/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* GreedyStepwise.java
* Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
*
*/
package weka.attributeSelection;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionUtils;
import weka.core.Utils;
import java.util.BitSet;
import java.util.Enumeration;
import java.util.Vector;
/**
* GreedyStepwise :
*
* Performs a greedy forward or backward search through the space of attribute subsets. May start with no/all attributes or from an arbitrary point in the space. Stops when the addition/deletion of any remaining attributes results in a decrease in evaluation. Can also produce a ranked list of attributes by traversing the space from one side to the other and recording the order that attributes are selected.
*
-C * Use conservative forward search* *
-B * Use a backward search instead of a * forward one.* *
-P <start set> * Specify a starting set of attributes. * Eg. 1,3,5-7.* *
-R * Produce a ranked list of attributes.* *
-T <threshold> * Specify a theshold by which attributes * may be discarded from the ranking. * Use in conjuction with -R* *
-N <num to select> * Specify number of attributes to select* * * @author Mark Hall * @version $Revision: 1.10 $ */ public class GreedyStepwise extends ASSearch implements RankedOutputSearch, StartSetHandler, OptionHandler { /** for serialization */ static final long serialVersionUID = -6312951970168325471L; /** does the data have a class */ protected boolean m_hasClass; /** holds the class index */ protected int m_classIndex; /** number of attributes in the data */ protected int m_numAttribs; /** true if the user has requested a ranked list of attributes */ protected boolean m_rankingRequested; /** * go from one side of the search space to the other in order to generate * a ranking */ protected boolean m_doRank; /** used to indicate whether or not ranking has been performed */ protected boolean m_doneRanking; /** * A threshold by which to discard attributes---used by the * AttributeSelection module */ protected double m_threshold; /** The number of attributes to select. -1 indicates that all attributes are to be retained. Has precedence over m_threshold */ protected int m_numToSelect = -1; protected int m_calculatedNumToSelect; /** the merit of the best subset found */ protected double m_bestMerit; /** a ranked list of attribute indexes */ protected double [][] m_rankedAtts; protected int m_rankedSoFar; /** the best subset found */ protected BitSet m_best_group; protected ASEvaluation m_ASEval; protected Instances m_Instances; /** holds the start set for the search as a Range */ protected Range m_startRange; /** holds an array of starting attributes */ protected int [] m_starting; /** Use a backwards search instead of a forwards one */ protected boolean m_backward = false; /** If set then attributes will continue to be added during a forward search as long as the merit does not degrade */ protected boolean m_conservativeSelection = false; /** * Constructor */ public GreedyStepwise () { m_threshold = -Double.MAX_VALUE; m_doneRanking = false; m_startRange = new Range(); m_starting = null; resetOptions(); } /** * Returns a string describing this search method * @return a description of the search suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "GreedyStepwise :\n\nPerforms a greedy forward or backward search " +"through " +"the space of attribute subsets. May start with no/all attributes or from " +"an arbitrary point in the space. Stops when the addition/deletion of any " +"remaining attributes results in a decrease in evaluation. " +"Can also produce a ranked list of " +"attributes by traversing the space from one side to the other and " +"recording the order that attributes are selected.\n"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String searchBackwardsTipText() { return "Search backwards rather than forwards."; } /** * Set whether to search backwards instead of forwards * * @param back true to search backwards */ public void setSearchBackwards(boolean back) { m_backward = back; if (m_backward) { setGenerateRanking(false); } } /** * Get whether to search backwards * * @return true if the search will proceed backwards */ public boolean getSearchBackwards() { return m_backward; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String thresholdTipText() { return "Set threshold by which attributes can be discarded. Default value " + "results in no attributes being discarded. Use in conjunction with " + "generateRanking"; } /** * Set the threshold by which the AttributeSelection module can discard * attributes. * @param threshold the threshold. */ public void setThreshold(double