1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ClassifierAttributeEval.java |
---|
19 | * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.classifiers.rules.OneR; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.Option; |
---|
32 | import weka.core.OptionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.filters.Filter; |
---|
36 | import weka.filters.unsupervised.attribute.Remove; |
---|
37 | |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Random; |
---|
40 | import java.util.Vector; |
---|
41 | |
---|
42 | /** |
---|
43 | <!-- globalinfo-start --> |
---|
44 | * ClassifierAttributeEval :<br/> |
---|
45 | * <br/> |
---|
46 | * Evaluates the worth of an attribute by using a user-specified classifier.<br/> |
---|
47 | * <p/> |
---|
48 | <!-- globalinfo-end --> |
---|
49 | * |
---|
50 | <!-- options-start --> |
---|
51 | * Valid options are: <p/> |
---|
52 | * |
---|
53 | * <pre> -S <seed> |
---|
54 | * Random number seed for cross validation. |
---|
55 | * (default = 1)</pre> |
---|
56 | * |
---|
57 | * <pre> -F <folds> |
---|
58 | * Number of folds for cross validation. |
---|
59 | * (default = 10)</pre> |
---|
60 | * |
---|
61 | * <pre> -D |
---|
62 | * Use training data for evaluation rather than cross validaton.</pre> |
---|
63 | * |
---|
64 | * <pre> -B <classname + options> |
---|
65 | * Classifier to use. |
---|
66 | * (default = OneR)</pre> |
---|
67 | * |
---|
68 | <!-- options-end --> |
---|
69 | * |
---|
70 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
71 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
72 | * @version $Revision: 5928 $ |
---|
73 | */ |
---|
74 | public class ClassifierAttributeEval |
---|
75 | extends ASEvaluation |
---|
76 | implements AttributeEvaluator, OptionHandler { |
---|
77 | |
---|
78 | /** for serialization. */ |
---|
79 | private static final long serialVersionUID = 2442390690522602284L; |
---|
80 | |
---|
81 | /** The training instances. */ |
---|
82 | protected Instances m_trainInstances; |
---|
83 | |
---|
84 | /** Random number seed. */ |
---|
85 | protected int m_randomSeed; |
---|
86 | |
---|
87 | /** Number of folds for cross validation. */ |
---|
88 | protected int m_folds; |
---|
89 | |
---|
90 | /** Use training data to evaluate merit rather than x-val. */ |
---|
91 | protected boolean m_evalUsingTrainingData; |
---|
92 | |
---|
93 | /** The classifier to use for evaluating the attribute. */ |
---|
94 | protected Classifier m_Classifier; |
---|
95 | |
---|
96 | /** |
---|
97 | * Constructor. |
---|
98 | */ |
---|
99 | public ClassifierAttributeEval () { |
---|
100 | resetOptions(); |
---|
101 | } |
---|
102 | |
---|
103 | /** |
---|
104 | * Returns a string describing this attribute evaluator. |
---|
105 | * |
---|
106 | * @return a description of the evaluator suitable for |
---|
107 | * displaying in the explorer/experimenter gui |
---|
108 | */ |
---|
109 | public String globalInfo() { |
---|
110 | return "ClassifierAttributeEval :\n\nEvaluates the worth of an attribute by " |
---|
111 | +"using a user-specified classifier.\n"; |
---|
112 | } |
---|
113 | |
---|
114 | /** |
---|
115 | * Returns an enumeration describing the available options. |
---|
116 | * |
---|
117 | * @return an enumeration of all the available options. |
---|
118 | */ |
---|
119 | public Enumeration listOptions() { |
---|
120 | Vector result = new Vector(); |
---|
121 | |
---|
122 | result.addElement(new Option( |
---|
123 | "\tRandom number seed for cross validation.\n" |
---|
124 | + "\t(default = 1)", |
---|
125 | "S", 1, "-S <seed>")); |
---|
126 | |
---|
127 | result.addElement(new Option( |
---|
128 | "\tNumber of folds for cross validation.\n" |
---|
129 | + "\t(default = 10)", |
---|
130 | "F", 1, "-F <folds>")); |
---|
131 | |
---|
132 | result.addElement(new Option( |
---|
133 | "\tUse training data for evaluation rather than cross validaton.", |
