/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ClassifierAttributeEval.java
* Copyright (C) 2009 University of Waikato, Hamilton, New Zealand
*
*/
package weka.attributeSelection;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Evaluation;
import weka.classifiers.rules.OneR;
import weka.core.Capabilities;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
/**
* ClassifierAttributeEval :
*
* Evaluates the worth of an attribute by using a user-specified classifier.
*
-S <seed> * Random number seed for cross validation. * (default = 1)* *
-F <folds> * Number of folds for cross validation. * (default = 10)* *
-D * Use training data for evaluation rather than cross validaton.* *
-B <classname + options> * Classifier to use. * (default = OneR)* * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 5928 $ */ public class ClassifierAttributeEval extends ASEvaluation implements AttributeEvaluator, OptionHandler { /** for serialization. */ private static final long serialVersionUID = 2442390690522602284L; /** The training instances. */ protected Instances m_trainInstances; /** Random number seed. */ protected int m_randomSeed; /** Number of folds for cross validation. */ protected int m_folds; /** Use training data to evaluate merit rather than x-val. */ protected boolean m_evalUsingTrainingData; /** The classifier to use for evaluating the attribute. */ protected Classifier m_Classifier; /** * Constructor. */ public ClassifierAttributeEval () { resetOptions(); } /** * Returns a string describing this attribute evaluator. * * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "ClassifierAttributeEval :\n\nEvaluates the worth of an attribute by " +"using a user-specified classifier.\n"; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tRandom number seed for cross validation.\n" + "\t(default = 1)", "S", 1, "-S
-S <seed> * Random number seed for cross validation. * (default = 1)* *
-F <folds> * Number of folds for cross validation. * (default = 10)* *
-D * Use training data for evaluation rather than cross validaton.* *
-B <classname + options> * Classifier to use. * (default = OneR)* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String [] options) throws Exception { String tmpStr; String[] tmpOptions; tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) setSeed(Integer.parseInt(tmpStr)); tmpStr = Utils.getOption('F', options); if (tmpStr.length() != 0) setFolds(Integer.parseInt(tmpStr)); tmpStr = Utils.getOption('B', options); if (tmpStr.length() != 0) { tmpOptions = Utils.splitOptions(tmpStr); tmpStr = tmpOptions[0]; tmpOptions[0] = ""; setClassifier((Classifier) Utils.forName(Classifier.class, tmpStr, tmpOptions)); } setEvalUsingTrainingData(Utils.getFlag('D', options)); Utils.checkForRemainingOptions(options); } /** * returns the current setup. * * @return the options of the current setup */ public String[] getOptions() { Vector
int
value
*/
public int getSeed() {
return m_randomSeed;
}
/**
* Returns a string for this option suitable for display in the gui
* as a tip text.
*
* @return a string describing this option
*/
public String seedTipText() {
return "Set the seed for use in cross validation.";
}
/**
* Set the number of folds to use for cross validation.
*
* @param value the number of folds
*/
public void setFolds(int value) {
m_folds = value;
if (m_folds < 2)
m_folds = 2;
}
/**
* Get the number of folds used for cross validation.
*
* @return the number of folds
*/
public int getFolds() {
return m_folds;
}
/**
* Returns a string for this option suitable for display in the gui
* as a tip text.
*
* @return a string describing this option
*/
public String foldsTipText() {
return "Set the number of folds for cross validation.";
}
/**
* Use the training data to evaluate attributes rather than cross validation.
*
* @param value true if training data is to be used for evaluation
*/
public void setEvalUsingTrainingData(boolean value) {
m_evalUsingTrainingData = value;
}
/**
* Returns true if the training data is to be used for evaluation.
*
* @return true if training data is to be used for evaluation
*/
public boolean getEvalUsingTrainingData() {
return m_evalUsingTrainingData;
}
/**
* Returns a string for this option suitable for display in the gui
* as a tip text.
*
* @return a string describing this option
*/
public String evalUsingTrainingDataTipText() {
return "Use the training data to evaluate attributes rather than "
+ "cross validation.";
}
/**
* Set the classifier to use for evaluating the attribute.
*
* @param value the classifier to use
*/
public void setClassifier(Classifier value) {
m_Classifier = value;
}
/**
* Returns the classifier to use for evaluating the attribute.
*
* @return the classifier in use
*/
public Classifier getClassifier() {
return m_Classifier;
}
/**
* Returns a string for this option suitable for display in the gui
* as a tip text.
*
* @return a string describing this option
*/
public String classifierTipText() {
return "The classifier to use for evaluating the attribute.";
}
/**
* Returns the capabilities of this evaluator.
*
* @return the capabilities of this evaluator
* @see Capabilities
*/
public Capabilities getCapabilities() {
Capabilities result;
if (m_Classifier != null) {
result = m_Classifier.getCapabilities();
result.setOwner(this);
}
else {
result = super.getCapabilities();
result.disableAll();
}
return result;
}
/**
* Initializes a ClassifierAttribute attribute evaluator.
*
* @param data set of instances serving as training data
* @throws Exception if the evaluator has not been generated successfully
*/
public void buildEvaluator (Instances data) throws Exception {
// can evaluator handle data?
getCapabilities().testWithFail(data);
m_trainInstances = data;
}
/**
* Resets to defaults.
*/
protected void resetOptions () {
m_trainInstances = null;
m_randomSeed = 1;
m_folds = 10;
m_evalUsingTrainingData = false;
m_Classifier = new OneR();
}
/**
* Evaluates an individual attribute by measuring the amount
* of information gained about the class given the attribute.
*
* @param attribute the index of the attribute to be evaluated
* @return the evaluation
* @throws Exception if the attribute could not be evaluated
*/
public double evaluateAttribute(int attribute) throws Exception {
int[] featArray;
double errorRate;
Evaluation eval;
Remove delTransform;
Instances train;
Classifier cls;
// create tmp dataset
featArray = new int[2]; // feat + class
delTransform = new Remove();
delTransform.setInvertSelection(true);
train = new Instances(m_trainInstances);
featArray[0] = attribute;
featArray[1] = train.classIndex();
delTransform.setAttributeIndicesArray(featArray);
delTransform.setInputFormat(train);
train = Filter.useFilter(train, delTransform);
// evaluate classifier
eval = new Evaluation(train);
cls = AbstractClassifier.makeCopy(m_Classifier);
if (m_evalUsingTrainingData) {
cls.buildClassifier(train);
eval.evaluateModel(cls, train);
}
else {
eval.crossValidateModel(cls, train, m_folds, new Random(m_randomSeed));
}
errorRate = eval.errorRate();
return (1 - errorRate)*100.0;
}
/**
* Return a description of the evaluator.
*
* @return description as a string
*/
public String toString () {
StringBuffer text = new StringBuffer();
if (m_trainInstances == null) {
text.append("\tClassifier feature evaluator has not been built yet");
}
else {
text.append("\tClassifier feature evaluator.\n\n");
text.append("\tUsing ");
if (m_evalUsingTrainingData)
text.append("training data for evaluation of attributes.\n");
else
text.append(getFolds()+ " fold cross validation for evaluating attributes.\n");
text.append("\tClassifier in use: " + m_Classifier.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()));
}
text.append("\n");
return text.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5928 $");
}
/**
* Main method for executing this class.
*
* @param args the options
*/
public static void main (String[] args) {
runEvaluator(new ClassifierAttributeEval(), args);
}
}