[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * ClassifierSubsetEval.java |
---|
| 19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.attributeSelection; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Evaluation; |
---|
| 28 | import weka.classifiers.rules.ZeroR; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.Option; |
---|
| 33 | import weka.core.OptionHandler; |
---|
| 34 | import weka.core.RevisionUtils; |
---|
| 35 | import weka.core.Utils; |
---|
| 36 | import weka.core.Capabilities.Capability; |
---|
| 37 | import weka.filters.Filter; |
---|
| 38 | import weka.filters.unsupervised.attribute.Remove; |
---|
| 39 | |
---|
| 40 | import java.io.File; |
---|
| 41 | import java.util.BitSet; |
---|
| 42 | import java.util.Enumeration; |
---|
| 43 | import java.util.Vector; |
---|
| 44 | |
---|
| 45 | |
---|
| 46 | /** |
---|
| 47 | <!-- globalinfo-start --> |
---|
| 48 | * Classifier subset evaluator:<br/> |
---|
| 49 | * <br/> |
---|
| 50 | * Evaluates attribute subsets on training data or a seperate hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes. |
---|
| 51 | * <p/> |
---|
| 52 | <!-- globalinfo-end --> |
---|
| 53 | * |
---|
| 54 | <!-- options-start --> |
---|
| 55 | * Valid options are: <p/> |
---|
| 56 | * |
---|
| 57 | * <pre> -B <classifier> |
---|
| 58 | * class name of the classifier to use for accuracy estimation. |
---|
| 59 | * Place any classifier options LAST on the command line |
---|
| 60 | * following a "--". eg.: |
---|
| 61 | * -B weka.classifiers.bayes.NaiveBayes ... -- -K |
---|
| 62 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 63 | * |
---|
| 64 | * <pre> -T |
---|
| 65 | * Use the training data to estimate accuracy.</pre> |
---|
| 66 | * |
---|
| 67 | * <pre> -H <filename> |
---|
| 68 | * Name of the hold out/test set to |
---|
| 69 | * estimate accuracy on.</pre> |
---|
| 70 | * |
---|
| 71 | * <pre> |
---|
| 72 | * Options specific to scheme weka.classifiers.rules.ZeroR: |
---|
| 73 | * </pre> |
---|
| 74 | * |
---|
| 75 | * <pre> -D |
---|
| 76 | * If set, classifier is run in debug mode and |
---|
| 77 | * may output additional info to the console</pre> |
---|
| 78 | * |
---|
| 79 | <!-- options-end --> |
---|
| 80 | * |
---|
| 81 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 82 | * @version $Revision: 5928 $ |
---|
| 83 | */ |
---|
| 84 | public class ClassifierSubsetEval |
---|
| 85 | extends HoldOutSubsetEvaluator |
---|
| 86 | implements OptionHandler, ErrorBasedMeritEvaluator { |
---|
| 87 | |
---|
| 88 | /** for serialization */ |
---|
| 89 | static final long serialVersionUID = 7532217899385278710L; |
---|
| 90 | |
---|
| 91 | /** training instances */ |
---|
| 92 | private Instances m_trainingInstances; |
---|
| 93 | |
---|
| 94 | /** class index */ |
---|
| 95 | private int m_classIndex; |
---|
| 96 | |
---|
| 97 | /** number of attributes in the training data */ |
---|
| 98 | private int m_numAttribs; |
---|
| 99 | |
---|
| 100 | /** number of training instances */ |
---|
| 101 | private int m_numInstances; |
---|
| 102 | |
---|
| 103 | /** holds the classifier to use for error estimates */ |
---|
| 104 | private Classifier m_Classifier = new ZeroR(); |
---|
| 105 | |
---|
| 106 | /** holds the evaluation object to use for evaluating the classifier */ |
---|
| 107 | private Evaluation m_Evaluation; |
---|
| 108 | |
---|
| 109 | /** the file that containts hold out/test instances */ |
---|
