1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ClassifierSubsetEval.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.classifiers.rules.ZeroR; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.OptionHandler; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.Utils; |
---|
36 | import weka.core.Capabilities.Capability; |
---|
37 | import weka.filters.Filter; |
---|
38 | import weka.filters.unsupervised.attribute.Remove; |
---|
39 | |
---|
40 | import java.io.File; |
---|
41 | import java.util.BitSet; |
---|
42 | import java.util.Enumeration; |
---|
43 | import java.util.Vector; |
---|
44 | |
---|
45 | |
---|
46 | /** |
---|
47 | <!-- globalinfo-start --> |
---|
48 | * Classifier subset evaluator:<br/> |
---|
49 | * <br/> |
---|
50 | * Evaluates attribute subsets on training data or a seperate hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes. |
---|
51 | * <p/> |
---|
52 | <!-- globalinfo-end --> |
---|
53 | * |
---|
54 | <!-- options-start --> |
---|
55 | * Valid options are: <p/> |
---|
56 | * |
---|
57 | * <pre> -B <classifier> |
---|
58 | * class name of the classifier to use for accuracy estimation. |
---|
59 | * Place any classifier options LAST on the command line |
---|
60 | * following a "--". eg.: |
---|
61 | * -B weka.classifiers.bayes.NaiveBayes ... -- -K |
---|
62 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
63 | * |
---|
64 | * <pre> -T |
---|
65 | * Use the training data to estimate accuracy.</pre> |
---|
66 | * |
---|
67 | * <pre> -H <filename> |
---|
68 | * Name of the hold out/test set to |
---|
69 | * estimate accuracy on.</pre> |
---|
70 | * |
---|
71 | * <pre> |
---|
72 | * Options specific to scheme weka.classifiers.rules.ZeroR: |
---|
73 | * </pre> |
---|
74 | * |
---|
75 | * <pre> -D |
---|
76 | * If set, classifier is run in debug mode and |
---|
77 | * may output additional info to the console</pre> |
---|
78 | * |
---|
79 | <!-- options-end --> |
---|
80 | * |
---|
81 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
82 | * @version $Revision: 5928 $ |
---|
83 | */ |
---|
84 | public class ClassifierSubsetEval |
---|
85 | extends HoldOutSubsetEvaluator |
---|
86 | implements OptionHandler, ErrorBasedMeritEvaluator { |
---|
87 | |
---|
88 | /** for serialization */ |
---|
89 | static final long serialVersionUID = 7532217899385278710L; |
---|
90 | |
---|
91 | /** training instances */ |
---|
92 | private Instances m_trainingInstances; |
---|
93 | |
---|
94 | /** class index */ |
---|
95 | private int m_classIndex; |
---|
96 | |
---|
97 | /** number of attributes in the training data */ |
---|
98 | private int m_numAttribs; |
---|
99 | |
---|
100 | /** number of training instances */ |
---|
101 | private int m_numInstances; |
---|
102 | |
---|
103 | /** holds the classifier to use for error estimates */ |
---|
104 | private Classifier m_Classifier = new ZeroR(); |
---|
105 | |
---|
106 | /** holds the evaluation object to use for evaluating the classifier */ |
---|
107 | private Evaluation m_Evaluation; |
---|
108 | |
---|
109 | /** the file that containts hold out/test instances */ |
---|
110 | private File m_holdOutFile = new File("Click to set hold out or " |
---|
111 | +"test instances"); |
---|
112 | |
---|
113 | /** the instances to test on */ |
---|
114 | private Instances m_holdOutInstances = null; |
---|
115 | |
---|
116 | /** evaluate on training data rather than seperate hold out/test set */ |
---|
117 | private boolean m_useTraining = true; |
---|
118 | |
---|
119 | /** |
---|
120 | * Returns a string describing this attribute evaluator |
---|
121 | * @return a description of the evaluator suitable for |
---|
122 | * displaying in the explorer/experimenter gui |
---|
123 | */ |
