| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * ClassifierAttributeEval.java |
|---|
| 19 | * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.attributeSelection; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.Classifier; |
|---|
| 26 | import weka.classifiers.AbstractClassifier; |
|---|
| 27 | import weka.classifiers.Evaluation; |
|---|
| 28 | import weka.classifiers.rules.OneR; |
|---|
| 29 | import weka.core.Capabilities; |
|---|
| 30 | import weka.core.Instances; |
|---|
| 31 | import weka.core.Option; |
|---|
| 32 | import weka.core.OptionHandler; |
|---|
| 33 | import weka.core.RevisionUtils; |
|---|
| 34 | import weka.core.Utils; |
|---|
| 35 | import weka.filters.Filter; |
|---|
| 36 | import weka.filters.unsupervised.attribute.Remove; |
|---|
| 37 | |
|---|
| 38 | import java.util.Enumeration; |
|---|
| 39 | import java.util.Random; |
|---|
| 40 | import java.util.Vector; |
|---|
| 41 | |
|---|
| 42 | /** |
|---|
| 43 | <!-- globalinfo-start --> |
|---|
| 44 | * ClassifierAttributeEval :<br/> |
|---|
| 45 | * <br/> |
|---|
| 46 | * Evaluates the worth of an attribute by using a user-specified classifier.<br/> |
|---|
| 47 | * <p/> |
|---|
| 48 | <!-- globalinfo-end --> |
|---|
| 49 | * |
|---|
| 50 | <!-- options-start --> |
|---|
| 51 | * Valid options are: <p/> |
|---|
| 52 | * |
|---|
| 53 | * <pre> -S <seed> |
|---|
| 54 | * Random number seed for cross validation. |
|---|
| 55 | * (default = 1)</pre> |
|---|
| 56 | * |
|---|
| 57 | * <pre> -F <folds> |
|---|
| 58 | * Number of folds for cross validation. |
|---|
| 59 | * (default = 10)</pre> |
|---|
| 60 | * |
|---|
| 61 | * <pre> -D |
|---|
| 62 | * Use training data for evaluation rather than cross validaton.</pre> |
|---|
| 63 | * |
|---|
| 64 | * <pre> -B <classname + options> |
|---|
| 65 | * Classifier to use. |
|---|
| 66 | * (default = OneR)</pre> |
|---|
| 67 | * |
|---|
| 68 | <!-- options-end --> |
|---|
| 69 | * |
|---|
| 70 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
|---|
| 71 | * @author FracPete (fracpete at waikato dot ac dot nz) |
|---|
| 72 | * @version $Revision: 5928 $ |
|---|
| 73 | */ |
|---|
| 74 | public class ClassifierAttributeEval |
|---|
| 75 | extends ASEvaluation |
|---|
| 76 | implements AttributeEvaluator, OptionHandler { |
|---|
| 77 | |
|---|
| 78 | /** for serialization. */ |
|---|
| 79 | private static final long serialVersionUID = 2442390690522602284L; |
|---|
| 80 | |
|---|
| 81 | /** The training instances. */ |
|---|
| 82 | protected Instances m_trainInstances; |
|---|
| 83 | |
|---|
| 84 | /** Random number seed. */ |
|---|
| 85 | protected int m_randomSeed; |
|---|
| 86 | |
|---|
| 87 | /** Number of folds for cross validation. */ |
|---|
| 88 | protected int m_folds; |
|---|
| 89 | |
|---|
| 90 | /** Use training data to evaluate merit rather than x-val. */ |
|---|
| 91 | protected boolean m_evalUsingTrainingData; |
|---|
| 92 | |
|---|
| 93 | /** The classifier to use for evaluating the attribute. */ |
|---|
| 94 | protected Classifier m_Classifier; |
|---|
| 95 | |
|---|
| 96 | /** |
|---|
| 97 | * Constructor. |
|---|
| 98 | */ |
|---|
| 99 | public ClassifierAttributeEval () { |
|---|
| 100 | resetOptions(); |
|---|
| 101 | } |
|---|
| 102 | |
|---|
| 103 | /** |
|---|
| 104 | * Returns a string describing this attribute evaluator. |
|---|
| 105 | * |
|---|
| 106 | * @return a description of the evaluator suitable for |
|---|