| 110 | private File m_holdOutFile = new File("Click to set hold out or " |
---|
| 111 | +"test instances"); |
---|
| 112 | |
---|
| 113 | /** the instances to test on */ |
---|
| 114 | private Instances m_holdOutInstances = null; |
---|
| 115 | |
---|
| 116 | /** evaluate on training data rather than seperate hold out/test set */ |
---|
| 117 | private boolean m_useTraining = true; |
---|
| 118 | |
---|
| 119 | /** |
---|
| 120 | * Returns a string describing this attribute evaluator |
---|
| 121 | * @return a description of the evaluator suitable for |
---|
| 122 | * displaying in the explorer/experimenter gui |
---|
| 123 | */ |
---|
| 124 | public String globalInfo() { |
---|
| 125 | return |
---|
| 126 | "Classifier subset evaluator:\n\nEvaluates attribute subsets on training data or a seperate " |
---|
| 127 | + "hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes."; |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | /** |
---|
| 131 | * Returns an enumeration describing the available options. |
---|
| 132 | * |
---|
| 133 | * @return an enumeration of all the available options. |
---|
| 134 | **/ |
---|
| 135 | public Enumeration listOptions () { |
---|
| 136 | Vector newVector = new Vector(3); |
---|
| 137 | |
---|
| 138 | newVector.addElement(new Option( |
---|
| 139 | "\tclass name of the classifier to use for accuracy estimation.\n" |
---|
| 140 | + "\tPlace any classifier options LAST on the command line\n" |
---|
| 141 | + "\tfollowing a \"--\". eg.:\n" |
---|
| 142 | + "\t\t-B weka.classifiers.bayes.NaiveBayes ... -- -K\n" |
---|
| 143 | + "\t(default: weka.classifiers.rules.ZeroR)", |
---|
| 144 | "B", 1, "-B <classifier>")); |
---|
| 145 | |
---|
| 146 | newVector.addElement(new Option( |
---|
| 147 | "\tUse the training data to estimate" |
---|
| 148 | +" accuracy.", |
---|
| 149 | "T",0,"-T")); |
---|
| 150 | |
---|
| 151 | newVector.addElement(new Option( |
---|
| 152 | "\tName of the hold out/test set to " |
---|
| 153 | +"\n\testimate accuracy on.", |
---|
| 154 | "H", 1,"-H <filename>")); |
---|
| 155 | |
---|
| 156 | if ((m_Classifier != null) && |
---|
| 157 | (m_Classifier instanceof OptionHandler)) { |
---|
| 158 | newVector.addElement(new Option("", "", 0, "\nOptions specific to " |
---|
| 159 | + "scheme " |
---|
| 160 | + m_Classifier.getClass().getName() |
---|
| 161 | + ":")); |
---|
| 162 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
| 163 | |
---|
| 164 | while (enu.hasMoreElements()) { |
---|
| 165 | newVector.addElement(enu.nextElement()); |
---|
| 166 | } |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | return newVector.elements(); |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | /** |
---|
| 173 | * Parses a given list of options. <p/> |
---|
| 174 | * |
---|
| 175 | <!-- options-start --> |
---|
| 176 | * Valid options are: <p/> |
---|
| 177 | * |
---|
| 178 | * <pre> -B <classifier> |
---|
| 179 | * class name of the classifier to use for accuracy estimation. |
---|
| 180 | * Place any classifier options LAST on the command line |
---|
| 181 | * following a "--". eg.: |
---|
| 182 | * -B weka.classifiers.bayes.NaiveBayes ... -- -K |
---|
| 183 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 184 | * |
---|
| 185 | * <pre> -T |
---|
| 186 | * Use the training data to estimate accuracy.</pre> |
---|
| 187 | * |
---|
| 188 | * <pre> -H <filename> |
---|
| 189 | * Name of the hold out/test set to |
---|
| 190 | * estimate accuracy on.</pre> |
---|
