[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * GainRatioAttributeEval.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import weka.core.Capabilities; |
---|
| 26 | import weka.core.ContingencyTables; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.Option; |
---|
| 30 | import weka.core.OptionHandler; |
---|
| 31 | import weka.core.RevisionUtils; |
---|
| 32 | import weka.core.Utils; |
---|
| 33 | import weka.core.Capabilities.Capability; |
---|
| 34 | import weka.filters.Filter; |
---|
| 35 | import weka.filters.supervised.attribute.Discretize; |
---|
| 36 | |
---|
| 37 | import java.util.Enumeration; |
---|
| 38 | import java.util.Vector; |
---|
| 39 | |
---|
| 40 | /** |
---|
| 41 | <!-- globalinfo-start --> |
---|
| 42 | * GainRatioAttributeEval :<br/> |
---|
| 43 | * <br/> |
---|
| 44 | * Evaluates the worth of an attribute by measuring the gain ratio with respect to the class.<br/> |
---|
| 45 | * <br/> |
---|
| 46 | * GainR(Class, Attribute) = (H(Class) - H(Class | Attribute)) / H(Attribute).<br/> |
---|
| 47 | * <p/> |
---|
| 48 | <!-- globalinfo-end --> |
---|
| 49 | * |
---|
| 50 | <!-- options-start --> |
---|
| 51 | * Valid options are: <p/> |
---|
| 52 | * |
---|
| 53 | * <pre> -M |
---|
| 54 | * treat missing values as a seperate value.</pre> |
---|
| 55 | * |
---|
| 56 | <!-- options-end --> |
---|
| 57 | * |
---|
| 58 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 59 | * @version $Revision: 5447 $ |
---|
| 60 | * @see Discretize |
---|
| 61 | */ |
---|
| 62 | public class GainRatioAttributeEval |
---|
| 63 | extends ASEvaluation |
---|
| 64 | implements AttributeEvaluator, OptionHandler { |
---|
| 65 | |
---|
| 66 | /** for serialization */ |
---|
| 67 | static final long serialVersionUID = -8504656625598579926L; |
---|
| 68 | |
---|
| 69 | /** The training instances */ |
---|
| 70 | private Instances m_trainInstances; |
---|
| 71 | |
---|
| 72 | /** The class index */ |
---|
| 73 | private int m_classIndex; |
---|
| 74 | |
---|
| 75 | /** The number of attributes */ |
---|
| 76 | private int m_numAttribs; |
---|
| 77 | |
---|
| 78 | /** The number of instances */ |
---|
| 79 | private int m_numInstances; |
---|
| 80 | |
---|
| 81 | /** The number of classes */ |
---|
| 82 | private int m_numClasses; |
---|
| 83 | |
---|
| 84 | /** Merge missing values */ |
---|
| 85 | private boolean m_missing_merge; |
---|
| 86 | |
---|
| 87 | /** |
---|
| 88 | * Returns a string describing this attribute evaluator |
---|
| 89 | * @return a description of the evaluator suitable for |
---|
| 90 | * displaying in the explorer/experimenter gui |
---|
| 91 | */ |
---|
| 92 | public String globalInfo() { |
---|
| 93 | return "GainRatioAttributeEval :\n\nEvaluates the worth of an attribute " |
---|
| 94 | +"by measuring the gain ratio with respect to the class.\n\n" |
---|
| 95 | +"GainR(Class, Attribute) = (H(Class) - H(Class | Attribute)) / " |
---|
| 96 | +"H(Attribute).\n"; |
---|
| 97 | } |
---|
| 98 | |
---|
| 99 | /** |
---|
| 100 | * Constructor |
---|
| 101 | */ |
---|
| 102 | public GainRatioAttributeEval () { |
---|
| 103 | resetOptions(); |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | /** |
---|
| 108 | * Returns an enumeration describing the available options. |
---|
| 109 | * @return an enumeration of all the available options. |
---|
| 110 | **/ |
---|
| 111 | public Enumeration listOptions () { |
---|
| 112 | Vector newVector = new Vector(1); |
---|
| 113 | newVector.addElement(new Option("\ttreat missing values as a seperate " |
---|
| 114 | + "value.", "M", 0, "-M")); |
---|
| 115 | return newVector.elements(); |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | |
---|
| 119 | /** |
---|