| 107 | * displaying in the explorer/experimenter gui |
|---|
| 108 | */ |
|---|
| 109 | public String globalInfo() { |
|---|
| 110 | return "ClassifierAttributeEval :\n\nEvaluates the worth of an attribute by " |
|---|
| 111 | +"using a user-specified classifier.\n"; |
|---|
| 112 | } |
|---|
| 113 | |
|---|
| 114 | /** |
|---|
| 115 | * Returns an enumeration describing the available options. |
|---|
| 116 | * |
|---|
| 117 | * @return an enumeration of all the available options. |
|---|
| 118 | */ |
|---|
| 119 | public Enumeration listOptions() { |
|---|
| 120 | Vector result = new Vector(); |
|---|
| 121 | |
|---|
| 122 | result.addElement(new Option( |
|---|
| 123 | "\tRandom number seed for cross validation.\n" |
|---|
| 124 | + "\t(default = 1)", |
|---|
| 125 | "S", 1, "-S <seed>")); |
|---|
| 126 | |
|---|
| 127 | result.addElement(new Option( |
|---|
| 128 | "\tNumber of folds for cross validation.\n" |
|---|
| 129 | + "\t(default = 10)", |
|---|
| 130 | "F", 1, "-F <folds>")); |
|---|
| 131 | |
|---|
| 132 | result.addElement(new Option( |
|---|
| 133 | "\tUse training data for evaluation rather than cross validaton.", |
|---|
| 134 | "D", 0, "-D")); |
|---|
| 135 | |
|---|
| 136 | result.addElement(new Option( |
|---|
| 137 | "\tClassifier to use.\n" |
|---|
| 138 | + "\t(default = OneR)", |
|---|
| 139 | "B", 1, "-B <classname + options>")); |
|---|
| 140 | |
|---|
| 141 | return result.elements(); |
|---|
| 142 | } |
|---|
| 143 | |
|---|
| 144 | /** |
|---|
| 145 | * Parses a given list of options. <p/> |
|---|
| 146 | * |
|---|
| 147 | <!-- options-start --> |
|---|
| 148 | * Valid options are: <p/> |
|---|
| 149 | * |
|---|
| 150 | * <pre> -S <seed> |
|---|
| 151 | * Random number seed for cross validation. |
|---|
| 152 | * (default = 1)</pre> |
|---|
| 153 | * |
|---|
| 154 | * <pre> -F <folds> |
|---|
| 155 | * Number of folds for cross validation. |
|---|
| 156 | * (default = 10)</pre> |
|---|
| 157 | * |
|---|
| 158 | * <pre> -D |
|---|
| 159 | * Use training data for evaluation rather than cross validaton.</pre> |
|---|
| 160 | * |
|---|
| 161 | * <pre> -B <classname + options> |
|---|
| 162 | * Classifier to use. |
|---|
| 163 | * (default = OneR)</pre> |
|---|
| 164 | * |
|---|
| 165 | <!-- options-end --> |
|---|
| 166 | * |
|---|
| 167 | * @param options the list of options as an array of strings |
|---|
| 168 | * @throws Exception if an option is not supported |
|---|
| 169 | */ |
|---|
| 170 | public void setOptions(String [] options) throws Exception { |
|---|
| 171 | String tmpStr; |
|---|
| 172 | String[] tmpOptions; |
|---|
| 173 | |
|---|
| 174 | tmpStr = Utils.getOption('S', options); |
|---|
| 175 | if (tmpStr.length() != 0) |
|---|
| 176 | setSeed(Integer.parseInt(tmpStr)); |
|---|
| 177 | |
|---|
| 178 | tmpStr = Utils.getOption('F', options); |
|---|
| 179 | if (tmpStr.length() != 0) |
|---|
| 180 | setFolds(Integer.parseInt(tmpStr)); |
|---|
| 181 | |
|---|
| 182 | tmpStr = Utils.getOption('B', options); |
|---|
| 183 | if (tmpStr.length() != 0) { |
|---|
| 184 | tmpOptions = Utils.splitOptions(tmpStr); |
|---|
| 185 | tmpStr = tmpOptions[0]; |
|---|
| 186 | tmpOptions[0] = ""; |
|---|
| 187 | setClassifier((Classifier) Utils.forName(Classifier.class, tmpStr, tmpOptions)); |
|---|
| 188 | } |
|---|
| 189 | |
|---|
| 190 | setEvalUsingTrainingData(Utils.getFlag('D', options)); |
|---|
| 191 | Utils.checkForRemainingOptions(options); |
|---|
| 192 | } |