---|
134 | "D", 0, "-D")); |
---|
135 | |
---|
136 | result.addElement(new Option( |
---|
137 | "\tClassifier to use.\n" |
---|
138 | + "\t(default = OneR)", |
---|
139 | "B", 1, "-B <classname + options>")); |
---|
140 | |
---|
141 | return result.elements(); |
---|
142 | } |
---|
143 | |
---|
144 | /** |
---|
145 | * Parses a given list of options. <p/> |
---|
146 | * |
---|
147 | <!-- options-start --> |
---|
148 | * Valid options are: <p/> |
---|
149 | * |
---|
150 | * <pre> -S <seed> |
---|
151 | * Random number seed for cross validation. |
---|
152 | * (default = 1)</pre> |
---|
153 | * |
---|
154 | * <pre> -F <folds> |
---|
155 | * Number of folds for cross validation. |
---|
156 | * (default = 10)</pre> |
---|
157 | * |
---|
158 | * <pre> -D |
---|
159 | * Use training data for evaluation rather than cross validaton.</pre> |
---|
160 | * |
---|
161 | * <pre> -B <classname + options> |
---|
162 | * Classifier to use. |
---|
163 | * (default = OneR)</pre> |
---|
164 | * |
---|
165 | <!-- options-end --> |
---|
166 | * |
---|
167 | * @param options the list of options as an array of strings |
---|
168 | * @throws Exception if an option is not supported |
---|
169 | */ |
---|
170 | public void setOptions(String [] options) throws Exception { |
---|
171 | String tmpStr; |
---|
172 | String[] tmpOptions; |
---|
173 | |
---|
174 | tmpStr = Utils.getOption('S', options); |
---|
175 | if (tmpStr.length() != 0) |
---|
176 | setSeed(Integer.parseInt(tmpStr)); |
---|
177 | |
---|
178 | tmpStr = Utils.getOption('F', options); |
---|
179 | if (tmpStr.length() != 0) |
---|
180 | setFolds(Integer.parseInt(tmpStr)); |
---|
181 | |
---|
182 | tmpStr = Utils.getOption('B', options); |
---|
183 | if (tmpStr.length() != 0) { |
---|
184 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
185 | tmpStr = tmpOptions[0]; |
---|
186 | tmpOptions[0] = ""; |
---|
187 | setClassifier((Classifier) Utils.forName(Classifier.class, tmpStr, tmpOptions)); |
---|
188 | } |
---|
189 | |
---|
190 | setEvalUsingTrainingData(Utils.getFlag('D', options)); |
---|
191 | Utils.checkForRemainingOptions(options); |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * returns the current setup. |
---|
196 | * |
---|
197 | * @return the options of the current setup |
---|
198 | */ |
---|
199 | public String[] getOptions() { |
---|
200 | Vector<String> result; |
---|
201 | |
---|
202 | result = new Vector<String>(); |
---|
203 | |
---|
204 | if (getEvalUsingTrainingData()) |
---|
205 | result.add("-D"); |
---|
206 | |
---|
207 | result.add("-S"); |
---|
208 | result.add("" + getSeed()); |
---|
209 | |
---|
210 | result.add("-F"); |
---|
211 | result.add("" + getFolds()); |
---|
212 | |
---|
213 | result.add("-B"); |
---|
214 | result.add( |
---|
215 | new String( |
---|
216 | m_Classifier.getClass().getName() + " " |
---|
217 | + Utils.joinOptions(((OptionHandler)m_Classifier).getOptions())).trim()); |
---|
218 | |
---|
219 | return result.toArray(new String[result.size()]); |
---|
220 | } |
---|
221 | |
---|
222 | /** |
---|
223 | * Set the random number seed for cross validation. |
---|
224 | * |
---|
225 | * @param value the seed to use |
---|
226 | */ |
---|
227 | public void setSeed(int value) { |
---|
228 | m_randomSeed = value; |
---|
229 | } |
---|
230 | |
---|
231 | /** |
---|
232 | * Get the random number seed. |
---|
233 | * |
---|
234 | * @return an <code>int</code> value |
---|
235 | */ |
---|
236 | public int getSeed() { |
---|
237 | return m_randomSeed; |
---|
238 | } |
---|
239 | |
---|
240 | /** |
---|
241 | * Returns a string for this option suitable for display in the gui |
---|
242 | * as a tip text. |
---|
243 | * |
---|
244 | * @return a string describing this option |
---|
245 | */ |
---|
246 | public String seedTipText() { |
---|
247 | return "Set the seed for use in cross validation."; |
---|
248 | } |