threshold) { m_threshold = threshold; } /** * Returns the threshold so that the AttributeSelection module can * discard attributes from the ranking. */ public double getThreshold() { return m_threshold; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numToSelectTipText() { return "Specify the number of attributes to retain. The default value " +"(-1) indicates that all attributes are to be retained. Use either " +"this option or a threshold to reduce the attribute set."; } /** * Specify the number of attributes to select from the ranked list * (if generating a ranking). -1 * indicates that all attributes are to be retained. * @param n the number of attributes to retain */ public void setNumToSelect(int n) { m_numToSelect = n; } /** * Gets the number of attributes to be retained. * @return the number of attributes to retain */ public int getNumToSelect() { return m_numToSelect; } /** * Gets the calculated number of attributes to retain. This is the * actual number of attributes to retain. This is the same as * getNumToSelect if the user specifies a number which is not less * than zero. Otherwise it should be the number of attributes in the * (potentially transformed) data. */ public int getCalculatedNumToSelect() { if (m_numToSelect >= 0) { m_calculatedNumToSelect = m_numToSelect; } return m_calculatedNumToSelect; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String generateRankingTipText() { return "Set to true if a ranked list is required."; } /** * Records whether the user has requested a ranked list of attributes. * @param doRank true if ranking is requested */ public void setGenerateRanking(boolean doRank) { m_rankingRequested = doRank; } /** * Gets whether ranking has been requested. This is used by the * AttributeSelection module to determine if rankedAttributes() * should be called. * @return true if ranking has been requested. */ public boolean getGenerateRanking() { return m_rankingRequested; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String startSetTipText() { return "Set the start point for the search. This is specified as a comma " +"seperated list off attribute indexes starting at 1. It can include " +"ranges. Eg. 1,2,5-9,17."; } /** * Sets a starting set of attributes for the search. It is the * search method's responsibility to report this start set (if any) * in its toString() method. * @param startSet a string containing a list of attributes (and or ranges), * eg. 1,2,6,10-15. * @throws Exception if start set can't be set. */ public void setStartSet (String startSet) throws Exception { m_startRange.setRanges(startSet); } /** * Returns a list of attributes (and or attribute ranges) as a String * @return a list of attributes (and or attribute ranges) */ public String getStartSet () { return m_startRange.getRanges(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String conservativeForwardSelectionTipText() { return "If true (and forward search is selected) then attributes " +"will continue to be added to the best subset as long as merit does " +"not degrade."; } /** * Set whether attributes should continue to be added during * a forward search as long as merit does not decrease * @param c true if atts should continue to be atted */ public void setConservativeForwardSelection(boolean c) { m_conservativeSelection = c; } /** * Gets whether conservative selection has been enabled * @return true if conservative forward selection is enabled */ public boolean getConservativeForwardSelection() { return m_conservativeSelection; } /** * Returns an enumeration describing the available options. * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(5); newVector.addElement(new Option("\tUse conservative forward search" ,"-C", 0, "-C")); newVector.addElement(new Option("\tUse a backward search instead of a" +"\n\tforward one." ,"-B", 0, "-B")); newVector .addElement(new Option("\tSpecify a starting set of attributes." + "\n\tEg. 1,3,5-7." ,"P",1 , "-P
-C * Use conservative forward search* *
-B * Use a backward search instead of a * forward one.* *
-P <start set> * Specify a starting set of attributes. * Eg. 1,3,5-7.* *
-R * Produce a ranked list of attributes.* *
-T <threshold> * Specify a theshold by which attributes * may be discarded from the ranking. * Use in conjuction with -R* *