---|
124 | public String globalInfo() { |
---|
125 | return |
---|
126 | "Classifier subset evaluator:\n\nEvaluates attribute subsets on training data or a seperate " |
---|
127 | + "hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes."; |
---|
128 | } |
---|
129 | |
---|
130 | /** |
---|
131 | * Returns an enumeration describing the available options. |
---|
132 | * |
---|
133 | * @return an enumeration of all the available options. |
---|
134 | **/ |
---|
135 | public Enumeration listOptions () { |
---|
136 | Vector newVector = new Vector(3); |
---|
137 | |
---|
138 | newVector.addElement(new Option( |
---|
139 | "\tclass name of the classifier to use for accuracy estimation.\n" |
---|
140 | + "\tPlace any classifier options LAST on the command line\n" |
---|
141 | + "\tfollowing a \"--\". eg.:\n" |
---|
142 | + "\t\t-B weka.classifiers.bayes.NaiveBayes ... -- -K\n" |
---|
143 | + "\t(default: weka.classifiers.rules.ZeroR)", |
---|
144 | "B", 1, "-B <classifier>")); |
---|
145 | |
---|
146 | newVector.addElement(new Option( |
---|
147 | "\tUse the training data to estimate" |
---|
148 | +" accuracy.", |
---|
149 | "T",0,"-T")); |
---|
150 | |
---|
151 | newVector.addElement(new Option( |
---|
152 | "\tName of the hold out/test set to " |
---|
153 | +"\n\testimate accuracy on.", |
---|
154 | "H", 1,"-H <filename>")); |
---|
155 | |
---|
156 | if ((m_Classifier != null) && |
---|
157 | (m_Classifier instanceof OptionHandler)) { |
---|
158 | newVector.addElement(new Option("", "", 0, "\nOptions specific to " |
---|
159 | + "scheme " |
---|
160 | + m_Classifier.getClass().getName() |
---|
161 | + ":")); |
---|
162 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
163 | |
---|
164 | while (enu.hasMoreElements()) { |
---|
165 | newVector.addElement(enu.nextElement()); |
---|
166 | } |
---|
167 | } |
---|
168 | |
---|
169 | return newVector.elements(); |
---|
170 | } |
---|
171 | |
---|
172 | /** |
---|
173 | * Parses a given list of options. <p/> |
---|
174 | * |
---|
175 | <!-- options-start --> |
---|
176 | * Valid options are: <p/> |
---|
177 | * |
---|
178 | * <pre> -B <classifier> |
---|
179 | * class name of the classifier to use for accuracy estimation. |
---|
180 | * Place any classifier options LAST on the command line |
---|
181 | * following a "--". eg.: |
---|
182 | * -B weka.classifiers.bayes.NaiveBayes ... -- -K |
---|
183 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
184 | * |
---|
185 | * <pre> -T |
---|
186 | * Use the training data to estimate accuracy.</pre> |
---|
187 | * |
---|
188 | * <pre> -H <filename> |
---|
189 | * Name of the hold out/test set to |
---|
190 | * estimate accuracy on.</pre> |
---|
191 | * |
---|
192 | * <pre> |
---|
193 | * Options specific to scheme weka.classifiers.rules.ZeroR: |
---|
194 | * </pre> |
---|
195 | * |
---|
196 | * <pre> -D |
---|
197 | * If set, classifier is run in debug mode and |
---|
198 | * may output additional info to the console</pre> |
---|
199 | * |
---|
200 | <!-- options-end --> |
---|
201 | * |
---|
202 | * @param options the list of options as an array of strings |
---|
203 | * @throws Exception if an option is not supported |
---|
204 | */ |
---|
205 | public void setOptions (String[] options) |
---|
206 | throws Exception { |
---|
207 | String optionString; |
---|
208 | resetOptions(); |
---|
209 | |
---|
210 | optionString = Utils.getOption('B', options); |
---|
211 | if (optionString.length() == 0) |
---|
212 | optionString = ZeroR.class.getName(); |
---|
213 | setClassifier(AbstractClassifier.forName(optionString, |
---|
214 | Utils.partitionOptions(options))); |
---|
215 | |
---|
216 | optionString = Utils.getOption('H',options); |
---|
