1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CheckAttributeSelection.java |
---|
19 | * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.CheckScheme; |
---|
27 | import weka.core.FastVector; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.OptionHandler; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.SerializationHelper; |
---|
34 | import weka.core.SerializedObject; |
---|
35 | import weka.core.TestInstances; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.WeightedInstancesHandler; |
---|
38 | |
---|
39 | import java.util.Enumeration; |
---|
40 | import java.util.Random; |
---|
41 | import java.util.Vector; |
---|
42 | |
---|
43 | /** |
---|
44 | * Class for examining the capabilities and finding problems with |
---|
45 | * attribute selection schemes. If you implement an attribute selection using |
---|
46 | * the WEKA.libraries, you should run the checks on it to ensure robustness |
---|
47 | * and correct operation. Passing all the tests of this object does not mean |
---|
48 | * bugs in the attribute selection don't exist, but this will help find some |
---|
49 | * common ones. <p/> |
---|
50 | * |
---|
51 | * Typical usage: <p/> |
---|
52 | * <code>java weka.attributeSelection.CheckAttributeSelection -W ASscheme_name |
---|
53 | * -- ASscheme_options </code><p/> |
---|
54 | * |
---|
55 | * CheckAttributeSelection reports on the following: |
---|
56 | * <ul> |
---|
57 | * <li> Scheme abilities |
---|
58 | * <ul> |
---|
59 | * <li> Possible command line options to the scheme </li> |
---|
60 | * <li> Whether the scheme can predict nominal, numeric, string, |
---|
61 | * date or relational class attributes. </li> |
---|
62 | * <li> Whether the scheme can handle numeric predictor attributes </li> |
---|
63 | * <li> Whether the scheme can handle nominal predictor attributes </li> |
---|
64 | * <li> Whether the scheme can handle string predictor attributes </li> |
---|
65 | * <li> Whether the scheme can handle date predictor attributes </li> |
---|
66 | * <li> Whether the scheme can handle relational predictor attributes </li> |
---|
67 | * <li> Whether the scheme can handle multi-instance data </li> |
---|
68 | * <li> Whether the scheme can handle missing predictor values </li> |
---|
69 | * <li> Whether the scheme can handle missing class values </li> |
---|
70 | * <li> Whether a nominal scheme only handles 2 class problems </li> |
---|
71 | * <li> Whether the scheme can handle instance weights </li> |
---|
72 | * </ul> |
---|
73 | * </li> |
---|
74 | * <li> Correct functioning |
---|
75 | * <ul> |
---|
76 | * <li> Correct initialisation during search (i.e. no result |
---|
77 | * changes when search is performed repeatedly) </li> |
---|
78 | * <li> Whether the scheme alters the data pased to it |
---|
79 | * (number of instances, instance order, instance weights, etc) </li> |
---|
80 | * </ul> |
---|
81 | * </li> |
---|
82 | * <li> Degenerate cases |
---|
83 | * <ul> |
---|
84 | * <li> building scheme with zero instances </li> |
---|
85 | * <li> all but one predictor attribute values missing </li> |
---|
86 | * <li> all predictor attribute values missing </li> |
---|
87 | * <li> all but one class values missing </li> |
---|
88 | * <li> all class values missing </li> |
---|
89 | * </ul> |
---|
90 | * </li> |
---|
91 | * </ul> |
---|
92 | * Running CheckAttributeSelection with the debug option set will output the |
---|
93 | * training dataset for any failed tests.<p/> |
---|
94 | * |
---|
95 | * The <code>weka.attributeSelection.AbstractAttributeSelectionTest</code> |
---|
96 | * uses this class to test all the schemes. Any changes here, have to be |
---|
97 | * checked in that abstract test class, too. <p/> |
---|
98 | * |
---|
99 | <!-- options-start --> |
---|
100 | * Valid options are: <p/> |
---|
101 | * |
---|
102 | * <pre> -D |
---|
103 | * Turn on debugging output.</pre> |
---|
104 | * |
---|
105 | * <pre> -S |
---|
106 | * Silent mode - prints nothing to stdout.</pre> |
---|
107 | * |
---|
108 | * <pre> -N <num> |
---|
109 | * The number of instances in the datasets (default 20).</pre> |
---|
110 | * |
---|
111 | * <pre> -nominal <num> |
---|
112 | * The number of nominal attributes (default 2).</pre> |
---|
113 | * |
---|
114 | * <pre> -nominal-values <num> |
---|
115 | * The number of values for nominal attributes (default 1).</pre> |
---|
116 | * |
---|
117 | * <pre> -numeric <num> |
---|
118 | * The number of numeric attributes (default 1).</pre> |
---|
119 | * |
---|
120 | * <pre> -string <num> |
---|
121 | * The number of string attributes (default 1).</pre> |
---|
122 | * |
---|
123 | * <pre> -date <num> |
---|
124 | * The number of date attributes (default 1).</pre> |
---|
125 | * |
---|
126 | * <pre> -relational <num> |
---|
127 | * The number of relational attributes (default 1).</pre> |
---|
128 | * |
---|
129 | * <pre> -num-instances-relational <num> |
---|
130 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
131 | * |
---|
132 | * <pre> -words <comma-separated-list> |
---|
133 | * The words to use in string attributes.</pre> |
---|
134 | * |
---|
135 | * <pre> -word-separators <chars> |
---|
136 | * The word separators to use in string attributes.</pre> |
---|
137 | * |
---|
138 | * <pre> -eval name [options] |
---|
139 | * Full name and options of the evaluator analyzed. |
---|
140 | * eg: weka.attributeSelection.CfsSubsetEval</pre> |
---|
141 | * |
---|
142 | * <pre> -search name [options] |
---|
143 | * Full name and options of the search method analyzed. |
---|
144 | * eg: weka.attributeSelection.Ranker</pre> |
---|
145 | * |
---|
146 | * <pre> -test <eval|search> |
---|
147 | * The scheme to test, either the evaluator or the search method. |
---|
148 | * (Default: eval)</pre> |
---|
149 | * |
---|
150 | * <pre> |
---|
151 | * Options specific to evaluator weka.attributeSelection.CfsSubsetEval: |
---|
152 | * </pre> |
---|
153 | * |
---|
154 | * <pre> -M |
---|
155 | * Treat missing values as a seperate value.</pre> |
---|
156 | * |
---|
157 | * <pre> -L |
---|
158 | * Don't include locally predictive attributes.</pre> |
---|
159 | * |
---|
160 | * <pre> |
---|
161 | * Options specific to search method weka.attributeSelection.Ranker: |
---|
162 | * </pre> |
---|
163 | * |
---|
164 | * <pre> -P <start set> |
---|
165 | * Specify a starting set of attributes. |
---|
166 | * Eg. 1,3,5-7. |
---|
167 | * Any starting attributes specified are |
---|
168 | * ignored during the ranking.</pre> |
---|
169 | * |
---|
170 | * <pre> -T <threshold> |
---|
171 | * Specify a theshold by which attributes |
---|
172 | * may be discarded from the ranking.</pre> |
---|
173 | * |
---|
174 | * <pre> -N <num to select> |
---|
175 | * Specify number of attributes to select</pre> |
---|
176 | * |
---|
177 | <!-- options-end --> |
---|
178 | * |
---|
179 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
180 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
181 | * @version $Revision: 4783 $ |
---|
182 | * @see TestInstances |
---|
183 | */ |
---|
184 | public class CheckAttributeSelection |
---|
185 | extends CheckScheme { |
---|
186 | |
---|
187 | /* |
---|
188 | * Note about test methods: |
---|
189 | * - methods return array of booleans |
---|
190 | * - first index: success or not |
---|
191 | * - second index: acceptable or not (e.g., Exception is OK) |
---|
192 | * |