| 191 | * |
---|
| 192 | * <pre> |
---|
| 193 | * Options specific to scheme weka.classifiers.rules.ZeroR: |
---|
| 194 | * </pre> |
---|
| 195 | * |
---|
| 196 | * <pre> -D |
---|
| 197 | * If set, classifier is run in debug mode and |
---|
| 198 | * may output additional info to the console</pre> |
---|
| 199 | * |
---|
| 200 | <!-- options-end --> |
---|
| 201 | * |
---|
| 202 | * @param options the list of options as an array of strings |
---|
| 203 | * @throws Exception if an option is not supported |
---|
| 204 | */ |
---|
| 205 | public void setOptions (String[] options) |
---|
| 206 | throws Exception { |
---|
| 207 | String optionString; |
---|
| 208 | resetOptions(); |
---|
| 209 | |
---|
| 210 | optionString = Utils.getOption('B', options); |
---|
| 211 | if (optionString.length() == 0) |
---|
| 212 | optionString = ZeroR.class.getName(); |
---|
| 213 | setClassifier(AbstractClassifier.forName(optionString, |
---|
| 214 | Utils.partitionOptions(options))); |
---|
| 215 | |
---|
| 216 | optionString = Utils.getOption('H',options); |
---|
| 217 | if (optionString.length() != 0) { |
---|
| 218 | setHoldOutFile(new File(optionString)); |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | setUseTraining(Utils.getFlag('T',options)); |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | /** |
---|
| 225 | * Returns the tip text for this property |
---|
| 226 | * @return tip text for this property suitable for |
---|
| 227 | * displaying in the explorer/experimenter gui |
---|
| 228 | */ |
---|
| 229 | public String classifierTipText() { |
---|
| 230 | return "Classifier to use for estimating the accuracy of subsets"; |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | /** |
---|
| 234 | * Set the classifier to use for accuracy estimation |
---|
| 235 | * |
---|
| 236 | * @param newClassifier the Classifier to use. |
---|
| 237 | */ |
---|
| 238 | public void setClassifier (Classifier newClassifier) { |
---|
| 239 | m_Classifier = newClassifier; |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | /** |
---|
| 244 | * Get the classifier used as the base learner. |
---|
| 245 | * |
---|
| 246 | * @return the classifier used as the classifier |
---|
| 247 | */ |
---|
| 248 | public Classifier getClassifier () { |
---|
| 249 | return m_Classifier; |
---|
| 250 | } |
---|
| 251 | |
---|
| 252 | /** |
---|
| 253 | * Returns the tip text for this property |
---|
| 254 | * @return tip text for this property suitable for |
---|
| 255 | * displaying in the explorer/experimenter gui |
---|
| 256 | */ |
---|
| 257 | public String holdOutFileTipText() { |
---|
| 258 | return "File containing hold out/test instances."; |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | /** |
---|
| 262 | * Gets the file that holds hold out/test instances. |
---|
| 263 | * @return File that contains hold out instances |
---|
| 264 | */ |
---|
| 265 | public File getHoldOutFile() { |
---|
| 266 | return m_holdOutFile; |
---|
| 267 | } |
---|
| 268 | |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * Set the file that contains hold out/test instances |
---|
| 272 | * @param h the hold out file |
---|
| 273 | */ |
---|
| 274 | public void setHoldOutFile(File h) { |
---|
| 275 | m_holdOutFile = h; |
---|
| 276 | } |
---|
| 277 | |
---|
| 278 | /** |
---|
| 279 | * Returns the tip text for this property |
---|
| 280 | * @return tip text for this property suitable for |
---|
| 281 | * displaying in the explorer/experimenter gui |
