[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * ExhaustiveSearch.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import weka.core.Instances; |
---|
| 26 | import weka.core.Option; |
---|
| 27 | import weka.core.OptionHandler; |
---|
| 28 | import weka.core.RevisionUtils; |
---|
| 29 | import weka.core.Utils; |
---|
| 30 | |
---|
| 31 | import java.math.BigInteger; |
---|
| 32 | import java.util.BitSet; |
---|
| 33 | import java.util.Enumeration; |
---|
| 34 | import java.util.Vector; |
---|
| 35 | |
---|
| 36 | /** |
---|
| 37 | <!-- globalinfo-start --> |
---|
| 38 | * ExhaustiveSearch : <br/> |
---|
| 39 | * <br/> |
---|
| 40 | * Performs an exhaustive search through the space of attribute subsets starting from the empty set of attrubutes. Reports the best subset found. |
---|
| 41 | * <p/> |
---|
| 42 | <!-- globalinfo-end --> |
---|
| 43 | * |
---|
| 44 | <!-- options-start --> |
---|
| 45 | * Valid options are: <p/> |
---|
| 46 | * |
---|
| 47 | * <pre> -V |
---|
| 48 | * Output subsets as the search progresses. |
---|
| 49 | * (default = false).</pre> |
---|
| 50 | * |
---|
| 51 | <!-- options-end --> |
---|
| 52 | * |
---|
| 53 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 54 | * @version $Revision: 1.15 $ |
---|
| 55 | */ |
---|
| 56 | public class ExhaustiveSearch |
---|
| 57 | extends ASSearch |
---|
| 58 | implements OptionHandler { |
---|
| 59 | |
---|
| 60 | /** for serialization */ |
---|
| 61 | static final long serialVersionUID = 5741842861142379712L; |
---|
| 62 | |
---|
| 63 | /** the best feature set found during the search */ |
---|
| 64 | private BitSet m_bestGroup; |
---|
| 65 | |
---|
| 66 | /** the merit of the best subset found */ |
---|
| 67 | private double m_bestMerit; |
---|
| 68 | |
---|
| 69 | /** does the data have a class */ |
---|
| 70 | private boolean m_hasClass; |
---|
| 71 | |
---|
| 72 | /** holds the class index */ |
---|
| 73 | private int m_classIndex; |
---|
| 74 | |
---|
| 75 | /** number of attributes in the data */ |
---|
| 76 | private int m_numAttribs; |
---|
| 77 | |
---|
| 78 | /** if true, then ouput new best subsets as the search progresses */ |
---|
| 79 | private boolean m_verbose; |
---|
| 80 | |
---|
| 81 | /** the number of subsets evaluated during the search */ |
---|
| 82 | private int m_evaluations; |
---|
| 83 | |
---|
| 84 | /** |
---|
| 85 | * Returns a string describing this search method |
---|
| 86 | * @return a description of the search suitable for |
---|
| 87 | * displaying in the explorer/experimenter gui |
---|
| 88 | */ |
---|
| 89 | public String globalInfo() { |
---|
| 90 | return "ExhaustiveSearch : \n\nPerforms an exhaustive search through " |
---|
| 91 | +"the space of attribute subsets starting from the empty set of " |
---|
| 92 | +"attrubutes. Reports the best subset found."; |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | /** |
---|
| 96 | * Constructor |
---|
| 97 | */ |
---|
| 98 | public ExhaustiveSearch () { |
---|
| 99 | resetOptions(); |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | /** |
---|
| 103 | * Returns an enumeration describing the available options. |
---|
| 104 | * @return an enumeration of all the available options. |
---|
| 105 | **/ |
---|
| 106 | public Enumeration listOptions () { |
---|
| 107 | Vector newVector = new Vector(2); |
---|
| 108 | |
---|
| 109 | newVector.addElement(new Option("\tOutput subsets as the search progresses." |
---|
| 110 | +"\n\t(default = false)." |
---|
| 111 | , "V", 0 |
---|
| 112 | , "-V")); |
---|
| 113 | return newVector.elements(); |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * Parses a given list of options. <p/> |
---|
| 118 | * |
---|
| 119 | <!-- options-start --> |
---|
| 120 | * Valid options are: <p/> |
---|
| 121 | * |
---|
| 122 | * <pre> -V |
---|
| 123 | * Output subsets as the search progresses. |
---|