---|
193 | * FracPete (fracpete at waikato dot ac dot nz) |
---|
194 | */ |
---|
195 | |
---|
196 | /*** The evaluator to be examined */ |
---|
197 | protected ASEvaluation m_Evaluator = new CfsSubsetEval(); |
---|
198 | |
---|
199 | /*** The search method to be used */ |
---|
200 | protected ASSearch m_Search = new Ranker(); |
---|
201 | |
---|
202 | /** whether to test the evaluator (default) or the search method */ |
---|
203 | protected boolean m_TestEvaluator = true; |
---|
204 | |
---|
205 | /** |
---|
206 | * Returns an enumeration describing the available options. |
---|
207 | * |
---|
208 | * @return an enumeration of all the available options. |
---|
209 | */ |
---|
210 | public Enumeration listOptions() { |
---|
211 | Vector result = new Vector(); |
---|
212 | |
---|
213 | Enumeration en = super.listOptions(); |
---|
214 | while (en.hasMoreElements()) |
---|
215 | result.addElement(en.nextElement()); |
---|
216 | |
---|
217 | result.addElement(new Option( |
---|
218 | "\tFull name and options of the evaluator analyzed.\n" |
---|
219 | +"\teg: weka.attributeSelection.CfsSubsetEval", |
---|
220 | "eval", 1, "-eval name [options]")); |
---|
221 | |
---|
222 | result.addElement(new Option( |
---|
223 | "\tFull name and options of the search method analyzed.\n" |
---|
224 | +"\teg: weka.attributeSelection.Ranker", |
---|
225 | "search", 1, "-search name [options]")); |
---|
226 | |
---|
227 | result.addElement(new Option( |
---|
228 | "\tThe scheme to test, either the evaluator or the search method.\n" |
---|
229 | +"\t(Default: eval)", |
---|
230 | "test", 1, "-test <eval|search>")); |
---|
231 | |
---|
232 | if ((m_Evaluator != null) && (m_Evaluator instanceof OptionHandler)) { |
---|
233 | result.addElement(new Option("", "", 0, |
---|
234 | "\nOptions specific to evaluator " |
---|
235 | + m_Evaluator.getClass().getName() |
---|
236 | + ":")); |
---|
237 | Enumeration enm = ((OptionHandler) m_Evaluator).listOptions(); |
---|
238 | while (enm.hasMoreElements()) |
---|
239 | result.addElement(enm.nextElement()); |
---|
240 | } |
---|
241 | |
---|
242 | if ((m_Search != null) && (m_Search instanceof OptionHandler)) { |
---|
243 | result.addElement(new Option("", "", 0, |
---|
244 | "\nOptions specific to search method " |
---|
245 | + m_Search.getClass().getName() |
---|
246 | + ":")); |
---|
247 | Enumeration enm = ((OptionHandler) m_Search).listOptions(); |
---|
248 | while (enm.hasMoreElements()) |
---|
249 | result.addElement(enm.nextElement()); |
---|
250 | } |
---|
251 | |
---|
252 | return result.elements(); |
---|
253 | } |
---|
254 | |
---|
255 | /** |
---|
256 | * Parses a given list of options. <p/> |
---|
257 | * |
---|
258 | <!-- options-start --> |
---|
259 | * Valid options are: <p/> |
---|
260 | * |
---|
261 | * <pre> -D |
---|
262 | * Turn on debugging output.</pre> |
---|
263 | * |
---|
264 | * <pre> -S |
---|
265 | * Silent mode - prints nothing to stdout.</pre> |
---|
266 | * |
---|
267 | * <pre> -N <num> |
---|
268 | * The number of instances in the datasets (default 20).</pre> |
---|
269 | * |
---|
270 | * <pre> -nominal <num> |
---|
271 | * The number of nominal attributes (default 2).</pre> |
---|
272 | * |
---|
273 | * <pre> -nominal-values <num> |
---|
274 | * The number of values for nominal attributes (default 1).</pre> |
---|
275 | * |
---|
276 | * <pre> -numeric <num> |
---|
277 | * The number of numeric attributes (default 1).</pre> |
---|
278 | * |
---|
279 | * <pre> -string <num> |
---|
280 | * The number of string attributes (default 1).</pre> |
---|
281 | * |
---|
282 | * <pre> -date <num> |
---|
283 | * The number of date attributes (default 1).</pre> |
---|
284 | * |
---|
285 | * <pre> -relational <num> |
---|
286 | * The number of relational attributes (default 1).</pre> |
---|
287 | * |
---|
288 | * <pre> -num-instances-relational <num> |
---|
289 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
290 | * |
---|
291 | * <pre> -words <comma-separated-list> |
---|
292 | * The words to use in string attributes.</pre> |
---|
293 | * |
---|
294 | * <pre> -word-separators <chars> |
---|
295 | * The word separators to use in string attributes.</pre> |
---|
296 | * |
---|
297 | * <pre> -eval name [options] |
---|
298 | * Full name and options of the evaluator analyzed. |
---|
299 | * eg: weka.attributeSelection.CfsSubsetEval</pre> |
---|
300 | * |
---|
301 | * <pre> -search name [options] |
---|
302 | * Full name and options of the search method analyzed. |
---|
303 | * eg: weka.attributeSelection.Ranker</pre> |
---|
304 | * |
---|
305 | * <pre> -test <eval|search> |
---|
306 | * The scheme to test, either the evaluator or the search method. |
---|
307 | * (Default: eval)</pre> |
---|
308 | * |
---|
309 | * <pre> |
---|
310 | * Options specific to evaluator weka.attributeSelection.CfsSubsetEval: |
---|
311 | * </pre> |
---|
312 | * |
---|
313 | * <pre> -M |
---|
314 | * Treat missing values as a seperate value.</pre> |
---|
315 | * |
---|
316 | * <pre> -L |
---|
317 | * Don't include locally predictive attributes.</pre> |
---|
318 | * |
---|
319 | * <pre> |
---|
320 | * Options specific to search method weka.attributeSelection.Ranker: |
---|
321 | * </pre> |
---|
322 | * |
---|
323 | * <pre> -P <start set> |
---|
324 | * Specify a starting set of attributes. |
---|
325 | * Eg. 1,3,5-7. |
---|
326 | * Any starting attributes specified are |
---|
327 | * ignored during the ranking.</pre> |
---|
328 | * |
---|
329 | * <pre> -T <threshold> |
---|
330 | * Specify a theshold by which attributes |
---|
331 | * may be discarded from the ranking.</pre> |
---|
332 | * |
---|
333 | * <pre> -N <num to select> |
---|
334 | * Specify number of attributes to select</pre> |
---|
335 | * |
---|
336 | <!-- options-end --> |
---|
337 | * |
---|
338 | * @param options the list of options as an array of strings |
---|
339 | * @throws Exception if an option is not supported |
---|
340 | */ |
---|
341 | public void setOptions(String[] options) throws Exception { |
---|
342 | String tmpStr; |
---|
343 | String[] tmpOptions; |
---|
344 | |
---|
345 | super.setOptions(options); |
---|
346 | |
---|
347 | tmpStr = Utils.getOption("eval", options); |
---|
348 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
349 | if (tmpOptions.length != 0) { |
---|
350 | tmpStr = tmpOptions[0]; |
---|
351 | tmpOptions[0] = ""; |
---|
352 | setEvaluator( |
---|
353 | (ASEvaluation) forName( |
---|
354 | "weka.attributeSelection", |
---|
355 | ASEvaluation.class, |
---|
356 | tmpStr, |
---|
357 | tmpOptions)); |
---|
358 | } |
---|
359 | |
---|
360 | tmpStr = Utils.getOption("search", options); |
---|
361 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
362 | if (tmpOptions.length != 0) { |
---|
363 | tmpStr = tmpOptions[0]; |
---|
364 | tmpOptions[0] = ""; |
---|
365 | setSearch( |
---|
366 | (ASSearch) forName( |
---|
367 | "weka.attributeSelection", |
---|
368 | ASSearch.class, |
---|
369 | tmpStr, |
---|
370 | tmpOptions)); |
---|
371 | } |
---|
372 | |
---|
373 | tmpStr = Utils.getOption("test", options); |
---|
374 | setTestEvaluator(!tmpStr.equalsIgnoreCase("search")); |
---|
375 | } |
---|
376 | |
---|
377 | /** |
---|
378 | * Gets the current settings of the CheckAttributeSelection. |
---|
379 | * |
---|
380 | * @return an array of strings suitable for passing to setOptions |
---|
381 | */ |
---|