---|
| 282 | */ |
---|
| 283 | public String useTrainingTipText() { |
---|
| 284 | return "Use training data instead of hold out/test instances."; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | /** |
---|
| 288 | * Get if training data is to be used instead of hold out/test data |
---|
| 289 | * @return true if training data is to be used instead of hold out data |
---|
| 290 | */ |
---|
| 291 | public boolean getUseTraining() { |
---|
| 292 | return m_useTraining; |
---|
| 293 | } |
---|
| 294 | |
---|
| 295 | /** |
---|
| 296 | * Set if training data is to be used instead of hold out/test data |
---|
| 297 | * @param t true if training data is to be used instead of hold out data |
---|
| 298 | */ |
---|
| 299 | public void setUseTraining(boolean t) { |
---|
| 300 | m_useTraining = t; |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | /** |
---|
| 304 | * Gets the current settings of ClassifierSubsetEval |
---|
| 305 | * |
---|
| 306 | * @return an array of strings suitable for passing to setOptions() |
---|
| 307 | */ |
---|
| 308 | public String[] getOptions () { |
---|
| 309 | String[] classifierOptions = new String[0]; |
---|
| 310 | |
---|
| 311 | if ((m_Classifier != null) && |
---|
| 312 | (m_Classifier instanceof OptionHandler)) { |
---|
| 313 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | String[] options = new String[6 + classifierOptions.length]; |
---|
| 317 | int current = 0; |
---|
| 318 | |
---|
| 319 | if (getClassifier() != null) { |
---|
| 320 | options[current++] = "-B"; |
---|
| 321 | options[current++] = getClassifier().getClass().getName(); |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | if (getUseTraining()) { |
---|
| 325 | options[current++] = "-T"; |
---|
| 326 | } |
---|
| 327 | options[current++] = "-H"; options[current++] = getHoldOutFile().getPath(); |
---|
| 328 | |
---|
| 329 | if (classifierOptions.length > 0) { |
---|
| 330 | options[current++] = "--"; |
---|
| 331 | System.arraycopy(classifierOptions, 0, options, current, |
---|
| 332 | classifierOptions.length); |
---|
| 333 | current += classifierOptions.length; |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | while (current < options.length) { |
---|
| 337 | options[current++] = ""; |
---|
| 338 | } |
---|
| 339 | |
---|
| 340 | return options; |
---|
| 341 | } |
---|
| 342 | |
---|
| 343 | /** |
---|
| 344 | * Returns the capabilities of this evaluator. |
---|
| 345 | * |
---|
| 346 | * @return the capabilities of this evaluator |
---|
| 347 | * @see Capabilities |
---|
| 348 | */ |
---|
| 349 | public Capabilities getCapabilities() { |
---|
| 350 | Capabilities result; |
---|
| 351 | |
---|
| 352 | if (getClassifier() == null) { |
---|
| 353 | result = super.getCapabilities(); |
---|
| 354 | result.disableAll(); |
---|
| 355 | } else { |
---|
| 356 | result = getClassifier().getCapabilities(); |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | // set dependencies |
---|
| 360 | for (Capability cap: Capability.values()) |
---|
| 361 | result.enableDependency(cap); |
---|
| 362 | |
---|
| 363 | return result; |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | /** |
---|
| 367 | * Generates a attribute evaluator. Has to initialize all fields of the |
---|
| 368 | * evaluator that are not being set via options. |
---|
| 369 | * |
---|
| 370 | * @param data set of instances serving as training data |
---|
| 371 | * @throws Exception if the evaluator has not been |
