1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ExhaustiveSearch.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Instances; |
---|
26 | import weka.core.Option; |
---|
27 | import weka.core.OptionHandler; |
---|
28 | import weka.core.RevisionUtils; |
---|
29 | import weka.core.Utils; |
---|
30 | |
---|
31 | import java.math.BigInteger; |
---|
32 | import java.util.BitSet; |
---|
33 | import java.util.Enumeration; |
---|
34 | import java.util.Vector; |
---|
35 | |
---|
36 | /** |
---|
37 | <!-- globalinfo-start --> |
---|
38 | * ExhaustiveSearch : <br/> |
---|
39 | * <br/> |
---|
40 | * Performs an exhaustive search through the space of attribute subsets starting from the empty set of attrubutes. Reports the best subset found. |
---|
41 | * <p/> |
---|
42 | <!-- globalinfo-end --> |
---|
43 | * |
---|
44 | <!-- options-start --> |
---|
45 | * Valid options are: <p/> |
---|
46 | * |
---|
47 | * <pre> -V |
---|
48 | * Output subsets as the search progresses. |
---|
49 | * (default = false).</pre> |
---|
50 | * |
---|
51 | <!-- options-end --> |
---|
52 | * |
---|
53 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
54 | * @version $Revision: 1.15 $ |
---|
55 | */ |
---|
56 | public class ExhaustiveSearch |
---|
57 | extends ASSearch |
---|
58 | implements OptionHandler { |
---|
59 | |
---|
60 | /** for serialization */ |
---|
61 | static final long serialVersionUID = 5741842861142379712L; |
---|
62 | |
---|
63 | /** the best feature set found during the search */ |
---|
64 | private BitSet m_bestGroup; |
---|
65 | |
---|
66 | /** the merit of the best subset found */ |
---|
67 | private double m_bestMerit; |
---|
68 | |
---|
69 | /** does the data have a class */ |
---|
70 | private boolean m_hasClass; |
---|
71 | |
---|
72 | /** holds the class index */ |
---|
73 | private int m_classIndex; |
---|
74 | |
---|
75 | /** number of attributes in the data */ |
---|
76 | private int m_numAttribs; |
---|
77 | |
---|
78 | /** if true, then ouput new best subsets as the search progresses */ |
---|
79 | private boolean m_verbose; |
---|
80 | |
---|
81 | /** the number of subsets evaluated during the search */ |
---|
82 | private int m_evaluations; |
---|
83 | |
---|
84 | /** |
---|
85 | * Returns a string describing this search method |
---|
86 | * @return a description of the search suitable for |
---|
87 | * displaying in the explorer/experimenter gui |
---|
88 | */ |
---|
89 | public String globalInfo() { |
---|
90 | return "ExhaustiveSearch : \n\nPerforms an exhaustive search through " |
---|
91 | +"the space of attribute subsets starting from the empty set of " |
---|
92 | +"attrubutes. Reports the best subset found."; |
---|
93 | } |
---|
94 | |
---|
95 | /** |
---|
96 | * Constructor |
---|
97 | */ |
---|
98 | public ExhaustiveSearch () { |
---|
99 | resetOptions(); |
---|
100 | } |
---|
101 | |
---|
102 | /** |
---|
103 | * Returns an enumeration describing the available options. |
---|
104 | * @return an enumeration of all the available options. |
---|
105 | **/ |
---|
106 | public Enumeration listOptions () { |
---|
107 | Vector newVector = new Vector(2); |
---|
108 | |
---|
109 | newVector.addElement(new Option("\tOutput subsets as the search progresses." |
---|
110 | +"\n\t(default = false)." |
---|
111 | , "V", 0 |
---|
112 | , "-V")); |
---|
113 | return newVector.elements(); |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * Parses a given list of options. <p/> |
---|
118 | * |
---|
119 | <!-- options-start --> |
---|
120 | * Valid options are: <p/> |
---|
121 | * |
---|
122 | * <pre> -V |
---|
123 | * Output subsets as the search progresses. |