382 | public String[] getOptions() { |
---|
383 | Vector result; |
---|
384 | String[] options; |
---|
385 | int i; |
---|
386 | |
---|
387 | result = new Vector(); |
---|
388 | |
---|
389 | options = super.getOptions(); |
---|
390 | for (i = 0; i < options.length; i++) |
---|
391 | result.add(options[i]); |
---|
392 | |
---|
393 | result.add("-eval"); |
---|
394 | if (getEvaluator() instanceof OptionHandler) |
---|
395 | result.add( |
---|
396 | getEvaluator().getClass().getName() |
---|
397 | + " " |
---|
398 | + Utils.joinOptions(((OptionHandler) getEvaluator()).getOptions())); |
---|
399 | else |
---|
400 | result.add( |
---|
401 | getEvaluator().getClass().getName()); |
---|
402 | |
---|
403 | result.add("-search"); |
---|
404 | if (getSearch() instanceof OptionHandler) |
---|
405 | result.add( |
---|
406 | getSearch().getClass().getName() |
---|
407 | + " " |
---|
408 | + Utils.joinOptions(((OptionHandler) getSearch()).getOptions())); |
---|
409 | else |
---|
410 | result.add( |
---|
411 | getSearch().getClass().getName()); |
---|
412 | |
---|
413 | result.add("-test"); |
---|
414 | if (getTestEvaluator()) |
---|
415 | result.add("eval"); |
---|
416 | else |
---|
417 | result.add("search"); |
---|
418 | |
---|
419 | return (String[]) result.toArray(new String[result.size()]); |
---|
420 | } |
---|
421 | |
---|
422 | /** |
---|
423 | * Begin the tests, reporting results to System.out |
---|
424 | */ |
---|
425 | public void doTests() { |
---|
426 | |
---|
427 | if (getTestObject() == null) { |
---|
428 | println("\n=== No scheme set ==="); |
---|
429 | return; |
---|
430 | } |
---|
431 | println("\n=== Check on scheme: " |
---|
432 | + getTestObject().getClass().getName() |
---|
433 | + " ===\n"); |
---|
434 | |
---|
435 | // Start tests |
---|
436 | m_ClasspathProblems = false; |
---|
437 | println("--> Checking for interfaces"); |
---|
438 | canTakeOptions(); |
---|
439 | boolean weightedInstancesHandler = weightedInstancesHandler()[0]; |
---|
440 | boolean multiInstanceHandler = multiInstanceHandler()[0]; |
---|
441 | println("--> Scheme tests"); |
---|
442 | declaresSerialVersionUID(); |
---|
443 | testsPerClassType(Attribute.NOMINAL, weightedInstancesHandler, multiInstanceHandler); |
---|
444 | testsPerClassType(Attribute.NUMERIC, weightedInstancesHandler, multiInstanceHandler); |
---|
445 | testsPerClassType(Attribute.DATE, weightedInstancesHandler, multiInstanceHandler); |
---|
446 | testsPerClassType(Attribute.STRING, weightedInstancesHandler, multiInstanceHandler); |
---|
447 | testsPerClassType(Attribute.RELATIONAL, weightedInstancesHandler, multiInstanceHandler); |
---|
448 | } |
---|
449 | |
---|
450 | /** |
---|
451 | * Set the evaluator to test. |
---|
452 | * |
---|
453 | * @param value the evaluator to use. |
---|
454 | */ |
---|
455 | public void setEvaluator(ASEvaluation value) { |
---|
456 | m_Evaluator = value; |
---|
457 | } |
---|
458 | |
---|
459 | /** |
---|
460 | * Get the current evaluator |
---|
461 | * |
---|
462 | * @return the current evaluator |
---|
463 | */ |
---|
464 | public ASEvaluation getEvaluator() { |
---|
465 | return m_Evaluator; |
---|
466 | } |
---|
467 | |
---|
468 | /** |
---|
469 | * Set the search method to test. |
---|
470 | * |
---|
471 | * @param value the search method to use. |
---|
472 | */ |
---|
473 | public void setSearch(ASSearch value) { |
---|
474 | m_Search = value; |
---|
475 | } |
---|
476 | |
---|
477 | /** |
---|
478 | * Get the current search method |
---|
479 | * |
---|
480 | * @return the current search method |
---|
481 | */ |
---|
482 | public ASSearch getSearch() { |
---|
483 | return m_Search; |
---|
484 | } |
---|
485 | |
---|
486 | /** |
---|
487 | * Sets whether the evaluator or the search method is being tested. |
---|
488 | * |
---|
489 | * @param value if true then the evaluator will be tested |
---|
490 | */ |
---|
491 | public void setTestEvaluator(boolean value) { |
---|
492 | m_TestEvaluator = value; |
---|
493 | } |
---|
494 | |
---|
495 | /** |
---|
496 | * Gets whether the evaluator is being tested or the search method. |
---|
497 | * |
---|
498 | * @return true if the evaluator is being tested |
---|
499 | */ |
---|
500 | public boolean getTestEvaluator() { |
---|
501 | return m_TestEvaluator; |
---|
502 | } |
---|
503 | |
---|
504 | /** |
---|
505 | * returns either the evaluator or the search method. |
---|
506 | * |
---|
507 | * @return the object to be tested |
---|
508 | * @see #m_TestEvaluator |
---|
509 | */ |
---|
510 | protected Object getTestObject() { |
---|
511 | if (getTestEvaluator()) |
---|
512 | return getEvaluator(); |
---|
513 | else |
---|
514 | return getSearch(); |
---|
515 | } |
---|
516 | |
---|
517 | /** |
---|
518 | * returns deep copies of the given object |
---|
519 | * |
---|
520 | * @param obj the object to copy |
---|
521 | * @param num the number of copies |
---|
522 | * @return the deep copies |
---|
523 | * @throws Exception if copying fails |
---|
524 | */ |
---|
525 | protected Object[] makeCopies(Object obj, int num) throws Exception { |
---|
526 | if (obj == null) |
---|
527 | throw new Exception("No object set"); |
---|
528 | |
---|
529 | Object[] objs = new Object[num]; |
---|
530 | SerializedObject so = new SerializedObject(obj); |
---|
531 | for(int i = 0; i < objs.length; i++) { |
---|
532 | objs[i] = so.getObject(); |
---|
533 | } |
---|
534 | |
---|
535 | return objs; |
---|
536 | } |
---|
537 | |
---|
538 | /** |
---|
539 | * Performs a attribute selection with the given search and evaluation scheme |
---|
540 | * on the provided data. The generated AttributeSelection object is returned. |
---|
541 | * |
---|
542 | * @param search the search scheme to use |
---|
543 | * @param eval the evaluator to use |
---|
544 | * @param data the data to work on |
---|
545 | * @return the used attribute selection object |
---|
546 | * @throws Exception if the attribute selection fails |
---|
547 | */ |
---|
548 | protected AttributeSelection search(ASSearch search, ASEvaluation eval, |
---|
549 | Instances data) throws Exception { |
---|
550 | |
---|
551 | AttributeSelection result; |
---|
552 | |
---|
553 | result = new AttributeSelection(); |
---|
554 | result.setSeed(42); |
---|
555 | result.setSearch(search); |
---|
556 | result.setEvaluator(eval); |
---|
557 | result.SelectAttributes(data); |
---|
558 | |
---|
559 | return result; |
---|
560 | } |
---|
561 | |
---|
562 | /** |
---|
563 | * Run a battery of tests for a given class attribute type |
---|
564 | * |
---|
565 | * @param classType true if the class attribute should be numeric |
---|
566 | * @param weighted true if the scheme says it handles weights |
---|
567 | * @param multiInstance true if the scheme handles multi-instance data |
---|
568 | */ |
---|
569 | protected void testsPerClassType(int classType, |
---|
570 | boolean weighted, |
---|
571 | boolean multiInstance) { |
---|
572 | |
---|
573 | boolean PNom = canPredict(true, false, false, false, false, multiInstance, classType)[0]; |
---|
574 | boolean PNum = canPredict(false, true, false, false, false, multiInstance, classType)[0]; |
---|
575 | boolean PStr = canPredict(false, false, true, false, false, multiInstance, classType)[0]; |
---|
576 | boolean PDat = canPredict(false, false, false, true, false, multiInstance, classType)[0]; |
---|
577 | boolean PRel; |
---|