---|
| 372 | * generated successfully |
---|
| 373 | */ |
---|
| 374 | public void buildEvaluator (Instances data) |
---|
| 375 | throws Exception { |
---|
| 376 | |
---|
| 377 | // can evaluator handle data? |
---|
| 378 | getCapabilities().testWithFail(data); |
---|
| 379 | |
---|
| 380 | m_trainingInstances = data; |
---|
| 381 | m_classIndex = m_trainingInstances.classIndex(); |
---|
| 382 | m_numAttribs = m_trainingInstances.numAttributes(); |
---|
| 383 | m_numInstances = m_trainingInstances.numInstances(); |
---|
| 384 | |
---|
| 385 | // load the testing data |
---|
| 386 | if (!m_useTraining && |
---|
| 387 | (!getHoldOutFile().getPath().startsWith("Click to set"))) { |
---|
| 388 | java.io.Reader r = new java.io.BufferedReader( |
---|
| 389 | new java.io.FileReader(getHoldOutFile().getPath())); |
---|
| 390 | m_holdOutInstances = new Instances(r); |
---|
| 391 | m_holdOutInstances.setClassIndex(m_trainingInstances.classIndex()); |
---|
| 392 | if (m_trainingInstances.equalHeaders(m_holdOutInstances) == false) { |
---|
| 393 | throw new Exception("Hold out/test set is not compatable with " |
---|
| 394 | +"training data.\n" |
---|
| 395 | + m_trainingInstances.equalHeadersMsg(m_holdOutInstances)); |
---|
| 396 | } |
---|
| 397 | } |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | /** |
---|
| 401 | * Evaluates a subset of attributes |
---|
| 402 | * |
---|
| 403 | * @param subset a bitset representing the attribute subset to be |
---|
| 404 | * evaluated |
---|
| 405 | * @return the error rate |
---|
| 406 | * @throws Exception if the subset could not be evaluated |
---|
| 407 | */ |
---|
| 408 | public double evaluateSubset (BitSet subset) |
---|
| 409 | throws Exception { |
---|
| 410 | int i,j; |
---|
| 411 | double errorRate = 0; |
---|
| 412 | int numAttributes = 0; |
---|
| 413 | Instances trainCopy=null; |
---|
| 414 | Instances testCopy=null; |
---|
| 415 | |
---|
| 416 | Remove delTransform = new Remove(); |
---|
| 417 | delTransform.setInvertSelection(true); |
---|
| 418 | // copy the training instances |
---|
| 419 | trainCopy = new Instances(m_trainingInstances); |
---|
| 420 | |
---|
| 421 | if (!m_useTraining) { |
---|
| 422 | if (m_holdOutInstances == null) { |
---|
| 423 | throw new Exception("Must specify a set of hold out/test instances " |
---|
| 424 | +"with -H"); |
---|
| 425 | } |
---|
| 426 | // copy the test instances |
---|
| 427 | testCopy = new Instances(m_holdOutInstances); |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | // count attributes set in the BitSet |
---|
| 431 | for (i = 0; i < m_numAttribs; i++) { |
---|
| 432 | if (subset.get(i)) { |
---|
| 433 | numAttributes++; |
---|
| 434 | } |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | // set up an array of attribute indexes for the filter (+1 for the class) |
---|
| 438 | int[] featArray = new int[numAttributes + 1]; |
---|
| 439 | |
---|
| 440 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
| 441 | if (subset.get(i)) { |
---|
| 442 | featArray[j++] = i; |
---|
| 443 | } |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | featArray[j] = m_classIndex; |
---|
| 447 | delTransform.setAttributeIndicesArray(featArray); |
---|
| 448 | delTransform.setInputFormat(trainCopy); |
---|
| 449 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
| 450 | if (!m_useTraining) { |
---|
| 451 | testCopy = Filter.useFilter(testCopy, delTransform); |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | // build the classifier |