---|
124 | * (default = false).</pre> |
---|
125 | * |
---|
126 | <!-- options-end --> |
---|
127 | * |
---|
128 | * @param options the list of options as an array of strings |
---|
129 | * @throws Exception if an option is not supported |
---|
130 | * |
---|
131 | **/ |
---|
132 | public void setOptions (String[] options) |
---|
133 | throws Exception { |
---|
134 | |
---|
135 | resetOptions(); |
---|
136 | |
---|
137 | setVerbose(Utils.getFlag('V',options)); |
---|
138 | } |
---|
139 | |
---|
140 | /** |
---|
141 | * Returns the tip text for this property |
---|
142 | * @return tip text for this property suitable for |
---|
143 | * displaying in the explorer/experimenter gui |
---|
144 | */ |
---|
145 | public String verboseTipText() { |
---|
146 | return "Print progress information. Sends progress info to the terminal " |
---|
147 | +"as the search progresses."; |
---|
148 | } |
---|
149 | |
---|
150 | /** |
---|
151 | * set whether or not to output new best subsets as the search proceeds |
---|
152 | * @param v true if output is to be verbose |
---|
153 | */ |
---|
154 | public void setVerbose(boolean v) { |
---|
155 | m_verbose = v; |
---|
156 | } |
---|
157 | |
---|
158 | /** |
---|
159 | * get whether or not output is verbose |
---|
160 | * @return true if output is set to verbose |
---|
161 | */ |
---|
162 | public boolean getVerbose() { |
---|
163 | return m_verbose; |
---|
164 | } |
---|
165 | |
---|
166 | /** |
---|
167 | * Gets the current settings of RandomSearch. |
---|
168 | * @return an array of strings suitable for passing to setOptions() |
---|
169 | */ |
---|
170 | public String[] getOptions () { |
---|
171 | String[] options = new String[1]; |
---|
172 | int current = 0; |
---|
173 | |
---|
174 | if (m_verbose) { |
---|
175 | options[current++] = "-V"; |
---|
176 | } |
---|
177 | |
---|
178 | while (current < options.length) { |
---|
179 | options[current++] = ""; |
---|
180 | } |
---|
181 | return options; |
---|
182 | } |
---|
183 | |
---|
184 | /** |
---|
185 | * prints a description of the search |
---|
186 | * @return a description of the search as a string |
---|
187 | */ |
---|
188 | public String toString() { |
---|
189 | StringBuffer text = new StringBuffer(); |
---|
190 | |
---|
191 | text.append("\tExhaustive Search.\n\tStart set: "); |
---|
192 | |
---|
193 | text.append("no attributes\n"); |
---|
194 | |
---|
195 | text.append("\tNumber of evaluations: "+m_evaluations+"\n"); |
---|
196 | text.append("\tMerit of best subset found: " |
---|
197 | +Utils.doubleToString(Math.abs(m_bestMerit),8,3)+"\n"); |
---|
198 | |
---|
199 | return text.toString(); |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * Searches the attribute subset space using an exhaustive search. |
---|
204 | * |
---|
205 | * @param ASEval the attribute evaluator to guide the search |
---|
206 | * @param data the training instances. |
---|
207 | * @return an array (not necessarily ordered) of selected attribute indexes |
---|
208 | * @throws Exception if the search can't be completed |
---|
209 | */ |
---|
210 | public int[] search (ASEvaluation ASEval, Instances data) |
---|
211 | throws Exception { |
---|
212 | double best_merit; |
---|
213 | double tempMerit; |
---|
214 | boolean done = false; |
---|
215 | int sizeOfBest; |
---|
216 | int tempSize; |
---|
217 | |
---|
218 | BigInteger space = BigInteger.ZERO; |
---|
219 | |
---|
220 | m_evaluations = 0; |
---|
221 | m_numAttribs = data.numAttributes(); |
---|
222 | m_bestGroup = new BitSet(m_numAttribs); |
---|
223 | |
---|
224 | if (!(ASEval instanceof SubsetEvaluator)) { |
