1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * GeneticSearch.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Instances; |
---|
26 | import weka.core.Option; |
---|
27 | import weka.core.OptionHandler; |
---|
28 | import weka.core.Range; |
---|
29 | import weka.core.RevisionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.TechnicalInformation; |
---|
32 | import weka.core.TechnicalInformationHandler; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.core.TechnicalInformation.Field; |
---|
35 | import weka.core.TechnicalInformation.Type; |
---|
36 | |
---|
37 | import java.io.Serializable; |
---|
38 | import java.util.BitSet; |
---|
39 | import java.util.Enumeration; |
---|
40 | import java.util.Hashtable; |
---|
41 | import java.util.Random; |
---|
42 | import java.util.Vector; |
---|
43 | |
---|
44 | /** |
---|
45 | <!-- globalinfo-start --> |
---|
46 | * GeneticSearch:<br/> |
---|
47 | * <br/> |
---|
48 | * Performs a search using the simple genetic algorithm described in Goldberg (1989).<br/> |
---|
49 | * <br/> |
---|
50 | * For more information see:<br/> |
---|
51 | * <br/> |
---|
52 | * David E. Goldberg (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley. |
---|
53 | * <p/> |
---|
54 | <!-- globalinfo-end --> |
---|
55 | * |
---|
56 | <!-- technical-bibtex-start --> |
---|
57 | * BibTeX: |
---|
58 | * <pre> |
---|
59 | * @book{Goldberg1989, |
---|
60 | * author = {David E. Goldberg}, |
---|
61 | * publisher = {Addison-Wesley}, |
---|
62 | * title = {Genetic algorithms in search, optimization and machine learning}, |
---|
63 | * year = {1989}, |
---|
64 | * ISBN = {0201157675} |
---|
65 | * } |
---|
66 | * </pre> |
---|
67 | * <p/> |
---|
68 | <!-- technical-bibtex-end --> |
---|
69 | * |
---|
70 | <!-- options-start --> |
---|
71 | * Valid options are: <p/> |
---|
72 | * |
---|
73 | * <pre> -P <start set> |
---|
74 | * Specify a starting set of attributes. |
---|
75 | * Eg. 1,3,5-7.If supplied, the starting set becomes |
---|
76 | * one member of the initial random |
---|
77 | * population.</pre> |
---|
78 | * |
---|
79 | * <pre> -Z <population size> |
---|
80 | * Set the size of the population (even number). |
---|
81 | * (default = 20).</pre> |
---|
82 | * |
---|
83 | * <pre> -G <number of generations> |
---|
84 | * Set the number of generations. |
---|
85 | * (default = 20)</pre> |
---|
86 | * |
---|
87 | * <pre> -C <probability of crossover> |
---|
88 | * Set the probability of crossover. |
---|
89 | * (default = 0.6)</pre> |
---|
90 | * |
---|
91 | * <pre> -M <probability of mutation> |
---|
92 | * Set the probability of mutation. |
---|
93 | * (default = 0.033)</pre> |
---|
94 | * |
---|
95 | * <pre> -R <report frequency> |
---|
96 | * Set frequency of generation reports. |
---|
97 | * e.g, setting the value to 5 will |
---|
98 | * report every 5th generation |
---|
99 | * (default = number of generations)</pre> |
---|
100 | * |
---|
101 | * <pre> -S <seed> |
---|
102 | * Set the random number seed. |
---|
103 | * (default = 1)</pre> |
---|
104 | * |
---|
105 | <!-- options-end --> |
---|
106 | * |
---|
107 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
108 | * @version $Revision: 5286 $ |
---|
109 | */ |
---|
110 | public class GeneticSearch |
---|
111 | extends ASSearch |
---|
112 | implements StartSetHandler, OptionHandler, TechnicalInformationHandler { |
---|
113 | |
---|
114 | /** for serialization */ |
---|
115 | static final long serialVersionUID = -1618264232838472679L; |
---|
116 | |
---|
117 | /** |
---|
118 | * holds a starting set as an array of attributes. Becomes one member of the |
---|
119 | * initial random population |
---|
120 | */ |
---|
121 | private int[] m_starting; |
---|
122 | |
---|
123 | /** holds the start set for the search as a Range */ |
---|
124 | private Range m_startRange; |
---|
125 | |
---|
126 | /** does the data have a class */ |
---|
127 | private boolean m_hasClass; |
---|
128 | |
---|
129 | /** holds the class index */ |
---|
130 | private int m_classIndex; |
---|
131 | |
---|
132 | /** number of attributes in the data */ |
---|
133 | private int m_numAttribs; |
---|
134 | |
---|
135 | /** the current population */ |
---|
136 | private GABitSet [] m_population; |
---|
137 | |
---|
138 | /** the number of individual solutions */ |
---|
139 | private int m_popSize; |
---|
140 | |
---|
141 | /** the best population member found during the search */ |
---|
142 | private GABitSet m_best; |
---|
143 | |
---|
144 | /** the number of features in the best population member */ |
---|
145 | private int m_bestFeatureCount; |
---|
146 | |
---|
147 | /** the number of entries to cache for lookup */ |
---|
148 | private int m_lookupTableSize; |
---|
149 | |
---|
150 | /** the lookup table */ |
---|
151 | private Hashtable m_lookupTable; |
---|
152 | |
---|
153 | /** random number generation */ |
---|
154 | private Random m_random; |
---|
155 | |
---|
156 | /** seed for random number generation */ |
---|
157 | private int m_seed; |
---|
158 | |
---|
159 | /** the probability of crossover occuring */ |
---|
160 | private double m_pCrossover; |
---|
161 | |
---|
162 | /** the probability of mutation occuring */ |
---|
163 | private double m_pMutation; |
---|
164 | |
---|
165 | /** sum of the current population fitness */ |
---|
166 | private double m_sumFitness; |
---|
167 | |
---|
168 | private double m_maxFitness; |
---|
169 | private double m_minFitness; |
---|
170 | private double m_avgFitness; |
---|
171 | |
---|
172 | /** the maximum number of generations to evaluate */ |
---|
173 | private int m_maxGenerations; |
---|
174 | |
---|
175 | /** how often reports are generated */ |
---|
176 | private int m_reportFrequency; |
---|
177 | |
---|
178 | /** holds the generation reports */ |
---|
179 | private StringBuffer m_generationReports; |
---|
180 | |
---|
181 | // Inner class |
---|
182 | /** |
---|