578 | if (!multiInstance) |
---|
579 | PRel = canPredict(false, false, false, false, true, multiInstance, classType)[0]; |
---|
580 | else |
---|
581 | PRel = false; |
---|
582 | |
---|
583 | if (PNom || PNum || PStr || PDat || PRel) { |
---|
584 | if (weighted) |
---|
585 | instanceWeights(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
586 | |
---|
587 | if (classType == Attribute.NOMINAL) |
---|
588 | canHandleNClasses(PNom, PNum, PStr, PDat, PRel, multiInstance, 4); |
---|
589 | |
---|
590 | if (!multiInstance) { |
---|
591 | canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 0); |
---|
592 | canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 1); |
---|
593 | } |
---|
594 | |
---|
595 | canHandleZeroTraining(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
596 | boolean handleMissingPredictors = canHandleMissing(PNom, PNum, PStr, PDat, PRel, |
---|
597 | multiInstance, classType, |
---|
598 | true, false, 20)[0]; |
---|
599 | if (handleMissingPredictors) |
---|
600 | canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, true, false, 100); |
---|
601 | |
---|
602 | boolean handleMissingClass = canHandleMissing(PNom, PNum, PStr, PDat, PRel, |
---|
603 | multiInstance, classType, |
---|
604 | false, true, 20)[0]; |
---|
605 | if (handleMissingClass) |
---|
606 | canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, false, true, 100); |
---|
607 | |
---|
608 | correctSearchInitialisation(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); |
---|
609 | datasetIntegrity(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, |
---|
610 | handleMissingPredictors, handleMissingClass); |
---|
611 | } |
---|
612 | } |
---|
613 | |
---|
614 | /** |
---|
615 | * Checks whether the scheme can take command line options. |
---|
616 | * |
---|
617 | * @return index 0 is true if the scheme can take options |
---|
618 | */ |
---|
619 | protected boolean[] canTakeOptions() { |
---|
620 | |
---|
621 | boolean[] result = new boolean[2]; |
---|
622 | |
---|
623 | print("options..."); |
---|
624 | if (getTestObject() instanceof OptionHandler) { |
---|
625 | println("yes"); |
---|
626 | if (m_Debug) { |
---|
627 | println("\n=== Full report ==="); |
---|
628 | Enumeration enu = ((OptionHandler) getTestObject()).listOptions(); |
---|
629 | while (enu.hasMoreElements()) { |
---|
630 | Option option = (Option) enu.nextElement(); |
---|
631 | print(option.synopsis() + "\n" |
---|
632 | + option.description() + "\n"); |
---|
633 | } |
---|
634 | println("\n"); |
---|
635 | } |
---|
636 | result[0] = true; |
---|
637 | } |
---|
638 | else { |
---|
639 | println("no"); |
---|
640 | result[0] = false; |
---|
641 | } |
---|
642 | |
---|
643 | return result; |
---|
644 | } |
---|
645 | |
---|
646 | /** |
---|
647 | * Checks whether the scheme says it can handle instance weights. |
---|
648 | * |
---|
649 | * @return true if the scheme handles instance weights |
---|
650 | */ |
---|
651 | protected boolean[] weightedInstancesHandler() { |
---|
652 | |
---|
653 | boolean[] result = new boolean[2]; |
---|
654 | |
---|
655 | print("weighted instances scheme..."); |
---|
656 | if (getTestObject() instanceof WeightedInstancesHandler) { |
---|
657 | println("yes"); |
---|
658 | result[0] = true; |
---|
659 | } |
---|
660 | else { |
---|
661 | println("no"); |
---|
662 | result[0] = false; |
---|
663 | } |
---|
664 | |
---|
665 | return result; |
---|
666 | } |
---|
667 | |
---|
668 | /** |
---|
669 | * Checks whether the scheme handles multi-instance data. |
---|
670 | * |
---|
671 | * @return true if the scheme handles multi-instance data |
---|
672 | */ |
---|
673 | protected boolean[] multiInstanceHandler() { |
---|
674 | boolean[] result = new boolean[2]; |
---|
675 | |
---|
676 | print("multi-instance scheme..."); |
---|
677 | if (getTestObject() instanceof MultiInstanceCapabilitiesHandler) { |
---|
678 | println("yes"); |
---|
679 | result[0] = true; |
---|
680 | } |
---|
681 | else { |
---|
682 | println("no"); |
---|
683 | result[0] = false; |
---|
684 | } |
---|
685 | |
---|
686 | return result; |
---|
687 | } |
---|
688 | |
---|
689 | /** |
---|
690 | * tests for a serialVersionUID. Fails in case the schemes don't declare |
---|
691 | * a UID (both must!). |
---|
692 | * |
---|
693 | * @return index 0 is true if the scheme declares a UID |
---|
694 | */ |
---|
695 | protected boolean[] declaresSerialVersionUID() { |
---|
696 | boolean[] result = new boolean[2]; |
---|
697 | boolean eval; |
---|
698 | boolean search; |
---|
699 | |
---|
700 | print("serialVersionUID..."); |
---|
701 | |
---|
702 | eval = !SerializationHelper.needsUID(m_Evaluator.getClass()); |
---|
703 | search = !SerializationHelper.needsUID(m_Search.getClass()); |
---|
704 | |
---|
705 | result[0] = eval && search; |
---|
706 | |
---|
707 | if (result[0]) |
---|
708 | println("yes"); |
---|
709 | else |
---|
710 | println("no"); |
---|
711 | |
---|
712 | return result; |
---|
713 | } |
---|
714 | |
---|
715 | /** |
---|
716 | * Checks basic prediction of the scheme, for simple non-troublesome |
---|
717 | * datasets. |
---|
718 | * |
---|
719 | * @param nominalPredictor if true use nominal predictor attributes |
---|
720 | * @param numericPredictor if true use numeric predictor attributes |
---|
721 | * @param stringPredictor if true use string predictor attributes |
---|
722 | * @param datePredictor if true use date predictor attributes |
---|
723 | * @param relationalPredictor if true use relational predictor attributes |
---|
724 | * @param multiInstance whether multi-instance is needed |
---|
725 | * @param classType the class type (NOMINAL, NUMERIC, etc.) |
---|
726 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
727 | * was acceptable |
---|
728 | */ |
---|
729 | protected boolean[] canPredict( |
---|
730 | boolean nominalPredictor, |
---|
731 | boolean numericPredictor, |
---|
732 | boolean stringPredictor, |
---|
733 | boolean datePredictor, |
---|
734 | boolean relationalPredictor, |
---|
735 | boolean multiInstance, |
---|
736 | int classType) { |
---|
737 | |
---|
738 | print("basic predict"); |
---|
739 | printAttributeSummary( |
---|
740 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
741 | print("..."); |
---|
742 | FastVector accepts = new FastVector(); |
---|
743 | accepts.addElement("unary"); |
---|
744 | accepts.addElement("binary"); |
---|
745 | accepts.addElement("nominal"); |
---|
746 | accepts.addElement("numeric"); |
---|
747 | accepts.addElement("string"); |
---|
748 | accepts.addElement("date"); |
---|
749 | accepts.addElement("relational"); |
---|
750 | accepts.addElement("multi-instance"); |
---|
751 | accepts.addElement("not in classpath"); |
---|
752 | int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0; |
---|
753 | boolean predictorMissing = false, classMissing = false; |
---|
754 | |
---|
755 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
756 | datePredictor, relationalPredictor, |
---|
757 | multiInstance, |
---|
758 | classType, |
---|
759 | missingLevel, predictorMissing, classMissing, |
---|
760 | numTrain, numClasses, |
---|
761 | accepts); |
---|
762 | } |
---|
763 | |
---|
764 | /** |
---|
765 | * Checks whether nominal schemes can handle more than two classes. |
---|
766 | * If a scheme is only designed for two-class problems it should |
---|
767 | * throw an appropriate exception for multi-class problems. |