217 | if (optionString.length() != 0) { |
---|
218 | setHoldOutFile(new File(optionString)); |
---|
219 | } |
---|
220 | |
---|
221 | setUseTraining(Utils.getFlag('T',options)); |
---|
222 | } |
---|
223 | |
---|
224 | /** |
---|
225 | * Returns the tip text for this property |
---|
226 | * @return tip text for this property suitable for |
---|
227 | * displaying in the explorer/experimenter gui |
---|
228 | */ |
---|
229 | public String classifierTipText() { |
---|
230 | return "Classifier to use for estimating the accuracy of subsets"; |
---|
231 | } |
---|
232 | |
---|
233 | /** |
---|
234 | * Set the classifier to use for accuracy estimation |
---|
235 | * |
---|
236 | * @param newClassifier the Classifier to use. |
---|
237 | */ |
---|
238 | public void setClassifier (Classifier newClassifier) { |
---|
239 | m_Classifier = newClassifier; |
---|
240 | } |
---|
241 | |
---|
242 | |
---|
243 | /** |
---|
244 | * Get the classifier used as the base learner. |
---|
245 | * |
---|
246 | * @return the classifier used as the classifier |
---|
247 | */ |
---|
248 | public Classifier getClassifier () { |
---|
249 | return m_Classifier; |
---|
250 | } |
---|
251 | |
---|
252 | /** |
---|
253 | * Returns the tip text for this property |
---|
254 | * @return tip text for this property suitable for |
---|
255 | * displaying in the explorer/experimenter gui |
---|
256 | */ |
---|
257 | public String holdOutFileTipText() { |
---|
258 | return "File containing hold out/test instances."; |
---|
259 | } |
---|
260 | |
---|
261 | /** |
---|
262 | * Gets the file that holds hold out/test instances. |
---|
263 | * @return File that contains hold out instances |
---|
264 | */ |
---|
265 | public File getHoldOutFile() { |
---|
266 | return m_holdOutFile; |
---|
267 | } |
---|
268 | |
---|
269 | |
---|
270 | /** |
---|
271 | * Set the file that contains hold out/test instances |
---|
272 | * @param h the hold out file |
---|
273 | */ |
---|
274 | public void setHoldOutFile(File h) { |
---|
275 | m_holdOutFile = h; |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | * Returns the tip text for this property |
---|
280 | * @return tip text for this property suitable for |
---|
281 | * displaying in the explorer/experimenter gui |
---|
282 | */ |
---|
283 | public String useTrainingTipText() { |
---|
284 | return "Use training data instead of hold out/test instances."; |
---|
285 | } |
---|
286 | |
---|
287 | /** |
---|
288 | * Get if training data is to be used instead of hold out/test data |
---|
289 | * @return true if training data is to be used instead of hold out data |
---|
290 | */ |
---|
291 | public boolean getUseTraining() { |
---|
292 | return m_useTraining; |
---|
293 | } |
---|
294 | |
---|
295 | /** |
---|
296 | * Set if training data is to be used instead of hold out/test data |
---|
297 | * @param t true if training data is to be used instead of hold out data |
---|
298 | */ |
---|
299 | public void setUseTraining(boolean t) { |
---|
300 | m_useTraining = t; |
---|
301 | } |
---|
302 | |
---|
303 | /** |
---|
304 | * Gets the current settings of ClassifierSubsetEval |
---|
305 | * |
---|
306 | * @return an array of strings suitable for passing to setOptions() |
---|
307 | */ |
---|
308 | public String[] getOptions () { |
---|
309 | String[] classifierOptions = new String[0]; |
---|
310 | |
---|
311 | if ((m_Classifier != null) && |
---|
312 | (m_Classifier instanceof OptionHandler)) { |
---|
313 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
314 | } |
---|
315 | |
---|
316 | String[] options = new String[6 + classifierOptions.length]; |
---|
317 | int current = 0; |
---|
318 | |
---|
319 | if (getClassifier() != null) { |
---|
320 | options[current++] = "-B"; |