183 | * A bitset for the genetic algorithm |
---|
184 | */ |
---|
185 | protected class GABitSet |
---|
186 | implements Cloneable, Serializable, RevisionHandler { |
---|
187 | |
---|
188 | /** for serialization */ |
---|
189 | static final long serialVersionUID = -2930607837482622224L; |
---|
190 | |
---|
191 | /** the bitset */ |
---|
192 | private BitSet m_chromosome; |
---|
193 | |
---|
194 | /** holds raw merit */ |
---|
195 | private double m_objective = -Double.MAX_VALUE; |
---|
196 | |
---|
197 | /** the fitness */ |
---|
198 | private double m_fitness; |
---|
199 | |
---|
200 | /** |
---|
201 | * Constructor |
---|
202 | */ |
---|
203 | public GABitSet () { |
---|
204 | m_chromosome = new BitSet(); |
---|
205 | } |
---|
206 | |
---|
207 | /** |
---|
208 | * makes a copy of this GABitSet |
---|
209 | * @return a copy of the object |
---|
210 | * @throws CloneNotSupportedException if something goes wrong |
---|
211 | */ |
---|
212 | public Object clone() throws CloneNotSupportedException { |
---|
213 | GABitSet temp = new GABitSet(); |
---|
214 | |
---|
215 | temp.setObjective(this.getObjective()); |
---|
216 | temp.setFitness(this.getFitness()); |
---|
217 | temp.setChromosome((BitSet)(this.m_chromosome.clone())); |
---|
218 | return temp; |
---|
219 | //return super.clone(); |
---|
220 | } |
---|
221 | |
---|
222 | /** |
---|
223 | * sets the objective merit value |
---|
224 | * @param objective the objective value of this population member |
---|
225 | */ |
---|
226 | public void setObjective(double objective) { |
---|
227 | m_objective = objective; |
---|
228 | } |
---|
229 | |
---|
230 | /** |
---|
231 | * gets the objective merit |
---|
232 | * @return the objective merit of this population member |
---|
233 | */ |
---|
234 | public double getObjective() { |
---|
235 | return m_objective; |
---|
236 | } |
---|
237 | |
---|
238 | /** |
---|
239 | * sets the scaled fitness |
---|
240 | * @param fitness the scaled fitness of this population member |
---|
241 | */ |
---|
242 | public void setFitness(double fitness) { |
---|
243 | m_fitness = fitness; |
---|
244 | } |
---|
245 | |
---|
246 | /** |
---|
247 | * gets the scaled fitness |
---|
248 | * @return the scaled fitness of this population member |
---|
249 | */ |
---|
250 | public double getFitness() { |
---|
251 | return m_fitness; |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * get the chromosome |
---|
256 | * @return the chromosome of this population member |
---|
257 | */ |
---|
258 | public BitSet getChromosome() { |
---|
259 | return m_chromosome; |
---|
260 | } |
---|
261 | |
---|
262 | /** |
---|
263 | * set the chromosome |
---|
264 | * @param c the chromosome to be set for this population member |
---|
265 | */ |
---|
266 | public void setChromosome(BitSet c) { |
---|
267 | m_chromosome = c; |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * unset a bit in the chromosome |
---|
272 | * @param bit the bit to be cleared |
---|
273 | */ |
---|
274 | public void clear(int bit) { |
---|
275 | m_chromosome.clear(bit); |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | * set a bit in the chromosome |
---|
280 | * @param bit the bit to be set |
---|
281 | */ |
---|
282 | public void set(int bit) { |
---|
283 | m_chromosome.set(bit); |
---|
284 | } |
---|
285 | |
---|
286 | /** |
---|
287 | * get the value of a bit in the chromosome |
---|
288 | * @param bit the bit to query |
---|
289 | * @return the value of the bit |
---|
290 | */ |
---|
291 | public boolean get(int bit) { |
---|
292 | return m_chromosome.get(bit); |
---|
293 | } |
---|
294 | |
---|
295 | /** |
---|
296 | * Returns the revision string. |
---|
297 | * |
---|
298 | * @return the revision |
---|
299 | */ |
---|
300 | public String getRevision() { |
---|
301 | return RevisionUtils.extract("$Revision: 5286 $"); |
---|
302 | } |
---|
303 | } |
---|
304 | |
---|
305 | /** |
---|
306 | * Returns an enumeration describing the available options. |
---|
307 | * @return an enumeration of all the available options. |
---|
308 | **/ |
---|
309 | public Enumeration listOptions () { |
---|
310 | Vector newVector = new Vector(6); |
---|
311 | |
---|
312 | newVector.addElement(new Option("\tSpecify a starting set of attributes." |
---|
313 | + "\n\tEg. 1,3,5-7." |
---|
314 | +"If supplied, the starting set becomes" |
---|
315 | +"\n\tone member of the initial random" |
---|
316 | +"\n\tpopulation." |
---|
317 | ,"P",1 |
---|
318 | , "-P <start set>")); |
---|
319 | newVector.addElement(new Option("\tSet the size of the population (even number)." |
---|
320 | +"\n\t(default = 20)." |
---|
321 | , "Z", 1 |
---|
322 | , "-Z <population size>")); |
---|
323 | newVector.addElement(new Option("\tSet the number of generations." |
---|
324 | +"\n\t(default = 20)" |
---|
325 | , "G", 1, "-G <number of generations>")); |
---|
326 | newVector.addElement(new Option("\tSet the probability of crossover." |
---|
327 | +"\n\t(default = 0.6)" |
---|
328 | , "C", 1, "-C <probability of" |
---|
329 | +" crossover>")); |
---|
330 | newVector.addElement(new Option("\tSet the probability of mutation." |
---|
331 | +"\n\t(default = 0.033)" |
---|
332 | , "M", 1, "-M <probability of mutation>")); |
---|
333 | |
---|
334 | newVector.addElement(new Option("\tSet frequency of generation reports." |
---|
335 | +"\n\te.g, setting the value to 5 will " |
---|
336 | +"\n\treport every 5th generation" |
---|
337 | +"\n\t(default = number of generations)" |
---|
338 | , "R", 1, "-R <report frequency>")); |
---|
339 | newVector.addElement(new Option("\tSet the random number seed." |
---|
340 | +"\n\t(default = 1)" |
---|
341 | , "S", 1, "-S <seed>")); |
---|
342 | return newVector.elements(); |
---|
343 | } |
---|
344 | |
---|
345 | /** |
---|
346 | * Parses a given list of options. <p/> |
---|
347 | * |
---|
348 | <!-- options-start --> |
---|
349 | * Valid options are: <p/> |