---|
768 | * |
---|
769 | * @param nominalPredictor if true use nominal predictor attributes |
---|
770 | * @param numericPredictor if true use numeric predictor attributes |
---|
771 | * @param stringPredictor if true use string predictor attributes |
---|
772 | * @param datePredictor if true use date predictor attributes |
---|
773 | * @param relationalPredictor if true use relational predictor attributes |
---|
774 | * @param multiInstance whether multi-instance is needed |
---|
775 | * @param numClasses the number of classes to test |
---|
776 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
777 | * was acceptable |
---|
778 | */ |
---|
779 | protected boolean[] canHandleNClasses( |
---|
780 | boolean nominalPredictor, |
---|
781 | boolean numericPredictor, |
---|
782 | boolean stringPredictor, |
---|
783 | boolean datePredictor, |
---|
784 | boolean relationalPredictor, |
---|
785 | boolean multiInstance, |
---|
786 | int numClasses) { |
---|
787 | |
---|
788 | print("more than two class problems"); |
---|
789 | printAttributeSummary( |
---|
790 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL); |
---|
791 | print("..."); |
---|
792 | FastVector accepts = new FastVector(); |
---|
793 | accepts.addElement("number"); |
---|
794 | accepts.addElement("class"); |
---|
795 | int numTrain = getNumInstances(), missingLevel = 0; |
---|
796 | boolean predictorMissing = false, classMissing = false; |
---|
797 | |
---|
798 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
799 | datePredictor, relationalPredictor, |
---|
800 | multiInstance, |
---|
801 | Attribute.NOMINAL, |
---|
802 | missingLevel, predictorMissing, classMissing, |
---|
803 | numTrain, numClasses, |
---|
804 | accepts); |
---|
805 | } |
---|
806 | |
---|
807 | /** |
---|
808 | * Checks whether the scheme can handle class attributes as Nth attribute. |
---|
809 | * |
---|
810 | * @param nominalPredictor if true use nominal predictor attributes |
---|
811 | * @param numericPredictor if true use numeric predictor attributes |
---|
812 | * @param stringPredictor if true use string predictor attributes |
---|
813 | * @param datePredictor if true use date predictor attributes |
---|
814 | * @param relationalPredictor if true use relational predictor attributes |
---|
815 | * @param multiInstance whether multi-instance is needed |
---|
816 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
817 | * @param classIndex the index of the class attribute (0-based, -1 means last attribute) |
---|
818 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
819 | * was acceptable |
---|
820 | * @see TestInstances#CLASS_IS_LAST |
---|
821 | */ |
---|
822 | protected boolean[] canHandleClassAsNthAttribute( |
---|
823 | boolean nominalPredictor, |
---|
824 | boolean numericPredictor, |
---|
825 | boolean stringPredictor, |
---|
826 | boolean datePredictor, |
---|
827 | boolean relationalPredictor, |
---|
828 | boolean multiInstance, |
---|
829 | int classType, |
---|
830 | int classIndex) { |
---|
831 | |
---|
832 | if (classIndex == TestInstances.CLASS_IS_LAST) |
---|
833 | print("class attribute as last attribute"); |
---|
834 | else |
---|
835 | print("class attribute as " + (classIndex + 1) + ". attribute"); |
---|
836 | printAttributeSummary( |
---|
837 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
838 | print("..."); |
---|
839 | FastVector accepts = new FastVector(); |
---|
840 | int numTrain = getNumInstances(), numClasses = 2, missingLevel = 0; |
---|
841 | boolean predictorMissing = false, classMissing = false; |
---|
842 | |
---|
843 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
844 | datePredictor, relationalPredictor, |
---|
845 | multiInstance, |
---|
846 | classType, |
---|
847 | classIndex, |
---|
848 | missingLevel, predictorMissing, classMissing, |
---|
849 | numTrain, numClasses, |
---|
850 | accepts); |
---|
851 | } |
---|
852 | |
---|
853 | /** |
---|
854 | * Checks whether the scheme can handle zero training instances. |
---|
855 | * |
---|
856 | * @param nominalPredictor if true use nominal predictor attributes |
---|
857 | * @param numericPredictor if true use numeric predictor attributes |
---|
858 | * @param stringPredictor if true use string predictor attributes |
---|
859 | * @param datePredictor if true use date predictor attributes |
---|
860 | * @param relationalPredictor if true use relational predictor attributes |
---|
861 | * @param multiInstance whether multi-instance is needed |
---|
862 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
863 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
864 | * was acceptable |
---|
865 | */ |
---|
866 | protected boolean[] canHandleZeroTraining( |
---|
867 | boolean nominalPredictor, |
---|
868 | boolean numericPredictor, |
---|
869 | boolean stringPredictor, |
---|
870 | boolean datePredictor, |
---|
871 | boolean relationalPredictor, |
---|
872 | boolean multiInstance, |
---|
873 | int classType) { |
---|
874 | |
---|
875 | print("handle zero training instances"); |
---|
876 | printAttributeSummary( |
---|
877 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
878 | print("..."); |
---|
879 | FastVector accepts = new FastVector(); |
---|
880 | accepts.addElement("train"); |
---|
881 | accepts.addElement("value"); |
---|
882 | int numTrain = 0, numClasses = 2, missingLevel = 0; |
---|
883 | boolean predictorMissing = false, classMissing = false; |
---|
884 | |
---|
885 | return runBasicTest( |
---|
886 | nominalPredictor, numericPredictor, stringPredictor, |
---|
887 | datePredictor, relationalPredictor, |
---|
888 | multiInstance, |
---|
889 | classType, |
---|
890 | missingLevel, predictorMissing, classMissing, |
---|
891 | numTrain, numClasses, |
---|
892 | accepts); |
---|
893 | } |
---|
894 | |
---|
895 | /** |
---|
896 | * Checks whether the scheme correctly initialises models when |
---|
897 | * ASSearch.search is called. This test calls search with |
---|
898 | * one training dataset. ASSearch is then called on a training set with |
---|
899 | * different structure, and then again with the original training set. |
---|
900 | * If the equals method of the ASEvaluation class returns false, this is |
---|
901 | * noted as incorrect search initialisation. |
---|
902 | * |
---|
903 | * @param nominalPredictor if true use nominal predictor attributes |
---|
904 | * @param numericPredictor if true use numeric predictor attributes |
---|
905 | * @param stringPredictor if true use string predictor attributes |
---|
906 | * @param datePredictor if true use date predictor attributes |
---|
907 | * @param relationalPredictor if true use relational predictor attributes |
---|
908 | * @param multiInstance whether multi-instance is needed |
---|
909 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
910 | * @return index 0 is true if the test was passed, index 1 is always false |
---|
911 | */ |
---|
912 | protected boolean[] correctSearchInitialisation( |
---|
913 | boolean nominalPredictor, |
---|
914 | boolean numericPredictor, |
---|
915 | boolean stringPredictor, |
---|
916 | boolean datePredictor, |
---|
917 | boolean relationalPredictor, |
---|
918 | boolean multiInstance, |
---|
919 | int classType) { |
---|
920 | |
---|
921 | boolean[] result = new boolean[2]; |
---|
922 | print("correct initialisation during search"); |
---|