---|
321 | options[current++] = getClassifier().getClass().getName(); |
---|
322 | } |
---|
323 | |
---|
324 | if (getUseTraining()) { |
---|
325 | options[current++] = "-T"; |
---|
326 | } |
---|
327 | options[current++] = "-H"; options[current++] = getHoldOutFile().getPath(); |
---|
328 | |
---|
329 | if (classifierOptions.length > 0) { |
---|
330 | options[current++] = "--"; |
---|
331 | System.arraycopy(classifierOptions, 0, options, current, |
---|
332 | classifierOptions.length); |
---|
333 | current += classifierOptions.length; |
---|
334 | } |
---|
335 | |
---|
336 | while (current < options.length) { |
---|
337 | options[current++] = ""; |
---|
338 | } |
---|
339 | |
---|
340 | return options; |
---|
341 | } |
---|
342 | |
---|
343 | /** |
---|
344 | * Returns the capabilities of this evaluator. |
---|
345 | * |
---|
346 | * @return the capabilities of this evaluator |
---|
347 | * @see Capabilities |
---|
348 | */ |
---|
349 | public Capabilities getCapabilities() { |
---|
350 | Capabilities result; |
---|
351 | |
---|
352 | if (getClassifier() == null) { |
---|
353 | result = super.getCapabilities(); |
---|
354 | result.disableAll(); |
---|
355 | } else { |
---|
356 | result = getClassifier().getCapabilities(); |
---|
357 | } |
---|
358 | |
---|
359 | // set dependencies |
---|
360 | for (Capability cap: Capability.values()) |
---|
361 | result.enableDependency(cap); |
---|
362 | |
---|
363 | return result; |
---|
364 | } |
---|
365 | |
---|
366 | /** |
---|
367 | * Generates a attribute evaluator. Has to initialize all fields of the |
---|
368 | * evaluator that are not being set via options. |
---|
369 | * |
---|
370 | * @param data set of instances serving as training data |
---|
371 | * @throws Exception if the evaluator has not been |
---|
372 | * generated successfully |
---|
373 | */ |
---|
374 | public void buildEvaluator (Instances data) |
---|
375 | throws Exception { |
---|
376 | |
---|
377 | // can evaluator handle data? |
---|
378 | getCapabilities().testWithFail(data); |
---|
379 | |
---|
380 | m_trainingInstances = data; |
---|
381 | m_classIndex = m_trainingInstances.classIndex(); |
---|
382 | m_numAttribs = m_trainingInstances.numAttributes(); |
---|
383 | m_numInstances = m_trainingInstances.numInstances(); |
---|
384 | |
---|
385 | // load the testing data |
---|
386 | if (!m_useTraining && |
---|
387 | (!getHoldOutFile().getPath().startsWith("Click to set"))) { |
---|
388 | java.io.Reader r = new java.io.BufferedReader( |
---|
389 | new java.io.FileReader(getHoldOutFile().getPath())); |
---|
390 | m_holdOutInstances = new Instances(r); |
---|
391 | m_holdOutInstances.setClassIndex(m_trainingInstances.classIndex()); |
---|
392 | if (m_trainingInstances.equalHeaders(m_holdOutInstances) == false) { |
---|
393 | throw new Exception("Hold out/test set is not compatable with " |
---|
394 | +"training data.\n" |
---|
395 | + m_trainingInstances.equalHeadersMsg(m_holdOutInstances)); |
---|
396 | } |
---|
397 | } |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | * Evaluates a subset of attributes |
---|
402 | * |
---|
403 | * @param subset a bitset representing the attribute subset to be |
---|
404 | * evaluated |
---|
405 | * @return the error rate |
---|
406 | * @throws Exception if the subset could not be evaluated |
---|
407 | */ |
---|
408 | public double evaluateSubset (BitSet subset) |
---|
409 | throws Exception { |
---|
410 | int i,j; |
---|
411 | double errorRate = 0; |
---|
412 | int numAttributes = 0; |
---|
413 | Instances trainCopy=null; |
---|
414 | Instances testCopy=null; |
---|
415 | |
---|
416 | Remove delTransform = new Remove(); |
---|
417 | delTransform.setInvertSelection(true); |
---|