| 124 | * (default = false).</pre> |
---|
| 125 | * |
---|
| 126 | <!-- options-end --> |
---|
| 127 | * |
---|
| 128 | * @param options the list of options as an array of strings |
---|
| 129 | * @throws Exception if an option is not supported |
---|
| 130 | * |
---|
| 131 | **/ |
---|
| 132 | public void setOptions (String[] options) |
---|
| 133 | throws Exception { |
---|
| 134 | |
---|
| 135 | resetOptions(); |
---|
| 136 | |
---|
| 137 | setVerbose(Utils.getFlag('V',options)); |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | /** |
---|
| 141 | * Returns the tip text for this property |
---|
| 142 | * @return tip text for this property suitable for |
---|
| 143 | * displaying in the explorer/experimenter gui |
---|
| 144 | */ |
---|
| 145 | public String verboseTipText() { |
---|
| 146 | return "Print progress information. Sends progress info to the terminal " |
---|
| 147 | +"as the search progresses."; |
---|
| 148 | } |
---|
| 149 | |
---|
| 150 | /** |
---|
| 151 | * set whether or not to output new best subsets as the search proceeds |
---|
| 152 | * @param v true if output is to be verbose |
---|
| 153 | */ |
---|
| 154 | public void setVerbose(boolean v) { |
---|
| 155 | m_verbose = v; |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | /** |
---|
| 159 | * get whether or not output is verbose |
---|
| 160 | * @return true if output is set to verbose |
---|
| 161 | */ |
---|
| 162 | public boolean getVerbose() { |
---|
| 163 | return m_verbose; |
---|
| 164 | } |
---|
| 165 | |
---|
| 166 | /** |
---|
| 167 | * Gets the current settings of RandomSearch. |
---|
| 168 | * @return an array of strings suitable for passing to setOptions() |
---|
| 169 | */ |
---|
| 170 | public String[] getOptions () { |
---|
| 171 | String[] options = new String[1]; |
---|
| 172 | int current = 0; |
---|
| 173 | |
---|
| 174 | if (m_verbose) { |
---|
| 175 | options[current++] = "-V"; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | while (current < options.length) { |
---|
| 179 | options[current++] = ""; |
---|
| 180 | } |
---|
| 181 | return options; |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | /** |
---|
| 185 | * prints a description of the search |
---|
| 186 | * @return a description of the search as a string |
---|
| 187 | */ |
---|
| 188 | public String toString() { |
---|
| 189 | StringBuffer text = new StringBuffer(); |
---|
| 190 | |
---|
| 191 | text.append("\tExhaustive Search.\n\tStart set: "); |
---|
| 192 | |
---|
| 193 | text.append("no attributes\n"); |
---|
| 194 | |
---|
| 195 | text.append("\tNumber of evaluations: "+m_evaluations+"\n"); |
---|
| 196 | text.append("\tMerit of best subset found: " |
---|
| 197 | +Utils.doubleToString(Math.abs(m_bestMerit),8,3)+"\n"); |
---|
| 198 | |
---|
| 199 | return text.toString(); |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | /** |
---|
| 203 | * Searches the attribute subset space using an exhaustive search. |
---|
| 204 | * |
---|
| 205 | * @param ASEval the attribute evaluator to guide the search |
---|
| 206 | * @param data the training instances. |
---|
| 207 | * @return an array (not necessarily ordered) of selected attribute indexes |
---|
| 208 | * @throws Exception if the search can't be completed |
---|
| 209 | */ |
---|
| 210 | public int[] search (ASEvaluation ASEval, Instances data) |
---|
| 211 | throws Exception { |
---|
| 212 | double best_merit; |
---|
| 213 | double tempMerit; |
---|
| 214 | boolean done = false; |
---|
| 215 | int sizeOfBest; |
---|
| 216 | int tempSize; |
---|
| 217 | |
---|
| 218 | BigInteger space = BigInteger.ZERO; |
---|
| 219 | |
---|
| 220 | m_evaluations = 0; |
---|
| 221 | m_numAttribs = data.numAttributes(); |
---|
| 222 | m_bestGroup = new BitSet(m_numAttribs); |
---|
| 223 | |
---|
| 224 | if (!(ASEval instanceof SubsetEvaluator)) { |
---|