---|
| 455 | m_Classifier.buildClassifier(trainCopy); |
---|
| 456 | |
---|
| 457 | m_Evaluation = new Evaluation(trainCopy); |
---|
| 458 | if (!m_useTraining) { |
---|
| 459 | m_Evaluation.evaluateModel(m_Classifier, testCopy); |
---|
| 460 | } else { |
---|
| 461 | m_Evaluation.evaluateModel(m_Classifier, trainCopy); |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
| 465 | errorRate = m_Evaluation.errorRate(); |
---|
| 466 | } else { |
---|
| 467 | errorRate = m_Evaluation.meanAbsoluteError(); |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | m_Evaluation = null; |
---|
| 471 | // return the negative of the error rate as search methods need to |
---|
| 472 | // maximize something |
---|
| 473 | return -errorRate; |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | /** |
---|
| 477 | * Evaluates a subset of attributes with respect to a set of instances. |
---|
| 478 | * Calling this function overides any test/hold out instancs set from |
---|
| 479 | * setHoldOutFile. |
---|
| 480 | * @param subset a bitset representing the attribute subset to be |
---|
| 481 | * evaluated |
---|
| 482 | * @param holdOut a set of instances (possibly seperate and distinct |
---|
| 483 | * from those use to build/train the evaluator) with which to |
---|
| 484 | * evaluate the merit of the subset |
---|
| 485 | * @return the "merit" of the subset on the holdOut data |
---|
| 486 | * @throws Exception if the subset cannot be evaluated |
---|
| 487 | */ |
---|
| 488 | public double evaluateSubset(BitSet subset, Instances holdOut) |
---|
| 489 | throws Exception { |
---|
| 490 | int i,j; |
---|
| 491 | double errorRate; |
---|
| 492 | int numAttributes = 0; |
---|
| 493 | Instances trainCopy=null; |
---|
| 494 | Instances testCopy=null; |
---|
| 495 | |
---|
| 496 | if (m_trainingInstances.equalHeaders(holdOut) == false) { |
---|
| 497 | throw new Exception("evaluateSubset : Incompatable instance types.\n" |
---|
| 498 | + m_trainingInstances.equalHeadersMsg(holdOut)); |
---|
| 499 | } |
---|
| 500 | |
---|
| 501 | Remove delTransform = new Remove(); |
---|
| 502 | delTransform.setInvertSelection(true); |
---|
| 503 | // copy the training instances |
---|
| 504 | trainCopy = new Instances(m_trainingInstances); |
---|
| 505 | |
---|
| 506 | testCopy = new Instances(holdOut); |
---|
| 507 | |
---|
| 508 | // count attributes set in the BitSet |
---|
| 509 | for (i = 0; i < m_numAttribs; i++) { |
---|
| 510 | if (subset.get(i)) { |
---|
| 511 | numAttributes++; |
---|
| 512 | } |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | // set up an array of attribute indexes for the filter (+1 for the class) |
---|
| 516 | int[] featArray = new int[numAttributes + 1]; |
---|
| 517 | |
---|
| 518 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
| 519 | if (subset.get(i)) { |
---|
| 520 | featArray[j++] = i; |
---|
| 521 | } |
---|
| 522 | } |
---|
| 523 | |
---|
| 524 | featArray[j] = m_classIndex; |
---|
| 525 | delTransform.setAttributeIndicesArray(featArray); |
---|
| 526 | delTransform.setInputFormat(trainCopy); |
---|
| 527 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
| 528 | testCopy = Filter.useFilter(testCopy, delTransform); |
---|
| 529 | |
---|
| 530 | // build the classifier |
---|
| 531 | m_Classifier.buildClassifier(trainCopy); |
---|
| 532 | |
---|
| 533 | m_Evaluation = new Evaluation(trainCopy); |
---|