-N <num to select> * Specify number of attributes to select* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { String optionString; resetOptions(); setSearchBackwards(Utils.getFlag('B', options)); setConservativeForwardSelection(Utils.getFlag('C', options)); optionString = Utils.getOption('P', options); if (optionString.length() != 0) { setStartSet(optionString); } setGenerateRanking(Utils.getFlag('R', options)); optionString = Utils.getOption('T', options); if (optionString.length() != 0) { Double temp; temp = Double.valueOf(optionString); setThreshold(temp.doubleValue()); } optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumToSelect(Integer.parseInt(optionString)); } } /** * Gets the current settings of ReliefFAttributeEval. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[9]; int current = 0; if (getSearchBackwards()) { options[current++] = "-B"; } if (getConservativeForwardSelection()) { options[current++] = "-C"; } if (!(getStartSet().equals(""))) { options[current++] = "-P"; options[current++] = ""+startSetToString(); } if (getGenerateRanking()) { options[current++] = "-R"; } options[current++] = "-T"; options[current++] = "" + getThreshold(); options[current++] = "-N"; options[current++] = ""+getNumToSelect(); while (current < options.length) { options[current++] = ""; } return options; } /** * converts the array of starting attributes to a string. This is * used by getOptions to return the actual attributes specified * as the starting set. This is better than using m_startRanges.getRanges() * as the same start set can be specified in different ways from the * command line---eg 1,2,3 == 1-3. This is to ensure that stuff that * is stored in a database is comparable. * @return a comma seperated list of individual attribute numbers as a String */ protected String startSetToString() { StringBuffer FString = new StringBuffer(); boolean didPrint; if (m_starting == null) { return getStartSet(); } for (int i = 0; i < m_starting.length; i++) { didPrint = false; if ((m_hasClass == false) || (m_hasClass == true && i != m_classIndex)) { FString.append((m_starting[i] + 1)); didPrint = true; } if (i == (m_starting.length - 1)) { FString.append(""); } else { if (didPrint) { FString.append(","); } } } return FString.toString(); } /** * returns a description of the search. * @return a description of the search as a String. */ public String toString() { StringBuffer FString = new StringBuffer(); FString.append("\tGreedy Stepwise (" + ((m_backward) ? "backwards)" : "forwards)")+".\n\tStart set: "); if (m_starting == null) { if (m_backward) { FString.append("all attributes\n"); } else { FString.append("no attributes\n"); } } else { FString.append(startSetToString()+"\n"); } if (!m_doneRanking) { FString.append("\tMerit of best subset found: " +Utils.doubleToString(Math.abs(m_bestMerit),8,3)+"\n"); } if ((m_threshold != -Double.MAX_VALUE) && (m_doneRanking)) { FString.append("\tThreshold for discarding attributes: " + Utils.doubleToString(m_threshold,8,4)+"\n"); } return FString.toString(); } /** * Searches the attribute subset space by forward selection. * * @param ASEval the attribute evaluator to guide the search * @param data the training instances. * @return an array (not necessarily ordered) of selected attribute indexes * @throws Exception if the search can't be completed */ public int[] search (ASEvaluation ASEval, Instances data) throws Exception { int i; double best_merit = -Double.MAX_VALUE; double temp_best,temp_merit; int temp_index=0; BitSet temp_group; if (data != null) { // this is a fresh run so reset resetOptions(); m_Instances = data; } m_ASEval = ASEval; m_numAttribs = m_Instances.numAttributes(); if (m_best_group == null) { m_best_group = new BitSet(m_numAttribs); } if (!(m_ASEval instanceof SubsetEvaluator)) { throw new Exception(m_ASEval.getClass().getName() + " is not a " + "Subset evaluator!"); } m_startRange.setUpper(m_numAttribs-1); if (!(getStartSet().equals(""))) { m_starting = m_startRange.getSelection(); } if (m_ASEval instanceof UnsupervisedSubsetEvaluator) { m_hasClass = false; m_classIndex = -1; } else { m_hasClass = true; m_classIndex = m_Instances.classIndex(); } SubsetEvaluator ASEvaluator = (SubsetEvaluator)m_ASEval; if (m_rankedAtts == null) { m_rankedAtts = new double[m_numAttribs][2]; m_rankedSoFar = 0; } // If a starting subset has been supplied, then initialise the bitset if (m_starting != null && m_rankedSoFar <= 0) { for (i = 0; i < m_starting.length; i++) { if ((m_starting[i]) != m_classIndex) { m_best_group.set(m_starting[i]); } } } else { if (m_backward && m_rankedSoFar <= 0) { for (i = 0; i < m_numAttribs; i++) { if (i != m_classIndex) { m_best_group.set(i); } } } } // Evaluate the initial subset best_merit = ASEvaluator.evaluateSubset(m_best_group); // main search loop boolean done = false; boolean addone = false; boolean z; while (!done) { temp_group = (BitSet)m_best_group.clone(); temp_best = best_merit; if (m_doRank) { temp_best = -Double.MAX_VALUE; } done = true; addone = false; for (i=0;i