923 | printAttributeSummary( |
---|
924 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
925 | print("..."); |
---|
926 | int numTrain = getNumInstances(), |
---|
927 | numClasses = 2, missingLevel = 0; |
---|
928 | boolean predictorMissing = false, classMissing = false; |
---|
929 | |
---|
930 | Instances train1 = null; |
---|
931 | Instances train2 = null; |
---|
932 | ASSearch search = null; |
---|
933 | ASEvaluation evaluation1A = null; |
---|
934 | ASEvaluation evaluation1B = null; |
---|
935 | ASEvaluation evaluation2 = null; |
---|
936 | AttributeSelection attsel1A = null; |
---|
937 | AttributeSelection attsel1B = null; |
---|
938 | int stage = 0; |
---|
939 | try { |
---|
940 | |
---|
941 | // Make two train sets with different numbers of attributes |
---|
942 | train1 = makeTestDataset(42, numTrain, |
---|
943 | nominalPredictor ? getNumNominal() : 0, |
---|
944 | numericPredictor ? getNumNumeric() : 0, |
---|
945 | stringPredictor ? getNumString() : 0, |
---|
946 | datePredictor ? getNumDate() : 0, |
---|
947 | relationalPredictor ? getNumRelational() : 0, |
---|
948 | numClasses, |
---|
949 | classType, |
---|
950 | multiInstance); |
---|
951 | train2 = makeTestDataset(84, numTrain, |
---|
952 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
953 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
954 | stringPredictor ? getNumString() : 0, |
---|
955 | datePredictor ? getNumDate() : 0, |
---|
956 | relationalPredictor ? getNumRelational() : 0, |
---|
957 | numClasses, |
---|
958 | classType, |
---|
959 | multiInstance); |
---|
960 | if (missingLevel > 0) { |
---|
961 | addMissing(train1, missingLevel, predictorMissing, classMissing); |
---|
962 | addMissing(train2, missingLevel, predictorMissing, classMissing); |
---|
963 | } |
---|
964 | |
---|
965 | search = ASSearch.makeCopies(getSearch(), 1)[0]; |
---|
966 | evaluation1A = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
967 | evaluation1B = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
968 | evaluation2 = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
969 | } catch (Exception ex) { |
---|
970 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
971 | } |
---|
972 | try { |
---|
973 | stage = 0; |
---|
974 | attsel1A = search(search, evaluation1A, train1); |
---|
975 | |
---|
976 | stage = 1; |
---|
977 | search(search, evaluation2, train2); |
---|
978 | |
---|
979 | stage = 2; |
---|
980 | attsel1B = search(search, evaluation1B, train1); |
---|
981 | |
---|
982 | stage = 3; |
---|
983 | if (!attsel1A.toResultsString().equals(attsel1B.toResultsString())) { |
---|
984 | if (m_Debug) { |
---|
985 | println( |
---|
986 | "\n=== Full report ===\n" |
---|
987 | + "\nFirst search\n" |
---|
988 | + attsel1A.toResultsString() |
---|
989 | + "\n\n"); |
---|
990 | println( |
---|
991 | "\nSecond search\n" |
---|
992 | + attsel1B.toResultsString() |
---|
993 | + "\n\n"); |
---|
994 | } |
---|
995 | throw new Exception("Results differ between search calls"); |
---|
996 | } |
---|
997 | println("yes"); |
---|
998 | result[0] = true; |
---|
999 | |
---|
1000 | if (false && m_Debug) { |
---|
1001 | println( |
---|
1002 | "\n=== Full report ===\n" |
---|
1003 | + "\nFirst search\n" |
---|
1004 | + evaluation1A.toString() |
---|
1005 | + "\n\n"); |
---|
1006 | println( |
---|
1007 | "\nSecond search\n" |
---|
1008 | + evaluation1B.toString() |
---|
1009 | + "\n\n"); |
---|
1010 | } |
---|
1011 | } |
---|
1012 | catch (Exception ex) { |
---|
1013 | println("no"); |
---|
1014 | result[0] = false; |
---|
1015 | if (m_Debug) { |
---|
1016 | println("\n=== Full Report ==="); |
---|
1017 | print("Problem during training"); |
---|
1018 | switch (stage) { |
---|
1019 | case 0: |
---|
1020 | print(" of dataset 1"); |
---|
1021 | break; |
---|
1022 | case 1: |
---|
1023 | print(" of dataset 2"); |
---|
1024 | break; |
---|
1025 | case 2: |
---|
1026 | print(" of dataset 1 (2nd build)"); |
---|
1027 | break; |
---|
1028 | case 3: |
---|
1029 | print(", comparing results from builds of dataset 1"); |
---|
1030 | break; |
---|
1031 | } |
---|
1032 | println(": " + ex.getMessage() + "\n"); |
---|
1033 | println("here are the datasets:\n"); |
---|
1034 | println("=== Train1 Dataset ===\n" |
---|
1035 | + train1.toString() + "\n"); |
---|
1036 | println("=== Train2 Dataset ===\n" |
---|
1037 | + train2.toString() + "\n"); |
---|
1038 | } |
---|
1039 | } |
---|
1040 | |
---|
1041 | return result; |
---|
1042 | } |
---|
1043 | |
---|
1044 | /** |
---|
1045 | * Checks basic missing value handling of the scheme. If the missing |
---|
1046 | * values cause an exception to be thrown by the scheme, this will be |
---|
1047 | * recorded. |
---|
1048 | * |
---|
1049 | * @param nominalPredictor if true use nominal predictor attributes |
---|
1050 | * @param numericPredictor if true use numeric predictor attributes |
---|
1051 | * @param stringPredictor if true use string predictor attributes |
---|
1052 | * @param datePredictor if true use date predictor attributes |
---|
1053 | * @param relationalPredictor if true use relational predictor attributes |
---|
1054 | * @param multiInstance whether multi-instance is needed |
---|
1055 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1056 | * @param predictorMissing true if the missing values may be in |
---|
1057 | * the predictors |
---|
1058 | * @param classMissing true if the missing values may be in the class |
---|
1059 | * @param missingLevel the percentage of missing values |
---|
1060 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
1061 | * was acceptable |
---|
1062 | */ |
---|
1063 | protected boolean[] canHandleMissing( |
---|
1064 | boolean nominalPredictor, |
---|
1065 | boolean numericPredictor, |
---|
1066 | boolean stringPredictor, |
---|
1067 | boolean datePredictor, |
---|
1068 | boolean relationalPredictor, |
---|
1069 | boolean multiInstance, |
---|
1070 | int classType, |
---|
1071 | boolean predictorMissing, |
---|
1072 | boolean classMissing, |
---|
1073 | int missingLevel) { |
---|
1074 | |
---|
1075 | if (missingLevel == 100) |
---|
1076 | print("100% "); |
---|
1077 | print("missing"); |
---|
1078 | if (predictorMissing) { |
---|
1079 | print(" predictor"); |
---|
1080 | if (classMissing) |
---|
1081 | print(" and"); |
---|
1082 | } |
---|
1083 | if (classMissing) |
---|
1084 | print(" class"); |
---|
1085 | print(" values"); |
---|
1086 | printAttributeSummary( |
---|
1087 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
1088 | print("..."); |
---|
1089 | FastVector accepts = new FastVector(); |
---|
1090 | accepts.addElement("missing"); |
---|
1091 | accepts.addElement("value"); |
---|
1092 | accepts.addElement("train"); |
---|
1093 | accepts.addElement("no attributes"); |
---|
1094 | int numTrain = getNumInstances(), numClasses = 2; |
---|
1095 | |
---|
1096 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
1097 | datePredictor, relationalPredictor, |
---|
1098 | multiInstance, |
---|
1099 | classType, |
---|
1100 | missingLevel, predictorMissing, classMissing, |
---|
1101 | numTrain, numClasses, |
---|
1102 | accepts); |
---|
1103 | } |
---|
1104 | |
---|
1105 | /** |
---|
1106 | * Checks whether the scheme can handle instance weights. |
---|
1107 | * This test compares the scheme performance on two datasets |
---|
1108 | * that are identical except for the training weights. If the |