---|
350 | * |
---|
351 | * <pre> -P <start set> |
---|
352 | * Specify a starting set of attributes. |
---|
353 | * Eg. 1,3,5-7.If supplied, the starting set becomes |
---|
354 | * one member of the initial random |
---|
355 | * population.</pre> |
---|
356 | * |
---|
357 | * <pre> -Z <population size> |
---|
358 | * Set the size of the population (even number). |
---|
359 | * (default = 20).</pre> |
---|
360 | * |
---|
361 | * <pre> -G <number of generations> |
---|
362 | * Set the number of generations. |
---|
363 | * (default = 20)</pre> |
---|
364 | * |
---|
365 | * <pre> -C <probability of crossover> |
---|
366 | * Set the probability of crossover. |
---|
367 | * (default = 0.6)</pre> |
---|
368 | * |
---|
369 | * <pre> -M <probability of mutation> |
---|
370 | * Set the probability of mutation. |
---|
371 | * (default = 0.033)</pre> |
---|
372 | * |
---|
373 | * <pre> -R <report frequency> |
---|
374 | * Set frequency of generation reports. |
---|
375 | * e.g, setting the value to 5 will |
---|
376 | * report every 5th generation |
---|
377 | * (default = number of generations)</pre> |
---|
378 | * |
---|
379 | * <pre> -S <seed> |
---|
380 | * Set the random number seed. |
---|
381 | * (default = 1)</pre> |
---|
382 | * |
---|
383 | <!-- options-end --> |
---|
384 | * |
---|
385 | * @param options the list of options as an array of strings |
---|
386 | * @throws Exception if an option is not supported |
---|
387 | * |
---|
388 | **/ |
---|
389 | public void setOptions (String[] options) |
---|
390 | throws Exception { |
---|
391 | String optionString; |
---|
392 | resetOptions(); |
---|
393 | |
---|
394 | optionString = Utils.getOption('P', options); |
---|
395 | if (optionString.length() != 0) { |
---|
396 | setStartSet(optionString); |
---|
397 | } |
---|
398 | |
---|
399 | optionString = Utils.getOption('Z', options); |
---|
400 | if (optionString.length() != 0) { |
---|
401 | setPopulationSize(Integer.parseInt(optionString)); |
---|
402 | } |
---|
403 | |
---|
404 | optionString = Utils.getOption('G', options); |
---|
405 | if (optionString.length() != 0) { |
---|
406 | setMaxGenerations(Integer.parseInt(optionString)); |
---|
407 | setReportFrequency(Integer.parseInt(optionString)); |
---|
408 | } |
---|
409 | |
---|
410 | optionString = Utils.getOption('C', options); |
---|
411 | if (optionString.length() != 0) { |
---|
412 | setCrossoverProb((new Double(optionString)).doubleValue()); |
---|
413 | } |
---|
414 | |
---|
415 | optionString = Utils.getOption('M', options); |
---|
416 | if (optionString.length() != 0) { |
---|
417 | setMutationProb((new Double(optionString)).doubleValue()); |
---|
418 | } |
---|
419 | |
---|
420 | optionString = Utils.getOption('R', options); |
---|
421 | if (optionString.length() != 0) { |
---|
422 | setReportFrequency(Integer.parseInt(optionString)); |
---|
423 | } |
---|
424 | |
---|
425 | optionString = Utils.getOption('S', options); |
---|
426 | if (optionString.length() != 0) { |
---|
427 | setSeed(Integer.parseInt(optionString)); |
---|
428 | } |
---|
429 | } |
---|
430 | |
---|
431 | /** |
---|
432 | * Gets the current settings of ReliefFAttributeEval. |
---|
433 | * |
---|
434 | * @return an array of strings suitable for passing to setOptions() |
---|
435 | */ |
---|
436 | public String[] getOptions () { |
---|
437 | String[] options = new String[14]; |
---|
438 | int current = 0; |
---|
439 | |
---|
440 | if (!(getStartSet().equals(""))) { |
---|
441 | options[current++] = "-P"; |
---|
442 | options[current++] = ""+startSetToString(); |
---|
443 | } |
---|
444 | options[current++] = "-Z"; |
---|
445 | options[current++] = "" + getPopulationSize(); |
---|
446 | options[current++] = "-G"; |
---|
447 | options[current++] = "" + getMaxGenerations(); |
---|
448 | options[current++] = "-C"; |
---|
449 | options[current++] = "" + getCrossoverProb(); |
---|
450 | options[current++] = "-M"; |
---|
451 | options[current++] = "" + getMutationProb(); |
---|
452 | options[current++] = "-R"; |
---|
453 | options[current++] = "" + getReportFrequency(); |
---|
454 | options[current++] = "-S"; |
---|
455 | options[current++] = "" + getSeed(); |
---|
456 | |
---|
457 | while (current < options.length) { |
---|
458 | options[current++] = ""; |
---|
459 | } |
---|
460 | return options; |
---|
461 | } |
---|
462 | |
---|
463 | /** |
---|
464 | * Returns the tip text for this property |
---|
465 | * @return tip text for this property suitable for |
---|
466 | * displaying in the explorer/experimenter gui |
---|
467 | */ |
---|
468 | public String startSetTipText() { |
---|
469 | return "Set a start point for the search. This is specified as a comma " |
---|
470 | +"seperated list off attribute indexes starting at 1. It can include " |
---|
471 | +"ranges. Eg. 1,2,5-9,17. The start set becomes one of the population " |
---|
472 | +"members of the initial population."; |
---|
473 | } |
---|
474 | |
---|
475 | /** |
---|
476 | * Sets a starting set of attributes for the search. It is the |
---|
477 | * search method's responsibility to report this start set (if any) |
---|
478 | * in its toString() method. |
---|
479 | * @param startSet a string containing a list of attributes (and or ranges), |
---|
480 | * eg. 1,2,6,10-15. |
---|
481 | * @throws Exception if start set can't be set. |
---|
482 | */ |
---|
483 | public void setStartSet (String startSet) throws Exception { |
---|
484 | m_startRange.setRanges(startSet); |
---|
485 | } |
---|
486 | |
---|
487 | /** |
---|
488 | * Returns a list of attributes (and or attribute ranges) as a String |
---|
489 | * @return a list of attributes (and or attribute ranges) |
---|
490 | */ |
---|
491 | public String getStartSet () { |
---|
492 | return m_startRange.getRanges(); |
---|
493 | } |
---|
494 | |
---|
495 | /** |
---|
496 | * Returns the tip text for this property |
---|