|---|
| 193 | |
|---|
| 194 | /** |
|---|
| 195 | * returns the current setup. |
|---|
| 196 | * |
|---|
| 197 | * @return the options of the current setup |
|---|
| 198 | */ |
|---|
| 199 | public String[] getOptions() { |
|---|
| 200 | Vector<String> result; |
|---|
| 201 | |
|---|
| 202 | result = new Vector<String>(); |
|---|
| 203 | |
|---|
| 204 | if (getEvalUsingTrainingData()) |
|---|
| 205 | result.add("-D"); |
|---|
| 206 | |
|---|
| 207 | result.add("-S"); |
|---|
| 208 | result.add("" + getSeed()); |
|---|
| 209 | |
|---|
| 210 | result.add("-F"); |
|---|
| 211 | result.add("" + getFolds()); |
|---|
| 212 | |
|---|
| 213 | result.add("-B"); |
|---|
| 214 | result.add( |
|---|
| 215 | new String( |
|---|
| 216 | m_Classifier.getClass().getName() + " " |
|---|
| 217 | + Utils.joinOptions(((OptionHandler)m_Classifier).getOptions())).trim()); |
|---|
| 218 | |
|---|
| 219 | return result.toArray(new String[result.size()]); |
|---|
| 220 | } |
|---|
| 221 | |
|---|
| 222 | /** |
|---|
| 223 | * Set the random number seed for cross validation. |
|---|
| 224 | * |
|---|
| 225 | * @param value the seed to use |
|---|
| 226 | */ |
|---|
| 227 | public void setSeed(int value) { |
|---|
| 228 | m_randomSeed = value; |
|---|
| 229 | } |
|---|
| 230 | |
|---|
| 231 | /** |
|---|
| 232 | * Get the random number seed. |
|---|
| 233 | * |
|---|
| 234 | * @return an <code>int</code> value |
|---|
| 235 | */ |
|---|
| 236 | public int getSeed() { |
|---|
| 237 | return m_randomSeed; |
|---|
| 238 | } |
|---|
| 239 | |
|---|
| 240 | /** |
|---|
| 241 | * Returns a string for this option suitable for display in the gui |
|---|
| 242 | * as a tip text. |
|---|
| 243 | * |
|---|
| 244 | * @return a string describing this option |
|---|
| 245 | */ |
|---|
| 246 | public String seedTipText() { |
|---|
| 247 | return "Set the seed for use in cross validation."; |
|---|
| 248 | } |
|---|
| 249 | |
|---|
| 250 | /** |
|---|
| 251 | * Set the number of folds to use for cross validation. |
|---|
| 252 | * |
|---|
| 253 | * @param value the number of folds |
|---|
| 254 | */ |
|---|
| 255 | public void setFolds(int value) { |
|---|
| 256 | m_folds = value; |
|---|
| 257 | if (m_folds < 2) |
|---|
| 258 | m_folds = 2; |
|---|
| 259 | } |
|---|
| 260 | |
|---|
| 261 | /** |
|---|
| 262 | * Get the number of folds used for cross validation. |
|---|
| 263 | * |
|---|
| 264 | * @return the number of folds |
|---|
| 265 | */ |
|---|
| 266 | public int getFolds() { |
|---|
| 267 | return m_folds; |
|---|
| 268 | } |
|---|
| 269 | |
|---|
| 270 | /** |
|---|
| 271 | * Returns a string for this option suitable for display in the gui |
|---|
| 272 | * as a tip text. |
|---|
| 273 | * |
|---|
| 274 | * @return a string describing this option |
|---|
| 275 | */ |
|---|
| 276 | public String foldsTipText() { |
|---|
| 277 | return "Set the number of folds for cross validation."; |
|---|
| 278 | } |
|---|
| 279 | |
|---|
| 280 | /** |
|---|
| 281 | * Use the training data to evaluate attributes rather than cross validation. |
|---|
| 282 | * |
|---|
| 283 | * @param value true if training data is to be used for evaluation |
|---|
| 284 | */ |
|---|
| 285 | public void setEvalUsingTrainingData(boolean value) { |
|---|
| 286 | m_evalUsingTrainingData = value; |
|---|
| 287 | } |
|---|
| 288 | |
|---|
| 289 | /** |
|---|
| 290 | * Returns true if the training data is to be used for evaluation. |
|---|
| 291 | * |