---|
249 | |
---|
250 | /** |
---|
251 | * Set the number of folds to use for cross validation. |
---|
252 | * |
---|
253 | * @param value the number of folds |
---|
254 | */ |
---|
255 | public void setFolds(int value) { |
---|
256 | m_folds = value; |
---|
257 | if (m_folds < 2) |
---|
258 | m_folds = 2; |
---|
259 | } |
---|
260 | |
---|
261 | /** |
---|
262 | * Get the number of folds used for cross validation. |
---|
263 | * |
---|
264 | * @return the number of folds |
---|
265 | */ |
---|
266 | public int getFolds() { |
---|
267 | return m_folds; |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * Returns a string for this option suitable for display in the gui |
---|
272 | * as a tip text. |
---|
273 | * |
---|
274 | * @return a string describing this option |
---|
275 | */ |
---|
276 | public String foldsTipText() { |
---|
277 | return "Set the number of folds for cross validation."; |
---|
278 | } |
---|
279 | |
---|
280 | /** |
---|
281 | * Use the training data to evaluate attributes rather than cross validation. |
---|
282 | * |
---|
283 | * @param value true if training data is to be used for evaluation |
---|
284 | */ |
---|
285 | public void setEvalUsingTrainingData(boolean value) { |
---|
286 | m_evalUsingTrainingData = value; |
---|
287 | } |
---|
288 | |
---|
289 | /** |
---|
290 | * Returns true if the training data is to be used for evaluation. |
---|
291 | * |
---|
292 | * @return true if training data is to be used for evaluation |
---|
293 | */ |
---|
294 | public boolean getEvalUsingTrainingData() { |
---|
295 | return m_evalUsingTrainingData; |
---|
296 | } |
---|
297 | |
---|
298 | /** |
---|
299 | * Returns a string for this option suitable for display in the gui |
---|
300 | * as a tip text. |
---|
301 | * |
---|
302 | * @return a string describing this option |
---|
303 | */ |
---|
304 | public String evalUsingTrainingDataTipText() { |
---|
305 | return "Use the training data to evaluate attributes rather than " |
---|
306 | + "cross validation."; |
---|
307 | } |
---|
308 | |
---|
309 | /** |
---|
310 | * Set the classifier to use for evaluating the attribute. |
---|
311 | * |
---|
312 | * @param value the classifier to use |
---|
313 | */ |
---|
314 | public void setClassifier(Classifier value) { |
---|
315 | m_Classifier = value; |
---|
316 | } |
---|
317 | |
---|
318 | /** |
---|
319 | * Returns the classifier to use for evaluating the attribute. |
---|
320 | * |
---|
321 | * @return the classifier in use |
---|
322 | */ |
---|
323 | public Classifier getClassifier() { |
---|
324 | return m_Classifier; |
---|
325 | } |
---|
326 | |
---|
327 | /** |
---|
328 | * Returns a string for this option suitable for display in the gui |
---|
329 | * as a tip text. |
---|
330 | * |
---|
331 | * @return a string describing this option |
---|
332 | */ |
---|
333 | public String classifierTipText() { |
---|
334 | return "The classifier to use for evaluating the attribute."; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * Returns the capabilities of this evaluator. |
---|
339 | * |
---|
340 | * @return the capabilities of this evaluator |
---|
341 | * @see Capabilities |
---|
342 | */ |
---|
343 | public Capabilities getCapabilities() { |
---|
344 | Capabilities result; |
---|
345 | |
---|
346 | if (m_Classifier != null) { |
---|
347 | result = m_Classifier.getCapabilities(); |
---|
348 | result.setOwner(this); |
---|
349 | } |
---|
350 | else { |
---|
351 | result = super.getCapabilities(); |
---|
352 | result.disableAll(); |
---|
353 | } |
---|
354 | |
---|
355 | return result; |
---|
356 | } |
---|
357 | |
---|
358 | /** |
---|
359 | * Initializes a ClassifierAttribute attribute evaluator. |
---|
360 | * |
---|
361 | * @param data set of instances serving as training data |
---|
362 | * @throws Exception if the evaluator has not been generated successfully |
---|
363 | */ |