---|
1109 | * results change, then the scheme must be using the weights. It |
---|
1110 | * may be possible to get a false positive from this test if the |
---|
1111 | * weight changes aren't significant enough to induce a change |
---|
1112 | * in scheme performance (but the weights are chosen to minimize |
---|
1113 | * the likelihood of this). |
---|
1114 | * |
---|
1115 | * @param nominalPredictor if true use nominal predictor attributes |
---|
1116 | * @param numericPredictor if true use numeric predictor attributes |
---|
1117 | * @param stringPredictor if true use string predictor attributes |
---|
1118 | * @param datePredictor if true use date predictor attributes |
---|
1119 | * @param relationalPredictor if true use relational predictor attributes |
---|
1120 | * @param multiInstance whether multi-instance is needed |
---|
1121 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1122 | * @return index 0 true if the test was passed |
---|
1123 | */ |
---|
1124 | protected boolean[] instanceWeights( |
---|
1125 | boolean nominalPredictor, |
---|
1126 | boolean numericPredictor, |
---|
1127 | boolean stringPredictor, |
---|
1128 | boolean datePredictor, |
---|
1129 | boolean relationalPredictor, |
---|
1130 | boolean multiInstance, |
---|
1131 | int classType) { |
---|
1132 | |
---|
1133 | print("scheme uses instance weights"); |
---|
1134 | printAttributeSummary( |
---|
1135 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
1136 | print("..."); |
---|
1137 | int numTrain = 2*getNumInstances(), |
---|
1138 | numClasses = 2, missingLevel = 0; |
---|
1139 | boolean predictorMissing = false, classMissing = false; |
---|
1140 | |
---|
1141 | boolean[] result = new boolean[2]; |
---|
1142 | Instances train = null; |
---|
1143 | ASSearch[] search = null; |
---|
1144 | ASEvaluation evaluationB = null; |
---|
1145 | ASEvaluation evaluationI = null; |
---|
1146 | AttributeSelection attselB = null; |
---|
1147 | AttributeSelection attselI = null; |
---|
1148 | boolean evalFail = false; |
---|
1149 | try { |
---|
1150 | train = makeTestDataset(42, numTrain, |
---|
1151 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
1152 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
1153 | stringPredictor ? getNumString() : 0, |
---|
1154 | datePredictor ? getNumDate() : 0, |
---|
1155 | relationalPredictor ? getNumRelational() : 0, |
---|
1156 | numClasses, |
---|
1157 | classType, |
---|
1158 | multiInstance); |
---|
1159 | if (missingLevel > 0) |
---|
1160 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
1161 | search = ASSearch.makeCopies(getSearch(), 2); |
---|
1162 | evaluationB = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
1163 | evaluationI = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
1164 | attselB = search(search[0], evaluationB, train); |
---|
1165 | } catch (Exception ex) { |
---|
1166 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
1167 | } |
---|
1168 | try { |
---|
1169 | |
---|
1170 | // Now modify instance weights and re-built/test |
---|
1171 | for (int i = 0; i < train.numInstances(); i++) { |
---|
1172 | train.instance(i).setWeight(0); |
---|
1173 | } |
---|
1174 | Random random = new Random(1); |
---|
1175 | for (int i = 0; i < train.numInstances() / 2; i++) { |
---|
1176 | int inst = Math.abs(random.nextInt()) % train.numInstances(); |
---|
1177 | int weight = Math.abs(random.nextInt()) % 10 + 1; |
---|
1178 | train.instance(inst).setWeight(weight); |
---|
1179 | } |
---|
1180 | attselI = search(search[1], evaluationI, train); |
---|
1181 | if (attselB.toResultsString().equals(attselI.toResultsString())) { |
---|
1182 | // println("no"); |
---|
1183 | evalFail = true; |
---|
1184 | throw new Exception("evalFail"); |
---|
1185 | } |
---|
1186 | |
---|
1187 | println("yes"); |
---|
1188 | result[0] = true; |
---|
1189 | } catch (Exception ex) { |
---|
1190 | println("no"); |
---|
1191 | result[0] = false; |
---|
1192 | |
---|
1193 | if (m_Debug) { |
---|
1194 | println("\n=== Full Report ==="); |
---|
1195 | |
---|
1196 | if (evalFail) { |
---|
1197 | println("Results don't differ between non-weighted and " |
---|
1198 | + "weighted instance models."); |
---|
1199 | println("Here are the results:\n"); |
---|
1200 | println("\nboth methods\n"); |
---|
1201 | println(evaluationB.toString()); |
---|
1202 | } else { |
---|
1203 | print("Problem during training"); |
---|
1204 | println(": " + ex.getMessage() + "\n"); |
---|
1205 | } |
---|
1206 | println("Here is the dataset:\n"); |
---|
1207 | println("=== Train Dataset ===\n" |
---|
1208 | + train.toString() + "\n"); |
---|
1209 | println("=== Train Weights ===\n"); |
---|
1210 | for (int i = 0; i < train.numInstances(); i++) { |
---|
1211 | println(" " + (i + 1) |
---|
1212 | + " " + train.instance(i).weight()); |
---|
1213 | } |
---|
1214 | } |
---|
1215 | } |
---|
1216 | |
---|
1217 | return result; |
---|
1218 | } |
---|
1219 | |
---|
1220 | /** |
---|
1221 | * Checks whether the scheme alters the training dataset during |
---|
1222 | * training. If the scheme needs to modify the training |
---|
1223 | * data it should take a copy of the training data. Currently checks |
---|
1224 | * for changes to header structure, number of instances, order of |
---|
1225 | * instances, instance weights. |
---|
1226 | * |
---|
1227 | * @param nominalPredictor if true use nominal predictor attributes |
---|
1228 | * @param numericPredictor if true use numeric predictor attributes |
---|
1229 | * @param stringPredictor if true use string predictor attributes |
---|
1230 | * @param datePredictor if true use date predictor attributes |
---|
1231 | * @param relationalPredictor if true use relational predictor attributes |
---|
1232 | * @param multiInstance whether multi-instance is needed |
---|
1233 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1234 | * @param predictorMissing true if we know the scheme can handle |
---|
1235 | * (at least) moderate missing predictor values |
---|
1236 | * @param classMissing true if we know the scheme can handle |
---|
1237 | * (at least) moderate missing class values |
---|
1238 | * @return index 0 is true if the test was passed |
---|
1239 | */ |
---|
1240 | protected boolean[] datasetIntegrity( |
---|
1241 | boolean nominalPredictor, |
---|
1242 | boolean numericPredictor, |
---|
1243 | boolean stringPredictor, |
---|
1244 | boolean datePredictor, |
---|
1245 | boolean relationalPredictor, |
---|
1246 | boolean multiInstance, |
---|
1247 | int classType, |
---|
1248 | boolean predictorMissing, |
---|
1249 | boolean classMissing) { |
---|
1250 | |
---|
1251 | print("scheme doesn't alter original datasets"); |
---|
1252 | printAttributeSummary( |
---|
1253 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); |
---|
1254 | print("..."); |
---|
1255 | int numTrain = getNumInstances(), |
---|
1256 | numClasses = 2, missingLevel = 20; |
---|
1257 | |
---|
1258 | boolean[] result = new boolean[2]; |
---|
1259 | Instances train = null; |
---|
1260 | Instances trainCopy = null; |
---|
1261 | ASSearch search = null; |
---|
1262 | ASEvaluation evaluation = null; |
---|
1263 | try { |
---|
1264 | train = makeTestDataset(42, numTrain, |
---|
1265 | nominalPredictor ? getNumNominal() : 0, |
---|
1266 | numericPredictor ? getNumNumeric() : 0, |
---|
1267 | stringPredictor ? getNumString() : 0, |