|---|
| 292 | * @return true if training data is to be used for evaluation |
|---|
| 293 | */ |
|---|
| 294 | public boolean getEvalUsingTrainingData() { |
|---|
| 295 | return m_evalUsingTrainingData; |
|---|
| 296 | } |
|---|
| 297 | |
|---|
| 298 | /** |
|---|
| 299 | * Returns a string for this option suitable for display in the gui |
|---|
| 300 | * as a tip text. |
|---|
| 301 | * |
|---|
| 302 | * @return a string describing this option |
|---|
| 303 | */ |
|---|
| 304 | public String evalUsingTrainingDataTipText() { |
|---|
| 305 | return "Use the training data to evaluate attributes rather than " |
|---|
| 306 | + "cross validation."; |
|---|
| 307 | } |
|---|
| 308 | |
|---|
| 309 | /** |
|---|
| 310 | * Set the classifier to use for evaluating the attribute. |
|---|
| 311 | * |
|---|
| 312 | * @param value the classifier to use |
|---|
| 313 | */ |
|---|
| 314 | public void setClassifier(Classifier value) { |
|---|
| 315 | m_Classifier = value; |
|---|
| 316 | } |
|---|
| 317 | |
|---|
| 318 | /** |
|---|
| 319 | * Returns the classifier to use for evaluating the attribute. |
|---|
| 320 | * |
|---|
| 321 | * @return the classifier in use |
|---|
| 322 | */ |
|---|
| 323 | public Classifier getClassifier() { |
|---|
| 324 | return m_Classifier; |
|---|
| 325 | } |
|---|
| 326 | |
|---|
| 327 | /** |
|---|
| 328 | * Returns a string for this option suitable for display in the gui |
|---|
| 329 | * as a tip text. |
|---|
| 330 | * |
|---|
| 331 | * @return a string describing this option |
|---|
| 332 | */ |
|---|
| 333 | public String classifierTipText() { |
|---|
| 334 | return "The classifier to use for evaluating the attribute."; |
|---|
| 335 | } |
|---|
| 336 | |
|---|
| 337 | /** |
|---|
| 338 | * Returns the capabilities of this evaluator. |
|---|
| 339 | * |
|---|
| 340 | * @return the capabilities of this evaluator |
|---|
| 341 | * @see Capabilities |
|---|
| 342 | */ |
|---|
| 343 | public Capabilities getCapabilities() { |
|---|
| 344 | Capabilities result; |
|---|
| 345 | |
|---|
| 346 | if (m_Classifier != null) { |
|---|
| 347 | result = m_Classifier.getCapabilities(); |
|---|
| 348 | result.setOwner(this); |
|---|
| 349 | } |
|---|
| 350 | else { |
|---|
| 351 | result = super.getCapabilities(); |
|---|
| 352 | result.disableAll(); |
|---|
| 353 | } |
|---|
| 354 | |
|---|
| 355 | return result; |
|---|
| 356 | } |
|---|
| 357 | |
|---|
| 358 | /** |
|---|
| 359 | * Initializes a ClassifierAttribute attribute evaluator. |
|---|
| 360 | * |
|---|
| 361 | * @param data set of instances serving as training data |
|---|
| 362 | * @throws Exception if the evaluator has not been generated successfully |
|---|
| 363 | */ |
|---|
| 364 | public void buildEvaluator (Instances data) throws Exception { |
|---|
| 365 | // can evaluator handle data? |
|---|
| 366 | getCapabilities().testWithFail(data); |
|---|
| 367 | |
|---|
| 368 | m_trainInstances = data; |
|---|
| 369 | } |
|---|
| 370 | |
|---|
| 371 | |
|---|
| 372 | /** |
|---|
| 373 | * Resets to defaults. |
|---|
| 374 | */ |
|---|
| 375 | protected void resetOptions () { |
|---|
| 376 | m_trainInstances = null; |
|---|
| 377 | m_randomSeed = 1; |
|---|
| 378 | m_folds = 10; |
|---|
| 379 | m_evalUsingTrainingData = false; |
|---|
| 380 | m_Classifier = new OneR(); |
|---|
| 381 | } |
|---|
| 382 | |
|---|
| 383 | |
|---|
| 384 | /** |
|---|
| 385 | * Evaluates an individual attribute by measuring the amount |