497 | * @return tip text for this property suitable for |
---|
498 | * displaying in the explorer/experimenter gui |
---|
499 | */ |
---|
500 | public String seedTipText() { |
---|
501 | return "Set the random seed."; |
---|
502 | } |
---|
503 | |
---|
504 | /** |
---|
505 | * set the seed for random number generation |
---|
506 | * @param s seed value |
---|
507 | */ |
---|
508 | public void setSeed(int s) { |
---|
509 | m_seed = s; |
---|
510 | } |
---|
511 | |
---|
512 | /** |
---|
513 | * get the value of the random number generator's seed |
---|
514 | * @return the seed for random number generation |
---|
515 | */ |
---|
516 | public int getSeed() { |
---|
517 | return m_seed; |
---|
518 | } |
---|
519 | |
---|
520 | /** |
---|
521 | * Returns the tip text for this property |
---|
522 | * @return tip text for this property suitable for |
---|
523 | * displaying in the explorer/experimenter gui |
---|
524 | */ |
---|
525 | public String reportFrequencyTipText() { |
---|
526 | return "Set how frequently reports are generated. Default is equal to " |
---|
527 | +"the number of generations meaning that a report will be printed for " |
---|
528 | +"initial and final generations. Setting the value to 5 will result in " |
---|
529 | +"a report being printed every 5 generations."; |
---|
530 | } |
---|
531 | |
---|
532 | /** |
---|
533 | * set how often reports are generated |
---|
534 | * @param f generate reports every f generations |
---|
535 | */ |
---|
536 | public void setReportFrequency(int f) { |
---|
537 | m_reportFrequency = f; |
---|
538 | } |
---|
539 | |
---|
540 | /** |
---|
541 | * get how often repports are generated |
---|
542 | * @return how often reports are generated |
---|
543 | */ |
---|
544 | public int getReportFrequency() { |
---|
545 | return m_reportFrequency; |
---|
546 | } |
---|
547 | |
---|
548 | /** |
---|
549 | * Returns the tip text for this property |
---|
550 | * @return tip text for this property suitable for |
---|
551 | * displaying in the explorer/experimenter gui |
---|
552 | */ |
---|
553 | public String mutationProbTipText() { |
---|
554 | return "Set the probability of mutation occuring."; |
---|
555 | } |
---|
556 | |
---|
557 | /** |
---|
558 | * set the probability of mutation |
---|
559 | * @param m the probability for mutation occuring |
---|
560 | */ |
---|
561 | public void setMutationProb(double m) { |
---|
562 | m_pMutation = m; |
---|
563 | } |
---|
564 | |
---|
565 | /** |
---|
566 | * get the probability of mutation |
---|
567 | * @return the probability of mutation occuring |
---|
568 | */ |
---|
569 | public double getMutationProb() { |
---|
570 | return m_pMutation; |
---|
571 | } |
---|
572 | |
---|
573 | /** |
---|
574 | * Returns the tip text for this property |
---|
575 | * @return tip text for this property suitable for |
---|
576 | * displaying in the explorer/experimenter gui |
---|
577 | */ |
---|
578 | public String crossoverProbTipText() { |
---|
579 | return "Set the probability of crossover. This is the probability that " |
---|
580 | +"two population members will exchange genetic material."; |
---|
581 | } |
---|
582 | |
---|
583 | /** |
---|
584 | * set the probability of crossover |
---|
585 | * @param c the probability that two population members will exchange |
---|
586 | * genetic material |
---|
587 | */ |
---|
588 | public void setCrossoverProb(double c) { |
---|
589 | m_pCrossover = c; |
---|
590 | } |
---|
591 | |
---|
592 | /** |
---|
593 | * get the probability of crossover |
---|
594 | * @return the probability of crossover |
---|
595 | */ |
---|
596 | public double getCrossoverProb() { |
---|
597 | return m_pCrossover; |
---|
598 | } |
---|
599 | |
---|
600 | /** |
---|
601 | * Returns the tip text for this property |
---|
602 | * @return tip text for this property suitable for |
---|
603 | * displaying in the explorer/experimenter gui |
---|
604 | */ |
---|
605 | public String maxGenerationsTipText() { |
---|
606 | return "Set the number of generations to evaluate."; |
---|
607 | } |
---|
608 | |
---|
609 | /** |
---|
610 | * set the number of generations to evaluate |
---|
611 | * @param m the number of generations |
---|
612 | */ |
---|
613 | public void setMaxGenerations(int m) { |
---|
614 | m_maxGenerations = m; |
---|
615 | } |
---|
616 | |
---|
617 | /** |
---|
618 | * get the number of generations |
---|
619 | * @return the maximum number of generations |
---|
620 | */ |
---|
621 | public int getMaxGenerations() { |
---|
622 | return m_maxGenerations; |
---|
623 | } |
---|
624 | |
---|
625 | /** |
---|
626 | * Returns the tip text for this property |
---|
627 | * @return tip text for this property suitable for |
---|
628 | * displaying in the explorer/experimenter gui |
---|
629 | */ |
---|
630 | public String populationSizeTipText() { |
---|
631 | return "Set the population size (even number), this is the number of individuals " |
---|
632 | +"(attribute sets) in the population."; |
---|
633 | } |
---|
634 | |
---|
635 | /** |
---|
636 | * set the population size |
---|
637 | * @param p the size of the population |
---|
638 | */ |
---|
639 | public void setPopulationSize(int p) { |
---|
640 | if (p % 2 == 0) |
---|
641 | m_popSize = p; |
---|
642 | else |
---|
643 | System.err.println("Population size needs to be an even number!"); |
---|
644 | } |
---|
645 | |
---|
646 | /** |
---|
647 | * get the size of the population |
---|
648 | * @return the population size |
---|
649 | */ |
---|
650 | public int getPopulationSize() { |
---|
651 | return m_popSize; |
---|
652 | } |
---|
653 | |
---|
654 | /** |
---|
655 | * Returns a string describing this search method |
---|
656 | * @return a description of the search suitable for |
---|
657 | * displaying in the explorer/experimenter gui |
---|
658 | */ |
---|
659 | public String globalInfo() { |
---|
660 | return |
---|