418 | // copy the training instances |
---|
419 | trainCopy = new Instances(m_trainingInstances); |
---|
420 | |
---|
421 | if (!m_useTraining) { |
---|
422 | if (m_holdOutInstances == null) { |
---|
423 | throw new Exception("Must specify a set of hold out/test instances " |
---|
424 | +"with -H"); |
---|
425 | } |
---|
426 | // copy the test instances |
---|
427 | testCopy = new Instances(m_holdOutInstances); |
---|
428 | } |
---|
429 | |
---|
430 | // count attributes set in the BitSet |
---|
431 | for (i = 0; i < m_numAttribs; i++) { |
---|
432 | if (subset.get(i)) { |
---|
433 | numAttributes++; |
---|
434 | } |
---|
435 | } |
---|
436 | |
---|
437 | // set up an array of attribute indexes for the filter (+1 for the class) |
---|
438 | int[] featArray = new int[numAttributes + 1]; |
---|
439 | |
---|
440 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
441 | if (subset.get(i)) { |
---|
442 | featArray[j++] = i; |
---|
443 | } |
---|
444 | } |
---|
445 | |
---|
446 | featArray[j] = m_classIndex; |
---|
447 | delTransform.setAttributeIndicesArray(featArray); |
---|
448 | delTransform.setInputFormat(trainCopy); |
---|
449 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
450 | if (!m_useTraining) { |
---|
451 | testCopy = Filter.useFilter(testCopy, delTransform); |
---|
452 | } |
---|
453 | |
---|
454 | // build the classifier |
---|
455 | m_Classifier.buildClassifier(trainCopy); |
---|
456 | |
---|
457 | m_Evaluation = new Evaluation(trainCopy); |
---|
458 | if (!m_useTraining) { |
---|
459 | m_Evaluation.evaluateModel(m_Classifier, testCopy); |
---|
460 | } else { |
---|
461 | m_Evaluation.evaluateModel(m_Classifier, trainCopy); |
---|
462 | } |
---|
463 | |
---|
464 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
465 | errorRate = m_Evaluation.errorRate(); |
---|
466 | } else { |
---|
467 | errorRate = m_Evaluation.meanAbsoluteError(); |
---|
468 | } |
---|
469 | |
---|
470 | m_Evaluation = null; |
---|
471 | // return the negative of the error rate as search methods need to |
---|
472 | // maximize something |
---|
473 | return -errorRate; |
---|
474 | } |
---|
475 | |
---|
476 | /** |
---|
477 | * Evaluates a subset of attributes with respect to a set of instances. |
---|
478 | * Calling this function overides any test/hold out instancs set from |
---|
479 | * setHoldOutFile. |
---|
480 | * @param subset a bitset representing the attribute subset to be |
---|
481 | * evaluated |
---|
482 | * @param holdOut a set of instances (possibly seperate and distinct |
---|
483 | * from those use to build/train the evaluator) with which to |
---|
484 | * evaluate the merit of the subset |
---|
485 | * @return the "merit" of the subset on the holdOut data |
---|
486 | * @throws Exception if the subset cannot be evaluated |
---|
487 | */ |
---|
488 | public double evaluateSubset(BitSet subset, Instances holdOut) |
---|
489 | throws Exception { |
---|
490 | int i,j; |
---|
491 | double errorRate; |
---|
492 | int numAttributes = 0; |
---|
493 | Instances trainCopy=null; |
---|
494 | Instances testCopy=null; |
---|
495 | |
---|
496 | if (m_trainingInstances.equalHeaders(holdOut) == false) { |
---|
497 | throw new Exception("evaluateSubset : Incompatable instance types.\n" |
---|
498 | + m_trainingInstances.equalHeadersMsg(holdOut)); |
---|
499 | } |
---|
500 | |
---|
501 | Remove delTransform = new Remove(); |
---|
502 | delTransform.setInvertSelection(true); |
---|
503 | // copy the training instances |
---|
504 | trainCopy = new Instances(m_trainingInstances); |
---|
505 | |
---|
506 | testCopy = new Instances(holdOut); |
---|
507 | |
---|
508 | // count attributes set in the BitSet |
---|
509 | for (i = 0; i < m_numAttribs; i++) { |
---|
