * Returns the revision string. |
---|
452 | * |
---|
453 | * @return the revision |
---|
454 | */ |
---|
455 | public String getRevision() { |
---|
456 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
457 | } |
---|
458 | |
---|
459 | // ============ |
---|
460 | // Test method. |
---|
461 | // ============ |
---|
462 | /** |
---|
463 | * Main method for testing this class. |
---|
464 | * |
---|
465 | * @param args the options |
---|
466 | */ |
---|
467 | public static void main (String[] args) { |
---|
468 | runEvaluator(new InfoGainAttributeEval(), args); |
---|
469 | } |
---|
470 | } |
---|