661 | "GeneticSearch:\n\nPerforms a search using the simple genetic " |
---|
662 | + "algorithm described in Goldberg (1989).\n\n" |
---|
663 | + "For more information see:\n\n" |
---|
664 | + getTechnicalInformation().toString(); |
---|
665 | } |
---|
666 | |
---|
667 | /** |
---|
668 | * Returns an instance of a TechnicalInformation object, containing |
---|
669 | * detailed information about the technical background of this class, |
---|
670 | * e.g., paper reference or book this class is based on. |
---|
671 | * |
---|
672 | * @return the technical information about this class |
---|
673 | */ |
---|
674 | public TechnicalInformation getTechnicalInformation() { |
---|
675 | TechnicalInformation result; |
---|
676 | |
---|
677 | result = new TechnicalInformation(Type.BOOK); |
---|
678 | result.setValue(Field.AUTHOR, "David E. Goldberg"); |
---|
679 | result.setValue(Field.YEAR, "1989"); |
---|
680 | result.setValue(Field.TITLE, "Genetic algorithms in search, optimization and machine learning"); |
---|
681 | result.setValue(Field.ISBN, "0201157675"); |
---|
682 | result.setValue(Field.PUBLISHER, "Addison-Wesley"); |
---|
683 | |
---|
684 | return result; |
---|
685 | } |
---|
686 | |
---|
687 | /** |
---|
688 | * Constructor. Make a new GeneticSearch object |
---|
689 | */ |
---|
690 | public GeneticSearch() { |
---|
691 | resetOptions(); |
---|
692 | } |
---|
693 | |
---|
694 | /** |
---|
695 | * converts the array of starting attributes to a string. This is |
---|
696 | * used by getOptions to return the actual attributes specified |
---|
697 | * as the starting set. This is better than using m_startRanges.getRanges() |
---|
698 | * as the same start set can be specified in different ways from the |
---|
699 | * command line---eg 1,2,3 == 1-3. This is to ensure that stuff that |
---|
700 | * is stored in a database is comparable. |
---|
701 | * @return a comma seperated list of individual attribute numbers as a String |
---|
702 | */ |
---|
703 | private String startSetToString() { |
---|
704 | StringBuffer FString = new StringBuffer(); |
---|
705 | boolean didPrint; |
---|
706 | |
---|
707 | if (m_starting == null) { |
---|
708 | return getStartSet(); |
---|
709 | } |
---|
710 | |
---|
711 | for (int i = 0; i < m_starting.length; i++) { |
---|
712 | didPrint = false; |
---|
713 | |
---|
714 | if ((m_hasClass == false) || |
---|
715 | (m_hasClass == true && i != m_classIndex)) { |
---|
716 | FString.append((m_starting[i] + 1)); |
---|
717 | didPrint = true; |
---|
718 | } |
---|
719 | |
---|
720 | if (i == (m_starting.length - 1)) { |
---|
721 | FString.append(""); |
---|
722 | } |
---|
723 | else { |
---|
724 | if (didPrint) { |
---|
725 | FString.append(","); |
---|
726 | } |
---|
727 | } |
---|
728 | } |
---|
729 | |
---|
730 | return FString.toString(); |
---|
731 | } |
---|
732 | |
---|
733 | /** |
---|
734 | * returns a description of the search |
---|
735 | * @return a description of the search as a String |
---|
736 | */ |
---|
737 | public String toString() { |
---|
738 | StringBuffer GAString = new StringBuffer(); |
---|
739 | GAString.append("\tGenetic search.\n\tStart set: "); |
---|
740 | |
---|
741 | if (m_starting == null) { |
---|
742 | GAString.append("no attributes\n"); |
---|
743 | } |
---|
744 | else { |
---|
745 | GAString.append(startSetToString()+"\n"); |
---|
746 | } |
---|
747 | GAString.append("\tPopulation size: "+m_popSize); |
---|
748 | GAString.append("\n\tNumber of generations: "+m_maxGenerations); |
---|
749 | GAString.append("\n\tProbability of crossover: " |
---|
750 | +Utils.doubleToString(m_pCrossover,6,3)); |
---|
751 | GAString.append("\n\tProbability of mutation: " |
---|
752 | +Utils.doubleToString(m_pMutation,6,3)); |
---|
753 | GAString.append("\n\tReport frequency: "+m_reportFrequency); |
---|
754 | GAString.append("\n\tRandom number seed: "+m_seed+"\n"); |
---|
755 | GAString.append(m_generationReports.toString()); |
---|
756 | return GAString.toString(); |
---|
757 | } |
---|
758 | |
---|
759 | /** |
---|
760 | * Searches the attribute subset space using a genetic algorithm. |
---|
761 | * |
---|
762 | * @param ASEval the attribute evaluator to guide the search |
---|
763 | * @param data the training instances. |
---|
764 | * @return an array (not necessarily ordered) of selected attribute indexes |
---|
765 | * @throws Exception if the search can't be completed |
---|
766 | */ |
---|
767 | public int[] search (ASEvaluation ASEval, Instances data) |
---|
768 | throws Exception { |
---|
769 | |
---|
770 | m_best = null; |
---|
771 | m_generationReports = new StringBuffer(); |
---|
772 | |
---|
773 | if (!(ASEval instanceof SubsetEvaluator)) { |
---|
774 | throw new Exception(ASEval.getClass().getName() |
---|
775 | + " is not a " |
---|
776 | + "Subset evaluator!"); |
---|
777 | } |
---|
778 | |
---|
779 | if (ASEval instanceof UnsupervisedSubsetEvaluator) { |
---|
780 | m_hasClass = false; |
---|
781 | } |
---|
782 | else { |
---|
783 | m_hasClass = true; |
---|
784 | m_classIndex = data.classIndex(); |
---|
785 | } |
---|
786 | |
---|
787 | SubsetEvaluator ASEvaluator = (SubsetEvaluator)ASEval; |
---|
788 | m_numAttribs = data.numAttributes(); |
---|
789 | |
---|
790 | m_startRange.setUpper(m_numAttribs-1); |
---|
791 | if (!(getStartSet().equals(""))) { |
---|
792 | m_starting = m_startRange.getSelection(); |
---|
793 | } |
---|
794 | |
---|
795 | // initial random population |
---|
796 | m_lookupTable = new Hashtable(m_lookupTableSize); |
---|
797 | m_random = new Random(m_seed); |
---|
798 | m_population = new GABitSet [m_popSize]; |
---|
799 | |
---|
800 | // set up random initial population |
---|
801 | initPopulation(); |
---|
802 | evaluatePopulation(ASEvaluator); |
---|
803 | populationStatistics(); |
---|
804 | scalePopulation(); |
---|
805 | checkBest(); |
---|
806 | m_generationReports.append(populationReport(0)); |
---|
807 | |
---|