---|
225 | throw new Exception(ASEval.getClass().getName() |
---|
226 | + " is not a " |
---|
227 | + "Subset evaluator!"); |
---|
228 | } |
---|
229 | |
---|
230 | if (ASEval instanceof UnsupervisedSubsetEvaluator) { |
---|
231 | m_hasClass = false; |
---|
232 | } |
---|
233 | else { |
---|
234 | m_hasClass = true; |
---|
235 | m_classIndex = data.classIndex(); |
---|
236 | } |
---|
237 | |
---|
238 | SubsetEvaluator ASEvaluator = (SubsetEvaluator)ASEval; |
---|
239 | m_numAttribs = data.numAttributes(); |
---|
240 | |
---|
241 | best_merit = ASEvaluator.evaluateSubset(m_bestGroup); |
---|
242 | m_evaluations++; |
---|
243 | sizeOfBest = countFeatures(m_bestGroup); |
---|
244 | |
---|
245 | BitSet tempGroup = new BitSet(m_numAttribs); |
---|
246 | tempMerit = ASEvaluator.evaluateSubset(tempGroup); |
---|
247 | |
---|
248 | if (m_verbose) { |
---|
249 | System.out.println("Zero feature subset (" |
---|
250 | +Utils.doubleToString(Math. |
---|
251 | abs(tempMerit),8,5) |
---|
252 | +")"); |
---|
253 | } |
---|
254 | |
---|
255 | if (tempMerit >= best_merit) { |
---|
256 | tempSize = countFeatures(tempGroup); |
---|
257 | if (tempMerit > best_merit || |
---|
258 | (tempSize < sizeOfBest)) { |
---|
259 | best_merit = tempMerit; |
---|
260 | m_bestGroup = (BitSet)(tempGroup.clone()); |
---|
261 | sizeOfBest = tempSize; |
---|
262 | } |
---|
263 | } |
---|
264 | |
---|
265 | int numatts = (m_hasClass) |
---|
266 | ? m_numAttribs - 1 |
---|
267 | : m_numAttribs; |
---|
268 | BigInteger searchSpaceEnd = |
---|
269 | BigInteger.ONE.add(BigInteger.ONE).pow(numatts).subtract(BigInteger.ONE); |
---|
270 | |
---|
271 | while (!done) { |
---|
272 | // the next subset |
---|
273 | space = space.add(BigInteger.ONE); |
---|
274 | if (space.equals(searchSpaceEnd)) { |
---|
275 | done = true; |
---|
276 | } |
---|
277 | tempGroup.clear(); |
---|
278 | for (int i = 0; i < numatts; i++) { |
---|
279 | if (space.testBit(i)) { |
---|
280 | if (!m_hasClass) { |
---|
281 | tempGroup.set(i); |
---|
282 | } else { |
---|
283 | int j = (i >= m_classIndex) |
---|
284 | ? i + 1 |
---|
285 | : i; |
---|
286 | tempGroup.set(j); |
---|
287 | } |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | tempMerit = ASEvaluator.evaluateSubset(tempGroup); |
---|
292 | m_evaluations++; |
---|
293 | if (tempMerit >= best_merit) { |
---|
294 | tempSize = countFeatures(tempGroup); |
---|
295 | if (tempMerit > best_merit || |
---|
296 | (tempSize < sizeOfBest)) { |
---|
297 | best_merit = tempMerit; |
---|
298 | m_bestGroup = (BitSet)(tempGroup.clone()); |
---|
299 | sizeOfBest = tempSize; |
---|
300 | if (m_verbose) { |
---|
301 | System.out.println("New best subset (" |
---|
302 | +Utils.doubleToString(Math. |
---|
303 | abs(best_merit),8,5) |
---|
304 | +"): "+printSubset(m_bestGroup)); |
---|
305 | } |
---|
306 | } |
---|
307 | } |
---|
308 | } |
---|
309 | |
---|
310 | m_bestMerit = best_merit; |
---|
311 | |
---|
312 | return attributeList(m_bestGroup); |
---|
313 | } |
---|
314 | |
---|
315 | /** |
---|
316 | * counts the number of features in a subset |
---|
317 | * @param featureSet the feature set for which to count the features |
---|
318 | * @return the number of features in the subset |
---|
319 | */ |
---|
320 | private int countFeatures(BitSet featureSet) { |
---|
321 | int count = 0; |
---|
322 | for (int i=0;i<m_numAttribs;i++) { |
---|
323 | if (featureSet.get(i)) { |
---|
324 | count++; |
---|
325 | } |
---|
326 | } |
---|
327 | return count; |
---|
328 | } |
---|
329 | |
---|
330 | /** |
---|
331 | * prints a subset as a series of attribute numbers |
---|