| 120 | * Parses a given list of options. <p/> |
---|
| 121 | * |
---|
| 122 | <!-- options-start --> |
---|
| 123 | * Valid options are: <p/> |
---|
| 124 | * |
---|
| 125 | * <pre> -M |
---|
| 126 | * treat missing values as a seperate value.</pre> |
---|
| 127 | * |
---|
| 128 | <!-- options-end --> |
---|
| 129 | * |
---|
| 130 | * @param options the list of options as an array of strings |
---|
| 131 | * @throws Exception if an option is not supported |
---|
| 132 | **/ |
---|
| 133 | public void setOptions (String[] options) |
---|
| 134 | throws Exception { |
---|
| 135 | resetOptions(); |
---|
| 136 | setMissingMerge(!(Utils.getFlag('M', options))); |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | /** |
---|
| 140 | * Returns the tip text for this property |
---|
| 141 | * @return tip text for this property suitable for |
---|
| 142 | * displaying in the explorer/experimenter gui |
---|
| 143 | */ |
---|
| 144 | public String missingMergeTipText() { |
---|
| 145 | return "Distribute counts for missing values. Counts are distributed " |
---|
| 146 | +"across other values in proportion to their frequency. Otherwise, " |
---|
| 147 | +"missing is treated as a separate value."; |
---|
| 148 | } |
---|
| 149 | |
---|
| 150 | /** |
---|
| 151 | * distribute the counts for missing values across observed values |
---|
| 152 | * |
---|
| 153 | * @param b true=distribute missing values. |
---|
| 154 | */ |
---|
| 155 | public void setMissingMerge (boolean b) { |
---|
| 156 | m_missing_merge = b; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | |
---|
| 160 | /** |
---|
| 161 | * get whether missing values are being distributed or not |
---|
| 162 | * |
---|
| 163 | * @return true if missing values are being distributed. |
---|
| 164 | */ |
---|
| 165 | public boolean getMissingMerge () { |
---|
| 166 | return m_missing_merge; |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | /** |
---|
| 171 | * Gets the current settings of WrapperSubsetEval. |
---|
| 172 | * @return an array of strings suitable for passing to setOptions() |
---|
| 173 | */ |
---|
| 174 | public String[] getOptions () { |
---|
| 175 | String[] options = new String[1]; |
---|
| 176 | int current = 0; |
---|
| 177 | |
---|
| 178 | if (!getMissingMerge()) { |
---|
| 179 | options[current++] = "-M"; |
---|
| 180 | } |
---|
| 181 | |
---|
| 182 | while (current < options.length) { |
---|
| 183 | options[current++] = ""; |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | return options; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | /** |
---|
| 190 | * Returns the capabilities of this evaluator. |
---|
| 191 | * |
---|
| 192 | * @return the capabilities of this evaluator |
---|
| 193 | * @see Capabilities |
---|
| 194 | */ |
---|
| 195 | public Capabilities getCapabilities() { |
---|
| 196 | Capabilities result = super.getCapabilities(); |
---|
| 197 | result.disableAll(); |
---|
| 198 | |
---|
| 199 | // attributes |
---|
| 200 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 201 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 202 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 203 | result.enable(Capability.MISSING_VALUES); |
---|
| 204 | |
---|
| 205 | // class |
---|
| 206 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 207 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 208 | |
---|
| 209 | return result; |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | /** |
---|
| 213 | * Initializes a gain ratio attribute evaluator. |
---|
| 214 | * Discretizes all attributes that are numeric. |
---|
| 215 | * |
---|
| 216 | * @param data set of instances serving as training data |
---|
| 217 | * @throws Exception if the evaluator has not been |