| 534 | m_Evaluation.evaluateModel(m_Classifier, testCopy); |
---|
| 535 | |
---|
| 536 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
| 537 | errorRate = m_Evaluation.errorRate(); |
---|
| 538 | } else { |
---|
| 539 | errorRate = m_Evaluation.meanAbsoluteError(); |
---|
| 540 | } |
---|
| 541 | |
---|
| 542 | m_Evaluation = null; |
---|
| 543 | // return the negative of the error as search methods need to |
---|
| 544 | // maximize something |
---|
| 545 | return -errorRate; |
---|
| 546 | } |
---|
| 547 | |
---|
| 548 | /** |
---|
| 549 | * Evaluates a subset of attributes with respect to a single instance. |
---|
| 550 | * Calling this function overides any hold out/test instances set |
---|
| 551 | * through setHoldOutFile. |
---|
| 552 | * @param subset a bitset representing the attribute subset to be |
---|
| 553 | * evaluated |
---|
| 554 | * @param holdOut a single instance (possibly not one of those used to |
---|
| 555 | * build/train the evaluator) with which to evaluate the merit of the subset |
---|
| 556 | * @param retrain true if the classifier should be retrained with respect |
---|
| 557 | * to the new subset before testing on the holdOut instance. |
---|
| 558 | * @return the "merit" of the subset on the holdOut instance |
---|
| 559 | * @throws Exception if the subset cannot be evaluated |
---|
| 560 | */ |
---|
| 561 | public double evaluateSubset(BitSet subset, Instance holdOut, |
---|
| 562 | boolean retrain) |
---|
| 563 | throws Exception { |
---|
| 564 | int i,j; |
---|
| 565 | double error; |
---|
| 566 | int numAttributes = 0; |
---|
| 567 | Instances trainCopy=null; |
---|
| 568 | Instance testCopy=null; |
---|
| 569 | |
---|
| 570 | if (m_trainingInstances.equalHeaders(holdOut.dataset()) == false) { |
---|
| 571 | throw new Exception("evaluateSubset : Incompatable instance types.\n" |
---|
| 572 | + m_trainingInstances.equalHeadersMsg(holdOut.dataset())); |
---|
| 573 | } |
---|
| 574 | |
---|
| 575 | Remove delTransform = new Remove(); |
---|
| 576 | delTransform.setInvertSelection(true); |
---|
| 577 | // copy the training instances |
---|
| 578 | trainCopy = new Instances(m_trainingInstances); |
---|
| 579 | |
---|
| 580 | testCopy = (Instance)holdOut.copy(); |
---|
| 581 | |
---|
| 582 | // count attributes set in the BitSet |
---|
| 583 | for (i = 0; i < m_numAttribs; i++) { |
---|
| 584 | if (subset.get(i)) { |
---|
| 585 | numAttributes++; |
---|
| 586 | } |
---|
| 587 | } |
---|
| 588 | |
---|
| 589 | // set up an array of attribute indexes for the filter (+1 for the class) |
---|
| 590 | int[] featArray = new int[numAttributes + 1]; |
---|
| 591 | |
---|
| 592 | for (i = 0, j = 0; i < m_numAttribs; i++) { |
---|
| 593 | if (subset.get(i)) { |
---|
| 594 | featArray[j++] = i; |
---|
| 595 | } |
---|
| 596 | } |
---|
| 597 | featArray[j] = m_classIndex; |
---|
| 598 | delTransform.setAttributeIndicesArray(featArray); |
---|
| 599 | delTransform.setInputFormat(trainCopy); |
---|
| 600 | |
---|
| 601 | if (retrain) { |
---|
| 602 | trainCopy = Filter.useFilter(trainCopy, delTransform); |
---|
| 603 | // build the classifier |
---|
| 604 | m_Classifier.buildClassifier(trainCopy); |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | delTransform.input(testCopy); |
---|
| 608 | testCopy = delTransform.output(); |
---|
| 609 | |
---|
| 610 | double pred; |
---|
| 611 | double [] distrib; |
---|
| 612 | distrib = m_Classifier.distributionForInstance(testCopy); |
---|