510 | if (subset.get(i)) { |
---|
511 | numAttributes++; |
---|
512 | } |
---|
513 | } |
---|
514 | |
---|
515 | // set up an array of attribute indexes for the filter (+1 for the class) |
---|
516 | int[] featArray = new int[numAttributes + 1]; |
---|
517 | |
---|
518 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
519 | if (subset.get(i)) { |
---|
520 | featArray[j++] = i; |
---|
521 | } |
---|
522 | } |
---|
523 | |
---|
524 | featArray[j] = m_classIndex; |
---|
525 | delTransform.setAttributeIndicesArray(featArray); |
---|
526 | delTransform.setInputFormat(trainCopy); |
---|
527 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
528 | testCopy = Filter.useFilter(testCopy, delTransform); |
---|
529 | |
---|
530 | // build the classifier |
---|
531 | m_Classifier.buildClassifier(trainCopy); |
---|
532 | |
---|
533 | m_Evaluation = new Evaluation(trainCopy); |
---|
534 | m_Evaluation.evaluateModel(m_Classifier, testCopy); |
---|
535 | |
---|
536 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
537 | errorRate = m_Evaluation.errorRate(); |
---|
538 | } else { |
---|
539 | errorRate = m_Evaluation.meanAbsoluteError(); |
---|
540 | } |
---|
541 | |
---|
542 | m_Evaluation = null; |
---|
543 | // return the negative of the error as search methods need to |
---|
544 | // maximize something |
---|
545 | return -errorRate; |
---|
546 | } |
---|
547 | |
---|
548 | /** |
---|
549 | * Evaluates a subset of attributes with respect to a single instance. |
---|
550 | * Calling this function overides any hold out/test instances set |
---|
551 | * through setHoldOutFile. |
---|
552 | * @param subset a bitset representing the attribute subset to be |
---|
553 | * evaluated |
---|
554 | * @param holdOut a single instance (possibly not one of those used to |
---|
555 | * build/train the evaluator) with which to evaluate the merit of the subset |
---|
556 | * @param retrain true if the classifier should be retrained with respect |
---|
557 | * to the new subset before testing on the holdOut instance. |
---|
558 | * @return the "merit" of the subset on the holdOut instance |
---|
559 | * @throws Exception if the subset cannot be evaluated |
---|
560 | */ |
---|
561 | public double evaluateSubset(BitSet subset, Instance holdOut, |
---|
562 | boolean retrain) |
---|
563 | throws Exception { |
---|
564 | int i,j; |
---|
565 | double error; |
---|
566 | int numAttributes = 0; |
---|
567 | Instances trainCopy=null; |
---|
568 | Instance testCopy=null; |
---|
569 | |
---|
570 | if (m_trainingInstances.equalHeaders(holdOut.dataset()) == false) { |
---|
571 | throw new Exception("evaluateSubset : Incompatable instance types.\n" |
---|
572 | + m_trainingInstances.equalHeadersMsg(holdOut.dataset())); |
---|
573 | } |
---|
574 | |
---|
575 | Remove delTransform = new Remove(); |
---|
576 | delTransform.setInvertSelection(true); |
---|
577 | // copy the training instances |
---|
578 | trainCopy = new Instances(m_trainingInstances); |
---|
579 | |
---|
580 | testCopy = (Instance)holdOut.copy(); |
---|
581 | |
---|
582 | // count attributes set in the BitSet |
---|
583 | for (i = 0; i < m_numAttribs; i++) { |
---|
584 | if (subset.get(i)) { |
---|
585 | numAttributes++; |
---|
586 | } |
---|
587 | } |
---|
588 | |
---|
589 | // set up an array of attribute indexes for the filter (+1 for the class) |
---|
590 | int[] featArray = new int[numAttributes + 1]; |
---|
591 | |
---|
592 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
593 | if (subset.get(i)) { |
---|
594 | featArray[j++] = i; |
---|
595 | } |
---|
596 | } |
---|
597 | featArray[j] = m_classIndex; |
---|
598 | delTransform.setAttributeIndicesArray(featArray); |
---|
599 | delTransform.setInputFormat(trainCopy); |