---|
| 218 | * generated successfully |
---|
| 219 | */ |
---|
| 220 | public void buildEvaluator (Instances data) |
---|
| 221 | throws Exception { |
---|
| 222 | |
---|
| 223 | // can evaluator handle data? |
---|
| 224 | getCapabilities().testWithFail(data); |
---|
| 225 | |
---|
| 226 | m_trainInstances = data; |
---|
| 227 | m_classIndex = m_trainInstances.classIndex(); |
---|
| 228 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
| 229 | m_numInstances = m_trainInstances.numInstances(); |
---|
| 230 | Discretize disTransform = new Discretize(); |
---|
| 231 | disTransform.setUseBetterEncoding(true); |
---|
| 232 | disTransform.setInputFormat(m_trainInstances); |
---|
| 233 | m_trainInstances = Filter.useFilter(m_trainInstances, disTransform); |
---|
| 234 | m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | /** |
---|
| 239 | * reset options to default values |
---|
| 240 | */ |
---|
| 241 | protected void resetOptions () { |
---|
| 242 | m_trainInstances = null; |
---|
| 243 | m_missing_merge = true; |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | /** |
---|
| 248 | * evaluates an individual attribute by measuring the gain ratio |
---|
| 249 | * of the class given the attribute. |
---|
| 250 | * |
---|
| 251 | * @param attribute the index of the attribute to be evaluated |
---|
| 252 | * @return the gain ratio |
---|
| 253 | * @throws Exception if the attribute could not be evaluated |
---|
| 254 | */ |
---|
| 255 | public double evaluateAttribute (int attribute) |
---|
| 256 | throws Exception { |
---|
| 257 | int i, j, ii, jj; |
---|
| 258 | int ni, nj; |
---|
| 259 | double sum = 0.0; |
---|
| 260 | ni = m_trainInstances.attribute(attribute).numValues() + 1; |
---|
| 261 | nj = m_numClasses + 1; |
---|
| 262 | double[] sumi, sumj; |
---|
| 263 | Instance inst; |
---|
| 264 | double temp = 0.0; |
---|
| 265 | sumi = new double[ni]; |
---|
| 266 | sumj = new double[nj]; |
---|
| 267 | double[][] counts = new double[ni][nj]; |
---|
| 268 | sumi = new double[ni]; |
---|
| 269 | sumj = new double[nj]; |
---|
| 270 | |
---|
| 271 | for (i = 0; i < ni; i++) { |
---|
| 272 | sumi[i] = 0.0; |
---|
| 273 | |
---|
| 274 | for (j = 0; j < nj; j++) { |
---|
| 275 | sumj[j] = 0.0; |
---|
| 276 | counts[i][j] = 0.0; |
---|
| 277 | } |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | // Fill the contingency table |
---|
| 281 | for (i = 0; i < m_numInstances; i++) { |
---|
| 282 | inst = m_trainInstances.instance(i); |
---|
| 283 | |
---|
| 284 | if (inst.isMissing(attribute)) { |
---|
| 285 | ii = ni - 1; |
---|
| 286 | } |
---|
| 287 | else { |
---|
| 288 | ii = (int)inst.value(attribute); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | if (inst.isMissing(m_classIndex)) { |
---|
| 292 | jj = nj - 1; |
---|
| 293 | } |
---|
| 294 | else { |
---|
| 295 | jj = (int)inst.value(m_classIndex); |
---|
| 296 | } |
---|
| 297 | |
---|
| 298 | counts[ii][jj]++; |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | // get the row totals |
---|
| 302 | for (i = 0; i < ni; i++) { |
---|
| 303 | sumi[i] = 0.0; |
---|
| 304 | |
---|
| 305 | for (j = 0; j < nj; j++) { |
---|
| 306 | sumi[i] += counts[i][j]; |
---|
| 307 | sum += counts[i][j]; |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | // get the column totals |
---|
| 312 | for (j = 0; j < nj; j++) { |
---|
| 313 | sumj[j] = 0.0; |
---|
| 314 | |
---|
| 315 | for (i = 0; i < ni; i++) { |
---|
| 316 | sumj[j] += counts[i][j]; |
---|
| 317 | } |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | // distribute missing counts |
---|
| 321 | if (m_missing_merge && |
---|
| 322 | (sumi[ni-1] < m_numInstances) && |
---|
| 323 | (sumj[nj-1] < m_numInstances)) { |