808 | boolean converged; |
---|
809 | for (int i=1;i<=m_maxGenerations;i++) { |
---|
810 | generation(); |
---|
811 | evaluatePopulation(ASEvaluator); |
---|
812 | populationStatistics(); |
---|
813 | scalePopulation(); |
---|
814 | // find the best pop member and check for convergence |
---|
815 | converged = checkBest(); |
---|
816 | |
---|
817 | if ((i == m_maxGenerations) || |
---|
818 | ((i % m_reportFrequency) == 0) || |
---|
819 | (converged == true)) { |
---|
820 | m_generationReports.append(populationReport(i)); |
---|
821 | if (converged == true) { |
---|
822 | break; |
---|
823 | } |
---|
824 | } |
---|
825 | } |
---|
826 | return attributeList(m_best.getChromosome()); |
---|
827 | } |
---|
828 | |
---|
829 | /** |
---|
830 | * converts a BitSet into a list of attribute indexes |
---|
831 | * @param group the BitSet to convert |
---|
832 | * @return an array of attribute indexes |
---|
833 | **/ |
---|
834 | private int[] attributeList (BitSet group) { |
---|
835 | int count = 0; |
---|
836 | |
---|
837 | // count how many were selected |
---|
838 | for (int i = 0; i < m_numAttribs; i++) { |
---|
839 | if (group.get(i)) { |
---|
840 | count++; |
---|
841 | } |
---|
842 | } |
---|
843 | |
---|
844 | int[] list = new int[count]; |
---|
845 | count = 0; |
---|
846 | |
---|
847 | for (int i = 0; i < m_numAttribs; i++) { |
---|
848 | if (group.get(i)) { |
---|
849 | list[count++] = i; |
---|
850 | } |
---|
851 | } |
---|
852 | |
---|
853 | return list; |
---|
854 | } |
---|
855 | |
---|
856 | /** |
---|
857 | * checks to see if any population members in the current |
---|
858 | * population are better than the best found so far. Also checks |
---|
859 | * to see if the search has converged---that is there is no difference |
---|
860 | * in fitness between the best and worse population member |
---|
861 | * @return true is the search has converged |
---|
862 | * @throws Exception if something goes wrong |
---|
863 | */ |
---|
864 | private boolean checkBest() throws Exception { |
---|
865 | int i,count,lowestCount = m_numAttribs; |
---|
866 | double b = -Double.MAX_VALUE; |
---|
867 | GABitSet localbest = null; |
---|
868 | BitSet temp; |
---|
869 | boolean converged = false; |
---|
870 | int oldcount = Integer.MAX_VALUE; |
---|
871 | |
---|
872 | if (m_maxFitness - m_minFitness > 0) { |
---|
873 | // find the best in this population |
---|
874 | for (i=0;i<m_popSize;i++) { |
---|
875 | if (m_population[i].getObjective() > b) { |
---|
876 | b = m_population[i].getObjective(); |
---|
877 | localbest = m_population[i]; |
---|
878 | oldcount = countFeatures(localbest.getChromosome()); |
---|
879 | } else if (Utils.eq(m_population[i].getObjective(), b)) { |
---|
880 | // see if it contains fewer features |
---|
881 | count = countFeatures(m_population[i].getChromosome()); |
---|
882 | if (count < oldcount) { |
---|
883 | b = m_population[i].getObjective(); |
---|
884 | localbest = m_population[i]; |
---|
885 | oldcount = count; |
---|
886 | } |
---|
887 | } |
---|
888 | } |
---|
889 | } else { |
---|
890 | // look for the smallest subset |
---|
891 | for (i=0;i<m_popSize;i++) { |
---|
892 | temp = m_population[i].getChromosome(); |
---|
893 | count = countFeatures(temp);; |
---|
894 | |
---|
895 | if (count < lowestCount) { |
---|
896 | lowestCount = count; |
---|
897 | localbest = m_population[i]; |
---|
898 | b = localbest.getObjective(); |
---|
899 | } |
---|
900 | } |
---|
901 | converged = true; |
---|
902 | } |
---|
903 | |
---|
904 | // count the number of features in localbest |
---|
905 | count = 0; |
---|
906 | temp = localbest.getChromosome(); |
---|
907 | count = countFeatures(temp); |
---|
908 | |
---|
909 | // compare to the best found so far |
---|
910 | if (m_best == null) { |
---|
911 | m_best = (GABitSet)localbest.clone(); |
---|
912 | m_bestFeatureCount = count; |
---|
913 | } else if (b > m_best.getObjective()) { |
---|
914 | m_best = (GABitSet)localbest.clone(); |
---|
915 | m_bestFeatureCount = count; |
---|
916 | } else if (Utils.eq(m_best.getObjective(), b)) { |
---|
917 | // see if the localbest has fewer features than the best so far |
---|
918 | if (count < m_bestFeatureCount) { |
---|
919 | m_best = (GABitSet)localbest.clone(); |
---|
920 | m_bestFeatureCount = count; |
---|
921 | } |
---|
922 | } |
---|
923 | return converged; |
---|
924 | } |
---|
925 | |
---|
926 | /** |
---|
927 | * counts the number of features in a subset |
---|
928 | * @param featureSet the feature set for which to count the features |
---|
929 | * @return the number of features in the subset |
---|
930 | */ |
---|
931 | private int countFeatures(BitSet featureSet) { |
---|
932 | int count = 0; |
---|
933 | for (int i=0;i<m_numAttribs;i++) { |
---|
934 | if (featureSet.get(i)) { |
---|
935 | count++; |
---|
936 | } |
---|
937 | } |
---|
938 | return count; |
---|
939 | } |
---|
940 | |
---|
941 | /** |
---|
942 | * performs a single generation---selection, crossover, and mutation |
---|
943 | * @throws Exception if an error occurs |
---|
944 | */ |
---|
945 | private void generation () throws Exception { |
---|
946 | int i,j=0; |
---|
947 | double best_fit = -Double.MAX_VALUE; |
---|
948 | int old_count = 0; |
---|
949 | int count; |
---|
950 | GABitSet [] newPop = new GABitSet [m_popSize]; |
---|
951 | int parent1,parent2; |
---|
952 | |
---|
953 | /** first ensure that the population best is propogated into the new |
---|
954 | generation */ |
---|
955 | for (i=0;i<m_popSize;i++) { |
---|
956 | if (m_population[i].getFitness() > best_fit) { |
---|
957 | j = i; |
---|
958 | best_fit = m_population[i].getFitness(); |
---|
959 | old_count = countFeatures(m_population[i].getChromosome()); |
---|
960 | } else if (Utils.eq(m_population[i].getFitness(), best_fit)) { |
---|
961 | count = countFeatures(m_population[i].getChromosome()); |
---|
962 | if (count < old_count) { |
---|