|---|
| 386 | * of information gained about the class given the attribute. |
|---|
| 387 | * |
|---|
| 388 | * @param attribute the index of the attribute to be evaluated |
|---|
| 389 | * @return the evaluation |
|---|
| 390 | * @throws Exception if the attribute could not be evaluated |
|---|
| 391 | */ |
|---|
| 392 | public double evaluateAttribute(int attribute) throws Exception { |
|---|
| 393 | int[] featArray; |
|---|
| 394 | double errorRate; |
|---|
| 395 | Evaluation eval; |
|---|
| 396 | Remove delTransform; |
|---|
| 397 | Instances train; |
|---|
| 398 | Classifier cls; |
|---|
| 399 | |
|---|
| 400 | // create tmp dataset |
|---|
| 401 | featArray = new int[2]; // feat + class |
|---|
| 402 | delTransform = new Remove(); |
|---|
| 403 | delTransform.setInvertSelection(true); |
|---|
| 404 | train = new Instances(m_trainInstances); |
|---|
| 405 | featArray[0] = attribute; |
|---|
| 406 | featArray[1] = train.classIndex(); |
|---|
| 407 | delTransform.setAttributeIndicesArray(featArray); |
|---|
| 408 | delTransform.setInputFormat(train); |
|---|
| 409 | train = Filter.useFilter(train, delTransform); |
|---|
| 410 | |
|---|
| 411 | // evaluate classifier |
|---|
| 412 | eval = new Evaluation(train); |
|---|
| 413 | cls = AbstractClassifier.makeCopy(m_Classifier); |
|---|
| 414 | if (m_evalUsingTrainingData) { |
|---|
| 415 | cls.buildClassifier(train); |
|---|
| 416 | eval.evaluateModel(cls, train); |
|---|
| 417 | } |
|---|
| 418 | else { |
|---|
| 419 | eval.crossValidateModel(cls, train, m_folds, new Random(m_randomSeed)); |
|---|
| 420 | } |
|---|
| 421 | errorRate = eval.errorRate(); |
|---|
| 422 | |
|---|
| 423 | return (1 - errorRate)*100.0; |
|---|
| 424 | } |
|---|
| 425 | |
|---|
| 426 | /** |
|---|
| 427 | * Return a description of the evaluator. |
|---|
| 428 | * |
|---|
| 429 | * @return description as a string |
|---|
| 430 | */ |
|---|
| 431 | public String toString () { |
|---|
| 432 | StringBuffer text = new StringBuffer(); |
|---|
| 433 | |
|---|
| 434 | if (m_trainInstances == null) { |
|---|
| 435 | text.append("\tClassifier feature evaluator has not been built yet"); |
|---|
| 436 | } |
|---|
| 437 | else { |
|---|
| 438 | text.append("\tClassifier feature evaluator.\n\n"); |
|---|
| 439 | text.append("\tUsing "); |
|---|
| 440 | if (m_evalUsingTrainingData) |
|---|
| 441 | text.append("training data for evaluation of attributes.\n"); |
|---|
| 442 | else |
|---|
| 443 | text.append(getFolds()+ " fold cross validation for evaluating attributes.\n"); |
|---|
| 444 | text.append("\tClassifier in use: " + m_Classifier.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)m_Classifier).getOptions())); |
|---|
| 445 | } |
|---|
| 446 | text.append("\n"); |
|---|
| 447 | |
|---|
| 448 | return text.toString(); |
|---|
| 449 | } |
|---|
| 450 | |
|---|
| 451 | /** |
|---|
| 452 | * Returns the revision string. |
|---|
| 453 | * |
|---|
| 454 | * @return the revision |
|---|
| 455 | */ |
|---|
| 456 | public String getRevision() { |
|---|
| 457 | return RevisionUtils.extract("$Revision: 5928 $"); |
|---|
| 458 | } |
|---|
| 459 | |
|---|
| 460 | /** |
|---|
| 461 | * Main method for executing this class. |
|---|
| 462 | * |
|---|
| 463 | * @param args the options |
|---|
| 464 | */ |
|---|
| 465 | public static void main (String[] args) { |
|---|
| 466 | runEvaluator(new ClassifierAttributeEval(), args); |
|---|
| 467 | } |
|---|
| 468 | } |
|---|