---|
600 | |
---|
601 | if (retrain) { |
---|
602 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
603 | // build the classifier |
---|
604 | m_Classifier.buildClassifier(trainCopy); |
---|
605 | } |
---|
606 | |
---|
607 | delTransform.input(testCopy); |
---|
608 | testCopy = delTransform.output(); |
---|
609 | |
---|
610 | double pred; |
---|
611 | double [] distrib; |
---|
612 | distrib = m_Classifier.distributionForInstance(testCopy); |
---|
613 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
614 | pred = distrib[(int)testCopy.classValue()]; |
---|
615 | } else { |
---|
616 | pred = distrib[0]; |
---|
617 | } |
---|
618 | |
---|
619 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
620 | error = 1.0 - pred; |
---|
621 | } else { |
---|
622 | error = testCopy.classValue() - pred; |
---|
623 | } |
---|
624 | |
---|
625 | // return the negative of the error as search methods need to |
---|
626 | // maximize something |
---|
627 | return -error; |
---|
628 | } |
---|
629 | |
---|
630 | /** |
---|
631 | * Returns a string describing classifierSubsetEval |
---|
632 | * |
---|
633 | * @return the description as a string |
---|
634 | */ |
---|
635 | public String toString() { |
---|
636 | StringBuffer text = new StringBuffer(); |
---|
637 | |
---|
638 | if (m_trainingInstances == null) { |
---|
639 | text.append("\tClassifier subset evaluator has not been built yet\n"); |
---|
640 | } |
---|
641 | else { |
---|
642 | text.append("\tClassifier Subset Evaluator\n"); |
---|
643 | text.append("\tLearning scheme: " |
---|
644 | + getClassifier().getClass().getName() + "\n"); |
---|
645 | text.append("\tScheme options: "); |
---|
646 | String[] classifierOptions = new String[0]; |
---|
647 | |
---|
648 | if (m_Classifier instanceof OptionHandler) { |
---|
649 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
650 | |
---|
651 | for (int i = 0; i < classifierOptions.length; i++) { |
---|
652 | text.append(classifierOptions[i] + " "); |
---|
653 | } |
---|
654 | } |
---|
655 | |
---|
656 | text.append("\n"); |
---|
657 | text.append("\tHold out/test set: "); |
---|
658 | if (!m_useTraining) { |
---|
659 | if (getHoldOutFile().getPath().startsWith("Click to set")) { |
---|
660 | text.append("none\n"); |
---|
661 | } else { |
---|
662 | text.append(getHoldOutFile().getPath()+'\n'); |
---|
663 | } |
---|
664 | } else { |
---|
665 | text.append("Training data\n"); |
---|
666 | } |
---|
667 | if (m_trainingInstances.attribute(m_classIndex).isNumeric()) { |
---|
668 | text.append("\tAccuracy estimation: MAE\n"); |
---|
669 | } else { |
---|
670 | text.append("\tAccuracy estimation: classification error\n"); |
---|
671 | } |
---|
672 | } |
---|
673 | return text.toString(); |
---|
674 | } |
---|
675 | |
---|
676 | /** |
---|
677 | * reset to defaults |
---|
678 | */ |
---|
679 | protected void resetOptions () { |
---|
680 | m_trainingInstances = null; |
---|
681 | m_Evaluation = null; |
---|
682 | m_Classifier = new ZeroR(); |
---|
683 | m_holdOutFile = new File("Click to set hold out or test instances"); |
---|
684 | m_holdOutInstances = null; |
---|
685 | m_useTraining = false; |
---|
686 | } |
---|
687 | |
---|
688 | /** |
---|
689 | * Returns the revision string. |
---|
690 | * |
---|
691 | * @return the revision |
---|
692 | */ |
---|
693 | public String getRevision() { |
---|
694 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
695 | } |
---|
696 | |
---|
697 | /** |
---|
698 | * Main method for testing this class. |
---|
699 | * |
---|
700 | * @param args the options |
---|
701 | */ |
---|
702 | public static void main (String[] args) { |
---|
703 | runEvaluator(new ClassifierSubsetEval(), args); |
---|
704 | } |
---|
705 | } |
---|