| 613 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
| 614 | pred = distrib[(int)testCopy.classValue()]; |
---|
| 615 | } else { |
---|
| 616 | pred = distrib[0]; |
---|
| 617 | } |
---|
| 618 | |
---|
| 619 | if (m_trainingInstances.classAttribute().isNominal()) { |
---|
| 620 | error = 1.0 - pred; |
---|
| 621 | } else { |
---|
| 622 | error = testCopy.classValue() - pred; |
---|
| 623 | } |
---|
| 624 | |
---|
| 625 | // return the negative of the error as search methods need to |
---|
| 626 | // maximize something |
---|
| 627 | return -error; |
---|
| 628 | } |
---|
| 629 | |
---|
| 630 | /** |
---|
| 631 | * Returns a string describing classifierSubsetEval |
---|
| 632 | * |
---|
| 633 | * @return the description as a string |
---|
| 634 | */ |
---|
| 635 | public String toString() { |
---|
| 636 | StringBuffer text = new StringBuffer(); |
---|
| 637 | |
---|
| 638 | if (m_trainingInstances == null) { |
---|
| 639 | text.append("\tClassifier subset evaluator has not been built yet\n"); |
---|
| 640 | } |
---|
| 641 | else { |
---|
| 642 | text.append("\tClassifier Subset Evaluator\n"); |
---|
| 643 | text.append("\tLearning scheme: " |
---|
| 644 | + getClassifier().getClass().getName() + "\n"); |
---|
| 645 | text.append("\tScheme options: "); |
---|
| 646 | String[] classifierOptions = new String[0]; |
---|
| 647 | |
---|
| 648 | if (m_Classifier instanceof OptionHandler) { |
---|
| 649 | classifierOptions = ((OptionHandler)m_Classifier).getOptions(); |
---|
| 650 | |
---|
| 651 | for (int i = 0; i < classifierOptions.length; i++) { |
---|
| 652 | text.append(classifierOptions[i] + " "); |
---|
| 653 | } |
---|
| 654 | } |
---|
| 655 | |
---|
| 656 | text.append("\n"); |
---|
| 657 | text.append("\tHold out/test set: "); |
---|
| 658 | if (!m_useTraining) { |
---|
| 659 | if (getHoldOutFile().getPath().startsWith("Click to set")) { |
---|
| 660 | text.append("none\n"); |
---|
| 661 | } else { |
---|
| 662 | text.append(getHoldOutFile().getPath()+'\n'); |
---|
| 663 | } |
---|
| 664 | } else { |
---|
| 665 | text.append("Training data\n"); |
---|
| 666 | } |
---|
| 667 | if (m_trainingInstances.attribute(m_classIndex).isNumeric()) { |
---|
| 668 | text.append("\tAccuracy estimation: MAE\n"); |
---|
| 669 | } else { |
---|
| 670 | text.append("\tAccuracy estimation: classification error\n"); |
---|
| 671 | } |
---|
| 672 | } |
---|
| 673 | return text.toString(); |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | /** |
---|
| 677 | * reset to defaults |
---|
| 678 | */ |
---|
| 679 | protected void resetOptions () { |
---|
| 680 | m_trainingInstances = null; |
---|
| 681 | m_Evaluation = null; |
---|
| 682 | m_Classifier = new ZeroR(); |
---|
| 683 | m_holdOutFile = new File("Click to set hold out or test instances"); |
---|
| 684 | m_holdOutInstances = null; |
---|
| 685 | m_useTraining = false; |
---|
| 686 | } |
---|
| 687 | |
---|
| 688 | /** |
---|
| 689 | * Returns the revision string. |
---|
| 690 | * |
---|
| 691 | * @return the revision |
---|
| 692 | */ |
---|
| 693 | public String getRevision() { |
---|
| 694 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 695 | } |
---|
| 696 | |
---|
| 697 | /** |
---|
| 698 | * Main method for testing this class. |
---|
| 699 | * |
---|
| 700 | * @param args the options |
---|
| 701 | */ |
---|
| 702 | public static void main (String[] args) { |
---|
| 703 | runEvaluator(new ClassifierSubsetEval(), args); |
---|
| 704 | } |
---|
| 705 | } |
---|