332 | * @param temp the subset to print |
---|
333 | * @return a subset as a String of attribute numbers |
---|
334 | */ |
---|
335 | private String printSubset(BitSet temp) { |
---|
336 | StringBuffer text = new StringBuffer(); |
---|
337 | |
---|
338 | for (int j=0;j<m_numAttribs;j++) { |
---|
339 | if (temp.get(j)) { |
---|
340 | text.append((j+1)+" "); |
---|
341 | } |
---|
342 | } |
---|
343 | return text.toString(); |
---|
344 | } |
---|
345 | |
---|
346 | /** |
---|
347 | * converts a BitSet into a list of attribute indexes |
---|
348 | * @param group the BitSet to convert |
---|
349 | * @return an array of attribute indexes |
---|
350 | **/ |
---|
351 | private int[] attributeList (BitSet group) { |
---|
352 | int count = 0; |
---|
353 | |
---|
354 | // count how many were selected |
---|
355 | for (int i = 0; i < m_numAttribs; i++) { |
---|
356 | if (group.get(i)) { |
---|
357 | count++; |
---|
358 | } |
---|
359 | } |
---|
360 | |
---|
361 | int[] list = new int[count]; |
---|
362 | count = 0; |
---|
363 | |
---|
364 | for (int i = 0; i < m_numAttribs; i++) { |
---|
365 | if (group.get(i)) { |
---|
366 | list[count++] = i; |
---|
367 | } |
---|
368 | } |
---|
369 | |
---|
370 | return list; |
---|
371 | } |
---|
372 | |
---|
373 | /** |
---|
374 | * generates the next subset of size "size" given the subset "temp". |
---|
375 | * @param size the size of the feature subset (eg. 2 means that the |
---|
376 | * current subset contains two features and the next generated subset |
---|
377 | * should also contain 2 features). |
---|
378 | * @param temp will hold the generated subset as a BitSet |
---|
379 | */ |
---|
380 | private void generateNextSubset(int size, BitSet temp) { |
---|
381 | int i,j; |
---|
382 | int counter = 0; |
---|
383 | boolean done = false; |
---|
384 | BitSet temp2 = (BitSet)temp.clone(); |
---|
385 | |
---|
386 | System.err.println("Size: "+size); |
---|
387 | for (i=0;i<m_numAttribs;i++) { |
---|
388 | temp2.clear(i); |
---|
389 | } |
---|
390 | |
---|
391 | while ((!done) && (counter < size)) { |
---|
392 | for (i=m_numAttribs-1-counter;i>=0;i--) { |
---|
393 | if (temp.get(i)) { |
---|
394 | |
---|
395 | temp.clear(i); |
---|
396 | |
---|
397 | int newP; |
---|
398 | if (i != (m_numAttribs-1-counter)) { |
---|
399 | newP = i+1; |
---|
400 | if (newP == m_classIndex) { |
---|
401 | newP++; |
---|
402 | } |
---|
403 | |
---|
404 | if (newP < m_numAttribs) { |
---|
405 | temp.set(newP); |
---|
406 | |
---|
407 | for (j=0;j<counter;j++) { |
---|
408 | if (newP+1+j == m_classIndex) { |
---|
409 | newP++; |
---|
410 | } |
---|
411 | |
---|
412 | if (newP+1+j < m_numAttribs) { |
---|
413 | temp.set(newP+1+j); |
---|
414 | } |
---|
415 | } |
---|
416 | done = true; |
---|
417 | } else { |
---|
418 | counter++; |
---|
419 | } |
---|
420 | break; |
---|
421 | } else { |
---|
422 | counter++; |
---|
423 | break; |
---|
424 | } |
---|
425 | } |
---|
426 | } |
---|
427 | } |
---|
428 | |
---|
429 | if (temp.cardinality() < size) { |
---|
430 | temp.clear(); |
---|
431 | } |
---|
432 | System.err.println(printSubset(temp).toString()); |
---|
433 | } |
---|
434 | |
---|
435 | /** |
---|
436 | * resets to defaults |
---|
437 | */ |
---|
438 | private void resetOptions() { |
---|
439 | m_verbose = false; |
---|
440 | m_evaluations = 0; |
---|
441 | } |
---|
442 | |
---|
443 | /** |
---|
444 | * Returns the revision string. |
---|
445 | * |
---|
446 | * @return the revision |
---|
447 | */ |
---|
448 | public String getRevision() { |
---|
449 | return RevisionUtils.extract("$Revision: 1.15 $"); |
---|
450 | } |
---|
451 | } |
---|