963 | j = i; |
---|
964 | best_fit = m_population[i].getFitness(); |
---|
965 | old_count = count; |
---|
966 | } |
---|
967 | } |
---|
968 | } |
---|
969 | newPop[0] = (GABitSet)(m_population[j].clone()); |
---|
970 | newPop[1] = newPop[0]; |
---|
971 | |
---|
972 | for (j=2;j<m_popSize;j+=2) { |
---|
973 | parent1 = select(); |
---|
974 | parent2 = select(); |
---|
975 | newPop[j] = (GABitSet)(m_population[parent1].clone()); |
---|
976 | newPop[j+1] = (GABitSet)(m_population[parent2].clone()); |
---|
977 | // if parents are equal mutate one bit |
---|
978 | if (parent1 == parent2) { |
---|
979 | int r; |
---|
980 | if (m_hasClass) { |
---|
981 | while ((r = (Math.abs(m_random.nextInt()) % m_numAttribs)) == m_classIndex); |
---|
982 | } |
---|
983 | else { |
---|
984 | r = m_random.nextInt() % m_numAttribs; |
---|
985 | } |
---|
986 | |
---|
987 | if (newPop[j].get(r)) { |
---|
988 | newPop[j].clear(r); |
---|
989 | } |
---|
990 | else { |
---|
991 | newPop[j].set(r); |
---|
992 | } |
---|
993 | } else { |
---|
994 | // crossover |
---|
995 | double r = m_random.nextDouble(); |
---|
996 | if (m_numAttribs >= 3) { |
---|
997 | if (r < m_pCrossover) { |
---|
998 | // cross point |
---|
999 | int cp = Math.abs(m_random.nextInt()); |
---|
1000 | |
---|
1001 | cp %= (m_numAttribs-2); |
---|
1002 | cp ++; |
---|
1003 | |
---|
1004 | for (i=0;i<cp;i++) { |
---|
1005 | if (m_population[parent1].get(i)) { |
---|
1006 | newPop[j+1].set(i); |
---|
1007 | } |
---|
1008 | else { |
---|
1009 | newPop[j+1].clear(i); |
---|
1010 | } |
---|
1011 | if (m_population[parent2].get(i)) { |
---|
1012 | newPop[j].set(i); |
---|
1013 | } |
---|
1014 | else { |
---|
1015 | newPop[j].clear(i); |
---|
1016 | } |
---|
1017 | } |
---|
1018 | } |
---|
1019 | } |
---|
1020 | |
---|
1021 | // mutate |
---|
1022 | for (int k=0;k<2;k++) { |
---|
1023 | for (i=0;i<m_numAttribs;i++) { |
---|
1024 | r = m_random.nextDouble(); |
---|
1025 | if (r < m_pMutation) { |
---|
1026 | if (m_hasClass && (i == m_classIndex)) { |
---|
1027 | // ignore class attribute |
---|
1028 | } |
---|
1029 | else { |
---|
1030 | if (newPop[j+k].get(i)) { |
---|
1031 | newPop[j+k].clear(i); |
---|
1032 | } |
---|
1033 | else { |
---|
1034 | newPop[j+k].set(i); |
---|
1035 | } |
---|
1036 | } |
---|
1037 | } |
---|
1038 | } |
---|
1039 | } |
---|
1040 | |
---|
1041 | } |
---|
1042 | } |
---|
1043 | |
---|
1044 | m_population = newPop; |
---|
1045 | } |
---|
1046 | |
---|
1047 | /** |
---|
1048 | * selects a population member to be considered for crossover |
---|
1049 | * @return the index of the selected population member |
---|
1050 | */ |
---|
1051 | private int select() { |
---|
1052 | int i; |
---|
1053 | double r,partsum; |
---|
1054 | |
---|
1055 | partsum = 0; |
---|
1056 | r = m_random.nextDouble() * m_sumFitness; |
---|
1057 | for (i=0;i<m_popSize;i++) { |
---|
1058 | partsum += m_population[i].getFitness(); |
---|
1059 | if (partsum >= r) { |
---|
1060 | break; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | |
---|
1064 | // if none was found, take first |
---|
1065 | if (i == m_popSize) |
---|
1066 | i = 0; |
---|
1067 | |
---|
1068 | return i; |
---|
1069 | } |
---|
1070 | |
---|
1071 | /** |
---|
1072 | * evaluates an entire population. Population members are looked up in |
---|
1073 | * a hash table and if they are not found then they are evaluated using |
---|
1074 | * ASEvaluator. |
---|
1075 | * @param ASEvaluator the subset evaluator to use for evaluating population |
---|
1076 | * members |
---|
1077 | * @throws Exception if something goes wrong during evaluation |
---|
1078 | */ |
---|
1079 | private void evaluatePopulation (SubsetEvaluator ASEvaluator) |
---|
1080 | throws Exception { |
---|
1081 | int i; |
---|
1082 | double merit; |
---|
1083 | |
---|
1084 | for (i=0;i<m_popSize;i++) { |
---|
1085 | // if its not in the lookup table then evaluate and insert |
---|
1086 | if (m_lookupTable.containsKey(m_population[i] |
---|
1087 | .getChromosome()) == false) { |
---|
1088 | merit = ASEvaluator.evaluateSubset(m_population[i].getChromosome()); |
---|
1089 | m_population[i].setObjective(merit); |
---|
1090 | m_lookupTable.put(m_population[i].getChromosome(),m_population[i]); |
---|
1091 | } else { |
---|
1092 | GABitSet temp = (GABitSet)m_lookupTable. |
---|
1093 | get(m_population[i].getChromosome()); |
---|
1094 | m_population[i].setObjective(temp.getObjective()); |
---|
1095 | } |
---|
1096 | } |
---|
1097 | } |
---|
1098 | |
---|
1099 | /** |
---|
1100 | * creates random population members for the initial population. Also |
---|
1101 | * sets the first population member to be a start set (if any) |
---|
1102 | * provided by the user |
---|
1103 | * @throws Exception if the population can't be created |
---|
1104 | */ |
---|
1105 | private void initPopulation () throws Exception { |
---|
1106 | int i,j,bit; |
---|
1107 | int num_bits; |
---|
1108 | boolean ok; |
---|
1109 | int start = 0; |
---|
1110 | |
---|
1111 | // add the start set as the first population member (if specified) |
---|
1112 | if (m_starting != null) { |
---|
1113 | m_population[0] = new GABitSet(); |
---|
1114 | for (i=0;i<m_starting.length;i++) { |
---|
1115 | if ((m_starting[i]) != m_classIndex) { |
---|
1116 | m_population[0].set(m_starting[i]); |
---|
1117 | } |
---|
1118 | } |
---|
1119 | start = 1; |
---|
1120 | } |
---|
1121 | |
---|
1122 | for (i=start;i<m_popSize;i++) { |
---|
1123 | m_population[i] = new GABitSet(); |
---|
1124 | |
---|
1125 | num_bits = m_random.nextInt(); |
---|
1126 | num_bits = num_bits % m_numAttribs-1; |
---|
1127 | if (num_bits < 0) { |
---|
1128 | num_bits *= -1; |
---|
1129 | } |
---|
1130 | if (num_bits == 0) { |
---|
1131 | num_bits = 1; |
---|
1132 | } |
---|
1133 | |
---|
1134 | for (j=0;j<num_bits;j++) { |
---|
1135 | ok = false; |
---|
1136 | do { |
---|
1137 | bit = m_random.nextInt(); |
---|