| 225 | throw new Exception(ASEval.getClass().getName() |
---|
| 226 | + " is not a " |
---|
| 227 | + "Subset evaluator!"); |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | if (ASEval instanceof UnsupervisedSubsetEvaluator) { |
---|
| 231 | m_hasClass = false; |
---|
| 232 | } |
---|
| 233 | else { |
---|
| 234 | m_hasClass = true; |
---|
| 235 | m_classIndex = data.classIndex(); |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | SubsetEvaluator ASEvaluator = (SubsetEvaluator)ASEval; |
---|
| 239 | m_numAttribs = data.numAttributes(); |
---|
| 240 | |
---|
| 241 | best_merit = ASEvaluator.evaluateSubset(m_bestGroup); |
---|
| 242 | m_evaluations++; |
---|
| 243 | sizeOfBest = countFeatures(m_bestGroup); |
---|
| 244 | |
---|
| 245 | BitSet tempGroup = new BitSet(m_numAttribs); |
---|
| 246 | tempMerit = ASEvaluator.evaluateSubset(tempGroup); |
---|
| 247 | |
---|
| 248 | if (m_verbose) { |
---|
| 249 | System.out.println("Zero feature subset (" |
---|
| 250 | +Utils.doubleToString(Math. |
---|
| 251 | abs(tempMerit),8,5) |
---|
| 252 | +")"); |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | if (tempMerit >= best_merit) { |
---|
| 256 | tempSize = countFeatures(tempGroup); |
---|
| 257 | if (tempMerit > best_merit || |
---|
| 258 | (tempSize < sizeOfBest)) { |
---|
| 259 | best_merit = tempMerit; |
---|
| 260 | m_bestGroup = (BitSet)(tempGroup.clone()); |
---|
| 261 | sizeOfBest = tempSize; |
---|
| 262 | } |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | int numatts = (m_hasClass) |
---|
| 266 | ? m_numAttribs - 1 |
---|
| 267 | : m_numAttribs; |
---|
| 268 | BigInteger searchSpaceEnd = |
---|
| 269 | BigInteger.ONE.add(BigInteger.ONE).pow(numatts).subtract(BigInteger.ONE); |
---|
| 270 | |
---|
| 271 | while (!done) { |
---|
| 272 | // the next subset |
---|
| 273 | space = space.add(BigInteger.ONE); |
---|
| 274 | if (space.equals(searchSpaceEnd)) { |
---|
| 275 | done = true; |
---|
| 276 | } |
---|
| 277 | tempGroup.clear(); |
---|
| 278 | for (int i = 0; i < numatts; i++) { |
---|
| 279 | if (space.testBit(i)) { |
---|
| 280 | if (!m_hasClass) { |
---|
| 281 | tempGroup.set(i); |
---|
| 282 | } else { |
---|
| 283 | int j = (i >= m_classIndex) |
---|
| 284 | ? i + 1 |
---|
| 285 | : i; |
---|
| 286 | tempGroup.set(j); |
---|
| 287 | } |
---|
| 288 | } |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | tempMerit = ASEvaluator.evaluateSubset(tempGroup); |
---|
| 292 | m_evaluations++; |
---|
| 293 | if (tempMerit >= best_merit) { |
---|
| 294 | tempSize = countFeatures(tempGroup); |
---|
| 295 | if (tempMerit > best_merit || |
---|
| 296 | (tempSize < sizeOfBest)) { |
---|
| 297 | best_merit = tempMerit; |
---|
| 298 | m_bestGroup = (BitSet)(tempGroup.clone()); |
---|
| 299 | sizeOfBest = tempSize; |
---|
| 300 | if (m_verbose) { |
---|
| 301 | System.out.println("New best subset (" |
---|
| 302 | +Utils.doubleToString(Math. |
---|
| 303 | abs(best_merit),8,5) |
---|
| 304 | +"): "+printSubset(m_bestGroup)); |
---|
| 305 | } |
---|
| 306 | } |
---|
| 307 | } |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | m_bestMerit = best_merit; |
---|
| 311 | |
---|
| 312 | return attributeList(m_bestGroup); |
---|
| 313 | } |
---|
| 314 | |
---|
| 315 | /** |
---|
| 316 | * counts the number of features in a subset |
---|
| 317 | * @param featureSet the feature set for which to count the features |
---|
| 318 | * @return the number of features in the subset |
---|
| 319 | */ |
---|
| 320 | private int countFeatures(BitSet featureSet) { |
---|
| 321 | int count = 0; |
---|
| 322 | for (int i=0;i<m_numAttribs;i++) { |
---|
| 323 | if (featureSet.get(i)) { |
---|
| 324 | count++; |
---|
| 325 | } |
---|
| 326 | } |
---|
| 327 | return count; |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | /** |
---|
| 331 | * prints a subset as a series of attribute numbers |
---|