---|
364 | public void buildEvaluator (Instances data) throws Exception { |
---|
365 | // can evaluator handle data? |
---|
366 | getCapabilities().testWithFail(data); |
---|
367 | |
---|
368 | m_trainInstances = data; |
---|
369 | } |
---|
370 | |
---|
371 | |
---|
372 | /** |
---|
373 | * Resets to defaults. |
---|
374 | */ |
---|
375 | protected void resetOptions () { |
---|
376 | m_trainInstances = null; |
---|
377 | m_randomSeed = 1; |
---|
378 | m_folds = 10; |
---|
379 | m_evalUsingTrainingData = false; |
---|
380 | m_Classifier = new OneR(); |
---|
381 | } |
---|
382 | |
---|
383 | |
---|
384 | /** |
---|
385 | * Evaluates an individual attribute by measuring the amount |
---|
386 | * of information gained about the class given the attribute. |
---|
387 | * |
---|
388 | * @param attribute the index of the attribute to be evaluated |
---|
389 | * @return the evaluation |
---|
390 | * @throws Exception if the attribute could not be evaluated |
---|
391 | */ |
---|
392 | public double evaluateAttribute(int attribute) throws Exception { |
---|
393 | int[] featArray; |
---|
394 | double errorRate; |
---|
395 | Evaluation eval; |
---|
396 | Remove delTransform; |
---|
397 | Instances train; |
---|
398 | Classifier cls; |
---|
399 | |
---|
400 | // create tmp dataset |
---|
401 | featArray = new int[2]; // feat + class |
---|
402 | delTransform = new Remove(); |
---|
403 | delTransform.setInvertSelection(true); |
---|
404 | train = new Instances(m_trainInstances); |
---|
405 | featArray[0] = attribute; |
---|
406 | featArray[1] = train.classIndex(); |
---|
407 | delTransform.setAttributeIndicesArray(featArray); |
---|
408 | delTransform.setInputFormat(train); |
---|
409 | train = Filter.useFilter(train, delTransform); |
---|
410 | |
---|
411 | // evaluate classifier |
---|
412 | eval = new Evaluation(train); |
---|
413 | cls = AbstractClassifier.makeCopy(m_Classifier); |
---|
414 | if (m_evalUsingTrainingData) { |
---|
415 | cls.buildClassifier(train); |
---|
416 | eval.evaluateModel(cls, train); |
---|
417 | } |
---|
418 | else { |
---|
419 | eval.crossValidateModel(cls, train, m_folds, new Random(m_randomSeed)); |
---|
420 | } |
---|
421 | errorRate = eval.errorRate(); |
---|
422 | |
---|
423 | return (1 - errorRate)*100.0; |
---|
424 | } |
---|
425 | |
---|
426 | /** |
---|
427 | * Return a description of the evaluator. |
---|
428 | * |
---|
429 | * @return description as a string |
---|
430 | */ |
---|
431 | public String toString () { |
---|
432 | StringBuffer text = new StringBuffer(); |
---|
433 | |
---|
434 | if (m_trainInstances == null) { |
---|
435 | text.append("\tClassifier feature evaluator has not been built yet"); |
---|
436 | } |
---|
437 | else { |
---|
438 | text.append("\tClassifier feature evaluator.\n\n"); |
---|
439 | text.append("\tUsing "); |
---|
440 | if (m_evalUsingTrainingData) |
---|
441 | text.append("training data for evaluation of attributes.\n"); |
---|
442 | else |
---|
443 | text.append(getFolds()+ " fold cross validation for evaluating attributes.\n"); |
---|
444 | text.append("\tClassifier in use: " + m_Classifier.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)m_Classifier).getOptions())); |
---|
445 | } |
---|
446 | text.append("\n"); |
---|
447 | |
---|
448 | return text.toString(); |
---|
449 | } |
---|
450 | |
---|
451 | /** |
---|
452 | * Returns the revision string. |
---|
453 | * |
---|
454 | * @return the revision |
---|
455 | */ |
---|
456 | public String getRevision() { |
---|
457 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
458 | } |
---|
459 | |
---|
460 | /** |
---|
461 | * Main method for executing this class. |
---|
462 | * |
---|
463 | * @param args the options |
---|
464 | */ |
---|
465 | public static void main (String[] args) { |
---|
466 | runEvaluator(new ClassifierAttributeEval(), args); |
---|
467 | } |
---|
468 | } |
---|