1138 | if (bit < 0) { |
---|
1139 | bit *= -1; |
---|
1140 | } |
---|
1141 | bit = bit % m_numAttribs; |
---|
1142 | if (m_hasClass) { |
---|
1143 | if (bit != m_classIndex) { |
---|
1144 | ok = true; |
---|
1145 | } |
---|
1146 | } |
---|
1147 | else { |
---|
1148 | ok = true; |
---|
1149 | } |
---|
1150 | } while (!ok); |
---|
1151 | |
---|
1152 | if (bit > m_numAttribs) { |
---|
1153 | throw new Exception("Problem in population init"); |
---|
1154 | } |
---|
1155 | m_population[i].set(bit); |
---|
1156 | } |
---|
1157 | } |
---|
1158 | } |
---|
1159 | |
---|
1160 | /** |
---|
1161 | * calculates summary statistics for the current population |
---|
1162 | */ |
---|
1163 | private void populationStatistics() { |
---|
1164 | int i; |
---|
1165 | |
---|
1166 | m_sumFitness = m_minFitness = m_maxFitness = |
---|
1167 | m_population[0].getObjective(); |
---|
1168 | |
---|
1169 | for (i=1;i<m_popSize;i++) { |
---|
1170 | m_sumFitness += m_population[i].getObjective(); |
---|
1171 | if (m_population[i].getObjective() > m_maxFitness) { |
---|
1172 | m_maxFitness = m_population[i].getObjective(); |
---|
1173 | } |
---|
1174 | else if (m_population[i].getObjective() < m_minFitness) { |
---|
1175 | m_minFitness = m_population[i].getObjective(); |
---|
1176 | } |
---|
1177 | } |
---|
1178 | m_avgFitness = (m_sumFitness / m_popSize); |
---|
1179 | } |
---|
1180 | |
---|
1181 | /** |
---|
1182 | * scales the raw (objective) merit of the population members |
---|
1183 | */ |
---|
1184 | private void scalePopulation() { |
---|
1185 | int j; |
---|
1186 | double a = 0; |
---|
1187 | double b = 0; |
---|
1188 | double fmultiple = 2.0; |
---|
1189 | double delta; |
---|
1190 | |
---|
1191 | // prescale |
---|
1192 | if (m_minFitness > ((fmultiple * m_avgFitness - m_maxFitness) / |
---|
1193 | (fmultiple - 1.0))) { |
---|
1194 | delta = m_maxFitness - m_avgFitness; |
---|
1195 | a = ((fmultiple - 1.0) * m_avgFitness / delta); |
---|
1196 | b = m_avgFitness * (m_maxFitness - fmultiple * m_avgFitness) / delta; |
---|
1197 | } |
---|
1198 | else { |
---|
1199 | delta = m_avgFitness - m_minFitness; |
---|
1200 | a = m_avgFitness / delta; |
---|
1201 | b = -m_minFitness * m_avgFitness / delta; |
---|
1202 | } |
---|
1203 | |
---|
1204 | // scalepop |
---|
1205 | m_sumFitness = 0; |
---|
1206 | for (j=0;j<m_popSize;j++) { |
---|
1207 | if (a == Double.POSITIVE_INFINITY || a == Double.NEGATIVE_INFINITY || |
---|
1208 | b == Double.POSITIVE_INFINITY || b == Double.NEGATIVE_INFINITY) { |
---|
1209 | m_population[j].setFitness(m_population[j].getObjective()); |
---|
1210 | } else { |
---|
1211 | m_population[j]. |
---|
1212 | setFitness(Math.abs((a * m_population[j].getObjective() + b))); |
---|
1213 | } |
---|
1214 | m_sumFitness += m_population[j].getFitness(); |
---|
1215 | } |
---|
1216 | } |
---|
1217 | |
---|
1218 | /** |
---|
1219 | * generates a report on the current population |
---|
1220 | * @return a report as a String |
---|
1221 | */ |
---|
1222 | private String populationReport (int genNum) { |
---|
1223 | int i; |
---|
1224 | StringBuffer temp = new StringBuffer(); |
---|
1225 | |
---|
1226 | if (genNum == 0) { |
---|
1227 | temp.append("\nInitial population\n"); |
---|
1228 | } |
---|
1229 | else { |
---|
1230 | temp.append("\nGeneration: "+genNum+"\n"); |
---|
1231 | } |
---|
1232 | temp.append("merit \tscaled \tsubset\n"); |
---|
1233 | |
---|
1234 | for (i=0;i<m_popSize;i++) { |
---|
1235 | temp.append(Utils.doubleToString(Math. |
---|
1236 | abs(m_population[i].getObjective()), |
---|
1237 | 8,5) |
---|
1238 | +"\t" |
---|
1239 | +Utils.doubleToString(m_population[i].getFitness(), |
---|
1240 | 8,5) |
---|
1241 | +"\t"); |
---|
1242 | |
---|
1243 | temp.append(printPopMember(m_population[i].getChromosome())+"\n"); |
---|
1244 | } |
---|
1245 | return temp.toString(); |
---|
1246 | } |
---|
1247 | |
---|
1248 | /** |
---|
1249 | * prints a population member as a series of attribute numbers |
---|
1250 | * @param temp the chromosome of a population member |
---|
1251 | * @return a population member as a String of attribute numbers |
---|
1252 | */ |
---|
1253 | private String printPopMember(BitSet temp) { |
---|
1254 | StringBuffer text = new StringBuffer(); |
---|
1255 | |
---|
1256 | for (int j=0;j<m_numAttribs;j++) { |
---|
1257 | if (temp.get(j)) { |
---|
1258 | text.append((j+1)+" "); |
---|
1259 | } |
---|
1260 | } |
---|
1261 | return text.toString(); |
---|
1262 | } |
---|
1263 | |
---|
1264 | /** |
---|
1265 | * prints a population member's chromosome |
---|
1266 | * @param temp the chromosome of a population member |
---|
1267 | * @return a population member's chromosome as a String |
---|
1268 | */ |
---|
1269 | private String printPopChrom(BitSet temp) { |
---|
1270 | StringBuffer text = new StringBuffer(); |
---|
1271 | |
---|
1272 | for (int j=0;j<m_numAttribs;j++) { |
---|
1273 | if (temp.get(j)) { |
---|
1274 | text.append("1"); |
---|
1275 | } else { |
---|
1276 | text.append("0"); |
---|
1277 | } |
---|
1278 | } |
---|
1279 | return text.toString(); |
---|
1280 | } |
---|
1281 | |
---|
1282 | /** |
---|
1283 | * reset to default values for options |
---|
1284 | */ |
---|
1285 | private void resetOptions () { |
---|
1286 | m_population = null; |
---|
1287 | m_popSize = 20; |
---|
1288 | m_lookupTableSize = 1001; |
---|
1289 | m_pCrossover = 0.6; |
---|
1290 | m_pMutation = 0.033; |
---|
1291 | m_maxGenerations = 20; |
---|
1292 | m_reportFrequency = m_maxGenerations; |
---|
1293 | m_starting = null; |
---|
1294 | m_startRange = new Range(); |
---|
1295 | m_seed = 1; |
---|
1296 | } |
---|
1297 | |
---|
1298 | /** |
---|
1299 | * Returns the revision string. |
---|
1300 | * |
---|
1301 | * @return the revision |
---|
1302 | */ |
---|
1303 | public String getRevision() { |
---|
1304 | return RevisionUtils.extract("$Revision: 5286 $"); |
---|
1305 | } |
---|
1306 | } |
---|