---|
| 324 | double[] i_copy = new double[sumi.length]; |
---|
| 325 | double[] j_copy = new double[sumj.length]; |
---|
| 326 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
| 327 | |
---|
| 328 | for (i = 0; i < ni; i++) { |
---|
| 329 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
| 330 | } |
---|
| 331 | |
---|
| 332 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
| 333 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
| 334 | double total_missing = (sumi[ni - 1] + sumj[nj - 1] - |
---|
| 335 | counts[ni - 1][nj - 1]); |
---|
| 336 | |
---|
| 337 | // do the missing i's |
---|
| 338 | if (sumi[ni - 1] > 0.0) { |
---|
| 339 | for (j = 0; j < nj - 1; j++) { |
---|
| 340 | if (counts[ni - 1][j] > 0.0) { |
---|
| 341 | for (i = 0; i < ni - 1; i++) { |
---|
| 342 | temp = ((i_copy[i]/(sum - i_copy[ni - 1]))*counts[ni - 1][j]); |
---|
| 343 | counts[i][j] += temp; |
---|
| 344 | sumi[i] += temp; |
---|
| 345 | } |
---|
| 346 | |
---|
| 347 | counts[ni - 1][j] = 0.0; |
---|
| 348 | } |
---|
| 349 | } |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | sumi[ni - 1] = 0.0; |
---|
| 353 | |
---|
| 354 | // do the missing j's |
---|
| 355 | if (sumj[nj - 1] > 0.0) { |
---|
| 356 | for (i = 0; i < ni - 1; i++) { |
---|
| 357 | if (counts[i][nj - 1] > 0.0) { |
---|
| 358 | for (j = 0; j < nj - 1; j++) { |
---|
| 359 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
| 360 | counts[i][j] += temp; |
---|
| 361 | sumj[j] += temp; |
---|
| 362 | } |
---|
| 363 | |
---|
| 364 | counts[i][nj - 1] = 0.0; |
---|
| 365 | } |
---|
| 366 | } |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | sumj[nj - 1] = 0.0; |
---|
| 370 | |
---|
| 371 | // do the both missing |
---|
| 372 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
| 373 | for (i = 0; i < ni - 1; i++) { |
---|
| 374 | for (j = 0; j < nj - 1; j++) { |
---|
| 375 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
| 376 | counts_copy[ni - 1][nj - 1]; |
---|
| 377 | counts[i][j] += temp; |
---|
| 378 | sumi[i] += temp; |
---|
| 379 | sumj[j] += temp; |
---|
| 380 | } |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | counts[ni - 1][nj - 1] = 0.0; |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | return ContingencyTables.gainRatio(counts); |
---|
| 388 | } |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | /** |
---|
| 392 | * Return a description of the evaluator |
---|
| 393 | * @return description as a string |
---|
| 394 | */ |
---|
| 395 | public String toString () { |
---|
| 396 | StringBuffer text = new StringBuffer(); |
---|
| 397 | |
---|
| 398 | if (m_trainInstances == null) { |
---|
| 399 | text.append("\tGain Ratio evaluator has not been built"); |
---|
| 400 | } |
---|
| 401 | else { |
---|
| 402 | text.append("\tGain Ratio feature evaluator"); |
---|
| 403 | |
---|
| 404 | if (!m_missing_merge) { |
---|
| 405 | text.append("\n\tMissing values treated as seperate"); |
---|
| 406 | } |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | text.append("\n"); |
---|
| 410 | return text.toString(); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | /** |
---|
| 414 | * Returns the revision string. |
---|
| 415 | * |
---|
| 416 | * @return the revision |
---|
| 417 | */ |
---|
| 418 | public String getRevision() { |
---|
| 419 | return RevisionUtils.extract("$Revision: 5447 $"); |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | /** |
---|
| 423 | * Main method. |
---|
| 424 | * |
---|
| 425 | * @param args the options |
---|
| 426 | * -t training file |
---|
| 427 | */ |
---|
| 428 | public static void main (String[] args) { |
---|
| 429 | runEvaluator(new GainRatioAttributeEval(), args); |
---|
| 430 | } |
---|
| 431 | } |
---|