| 332 | * @param temp the subset to print |
---|
| 333 | * @return a subset as a String of attribute numbers |
---|
| 334 | */ |
---|
| 335 | private String printSubset(BitSet temp) { |
---|
| 336 | StringBuffer text = new StringBuffer(); |
---|
| 337 | |
---|
| 338 | for (int j=0;j<m_numAttribs;j++) { |
---|
| 339 | if (temp.get(j)) { |
---|
| 340 | text.append((j+1)+" "); |
---|
| 341 | } |
---|
| 342 | } |
---|
| 343 | return text.toString(); |
---|
| 344 | } |
---|
| 345 | |
---|
| 346 | /** |
---|
| 347 | * converts a BitSet into a list of attribute indexes |
---|
| 348 | * @param group the BitSet to convert |
---|
| 349 | * @return an array of attribute indexes |
---|
| 350 | **/ |
---|
| 351 | private int[] attributeList (BitSet group) { |
---|
| 352 | int count = 0; |
---|
| 353 | |
---|
| 354 | // count how many were selected |
---|
| 355 | for (int i = 0; i < m_numAttribs; i++) { |
---|
| 356 | if (group.get(i)) { |
---|
| 357 | count++; |
---|
| 358 | } |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | int[] list = new int[count]; |
---|
| 362 | count = 0; |
---|
| 363 | |
---|
| 364 | for (int i = 0; i < m_numAttribs; i++) { |
---|
| 365 | if (group.get(i)) { |
---|
| 366 | list[count++] = i; |
---|
| 367 | } |
---|
| 368 | } |
---|
| 369 | |
---|
| 370 | return list; |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | /** |
---|
| 374 | * generates the next subset of size "size" given the subset "temp". |
---|
| 375 | * @param size the size of the feature subset (eg. 2 means that the |
---|
| 376 | * current subset contains two features and the next generated subset |
---|
| 377 | * should also contain 2 features). |
---|
| 378 | * @param temp will hold the generated subset as a BitSet |
---|
| 379 | */ |
---|
| 380 | private void generateNextSubset(int size, BitSet temp) { |
---|
| 381 | int i,j; |
---|
| 382 | int counter = 0; |
---|
| 383 | boolean done = false; |
---|
| 384 | BitSet temp2 = (BitSet)temp.clone(); |
---|
| 385 | |
---|
| 386 | System.err.println("Size: "+size); |
---|
| 387 | for (i=0;i<m_numAttribs;i++) { |
---|
| 388 | temp2.clear(i); |
---|
| 389 | } |
---|
| 390 | |
---|
| 391 | while ((!done) && (counter < size)) { |
---|
| 392 | for (i=m_numAttribs-1-counter;i>=0;i--) { |
---|
| 393 | if (temp.get(i)) { |
---|
| 394 | |
---|
| 395 | temp.clear(i); |
---|
| 396 | |
---|
| 397 | int newP; |
---|
| 398 | if (i != (m_numAttribs-1-counter)) { |
---|
| 399 | newP = i+1; |
---|
| 400 | if (newP == m_classIndex) { |
---|
| 401 | newP++; |
---|
| 402 | } |
---|
| 403 | |
---|
| 404 | if (newP < m_numAttribs) { |
---|
| 405 | temp.set(newP); |
---|
| 406 | |
---|
| 407 | for (j=0;j<counter;j++) { |
---|
| 408 | if (newP+1+j == m_classIndex) { |
---|
| 409 | newP++; |
---|
| 410 | } |
---|
| 411 | |
---|
| 412 | if (newP+1+j < m_numAttribs) { |
---|
| 413 | temp.set(newP+1+j); |
---|
| 414 | } |
---|
| 415 | } |
---|
| 416 | done = true; |
---|
| 417 | } else { |
---|
| 418 | counter++; |
---|
| 419 | } |
---|
| 420 | break; |
---|
| 421 | } else { |
---|
| 422 | counter++; |
---|
| 423 | break; |
---|
| 424 | } |
---|
| 425 | } |
---|
| 426 | } |
---|
| 427 | } |
---|
| 428 | |
---|
| 429 | if (temp.cardinality() < size) { |
---|
| 430 | temp.clear(); |
---|
| 431 | } |
---|
| 432 | System.err.println(printSubset(temp).toString()); |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** |
---|
| 436 | * resets to defaults |
---|
| 437 | */ |
---|
| 438 | private void resetOptions() { |
---|
| 439 | m_verbose = false; |
---|
| 440 | m_evaluations = 0; |
---|
| 441 | } |
---|
| 442 | |
---|
| 443 | /** |
---|
| 444 | * Returns the revision string. |
---|
| 445 | * |
---|
| 446 | * @return the revision |
---|
| 447 | */ |
---|
| 448 | public String getRevision() { |
---|
| 449 | return RevisionUtils.extract("$Revision: 1.15 $"); |
---|
| 450 | } |
---|
| 451 | } |
---|