---|
1268 | datePredictor ? getNumDate() : 0, |
---|
1269 | relationalPredictor ? getNumRelational() : 0, |
---|
1270 | numClasses, |
---|
1271 | classType, |
---|
1272 | multiInstance); |
---|
1273 | if (missingLevel > 0) |
---|
1274 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
1275 | search = ASSearch.makeCopies(getSearch(), 1)[0]; |
---|
1276 | evaluation = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
1277 | trainCopy = new Instances(train); |
---|
1278 | } catch (Exception ex) { |
---|
1279 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
1280 | } |
---|
1281 | try { |
---|
1282 | search(search, evaluation, trainCopy); |
---|
1283 | compareDatasets(train, trainCopy); |
---|
1284 | |
---|
1285 | println("yes"); |
---|
1286 | result[0] = true; |
---|
1287 | } catch (Exception ex) { |
---|
1288 | println("no"); |
---|
1289 | result[0] = false; |
---|
1290 | |
---|
1291 | if (m_Debug) { |
---|
1292 | println("\n=== Full Report ==="); |
---|
1293 | print("Problem during training"); |
---|
1294 | println(": " + ex.getMessage() + "\n"); |
---|
1295 | println("Here are the datasets:\n"); |
---|
1296 | println("=== Train Dataset (original) ===\n" |
---|
1297 | + trainCopy.toString() + "\n"); |
---|
1298 | println("=== Train Dataset ===\n" |
---|
1299 | + train.toString() + "\n"); |
---|
1300 | } |
---|
1301 | } |
---|
1302 | |
---|
1303 | return result; |
---|
1304 | } |
---|
1305 | |
---|
1306 | /** |
---|
1307 | * Runs a text on the datasets with the given characteristics. |
---|
1308 | * |
---|
1309 | * @param nominalPredictor if true use nominal predictor attributes |
---|
1310 | * @param numericPredictor if true use numeric predictor attributes |
---|
1311 | * @param stringPredictor if true use string predictor attributes |
---|
1312 | * @param datePredictor if true use date predictor attributes |
---|
1313 | * @param relationalPredictor if true use relational predictor attributes |
---|
1314 | * @param multiInstance whether multi-instance is needed |
---|
1315 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1316 | * @param missingLevel the percentage of missing values |
---|
1317 | * @param predictorMissing true if the missing values may be in |
---|
1318 | * the predictors |
---|
1319 | * @param classMissing true if the missing values may be in the class |
---|
1320 | * @param numTrain the number of instances in the training set |
---|
1321 | * @param numClasses the number of classes |
---|
1322 | * @param accepts the acceptable string in an exception |
---|
1323 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
1324 | * was acceptable |
---|
1325 | */ |
---|
1326 | protected boolean[] runBasicTest(boolean nominalPredictor, |
---|
1327 | boolean numericPredictor, |
---|
1328 | boolean stringPredictor, |
---|
1329 | boolean datePredictor, |
---|
1330 | boolean relationalPredictor, |
---|
1331 | boolean multiInstance, |
---|
1332 | int classType, |
---|
1333 | int missingLevel, |
---|
1334 | boolean predictorMissing, |
---|
1335 | boolean classMissing, |
---|
1336 | int numTrain, |
---|
1337 | int numClasses, |
---|
1338 | FastVector accepts) { |
---|
1339 | |
---|
1340 | return runBasicTest( |
---|
1341 | nominalPredictor, |
---|
1342 | numericPredictor, |
---|
1343 | stringPredictor, |
---|
1344 | datePredictor, |
---|
1345 | relationalPredictor, |
---|
1346 | multiInstance, |
---|
1347 | classType, |
---|
1348 | TestInstances.CLASS_IS_LAST, |
---|
1349 | missingLevel, |
---|
1350 | predictorMissing, |
---|
1351 | classMissing, |
---|
1352 | numTrain, |
---|
1353 | numClasses, |
---|
1354 | accepts); |
---|
1355 | } |
---|
1356 | |
---|
1357 | /** |
---|
1358 | * Runs a text on the datasets with the given characteristics. |
---|
1359 | * |
---|
1360 | * @param nominalPredictor if true use nominal predictor attributes |
---|
1361 | * @param numericPredictor if true use numeric predictor attributes |
---|
1362 | * @param stringPredictor if true use string predictor attributes |
---|
1363 | * @param datePredictor if true use date predictor attributes |
---|
1364 | * @param relationalPredictor if true use relational predictor attributes |
---|
1365 | * @param multiInstance whether multi-instance is needed |
---|
1366 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1367 | * @param classIndex the attribute index of the class |
---|
1368 | * @param missingLevel the percentage of missing values |
---|
1369 | * @param predictorMissing true if the missing values may be in |
---|
1370 | * the predictors |
---|
1371 | * @param classMissing true if the missing values may be in the class |
---|
1372 | * @param numTrain the number of instances in the training set |
---|
1373 | * @param numClasses the number of classes |
---|
1374 | * @param accepts the acceptable string in an exception |
---|
1375 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
1376 | * was acceptable |
---|
1377 | */ |
---|
1378 | protected boolean[] runBasicTest(boolean nominalPredictor, |
---|
1379 | boolean numericPredictor, |
---|
1380 | boolean stringPredictor, |
---|
1381 | boolean datePredictor, |
---|
1382 | boolean relationalPredictor, |
---|
1383 | boolean multiInstance, |
---|
1384 | int classType, |
---|
1385 | int classIndex, |
---|
1386 | int missingLevel, |
---|
1387 | boolean predictorMissing, |
---|
1388 | boolean classMissing, |
---|
1389 | int numTrain, |
---|
1390 | int numClasses, |
---|
1391 | FastVector accepts) { |
---|
1392 | |
---|
1393 | boolean[] result = new boolean[2]; |
---|
1394 | Instances train = null; |
---|
1395 | ASSearch search = null; |
---|
1396 | ASEvaluation evaluation = null; |
---|
1397 | try { |
---|
1398 | train = makeTestDataset(42, numTrain, |
---|
1399 | nominalPredictor ? getNumNominal() : 0, |
---|
1400 | numericPredictor ? getNumNumeric() : 0, |
---|
1401 | stringPredictor ? getNumString() : 0, |
---|
1402 | datePredictor ? getNumDate() : 0, |
---|
1403 | relationalPredictor ? getNumRelational() : 0, |
---|
1404 | numClasses, |
---|
1405 | classType, |
---|
1406 | classIndex, |
---|
1407 | multiInstance); |
---|
1408 | if (missingLevel > 0) |
---|
1409 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
1410 | search = ASSearch.makeCopies(getSearch(), 1)[0]; |
---|
1411 | evaluation = ASEvaluation.makeCopies(getEvaluator(), 1)[0]; |
---|
1412 | } catch (Exception ex) { |
---|
1413 | ex.printStackTrace(); |
---|
1414 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
1415 | } |
---|
1416 | try { |
---|
1417 | search(search, evaluation, train); |
---|
1418 | println("yes"); |
---|
1419 | result[0] = true; |
---|
1420 | } |
---|
1421 | catch (Exception ex) { |
---|
1422 | boolean acceptable = false; |
---|
1423 | String msg; |
---|
1424 | if (ex.getMessage() == null) |
---|
1425 | msg = ""; |
---|
1426 | else |
---|
1427 | msg = ex.getMessage().toLowerCase(); |
---|
1428 | if (msg.indexOf("not in classpath") > -1) |
---|
1429 | m_ClasspathProblems = true; |
---|
1430 | for (int i = 0; i < accepts.size(); i++) { |
---|
1431 | if (msg.indexOf((String)accepts.elementAt(i)) >= 0) { |
---|
1432 | acceptable = true; |
---|
1433 | } |
---|
1434 | } |
---|
1435 | |
---|
1436 | println("no" + (acceptable ? " (OK error message)" : "")); |
---|
1437 | result[1] = acceptable; |
---|
1438 | |
---|
1439 | if (m_Debug) { |
---|
1440 | println("\n=== Full Report ==="); |
---|
1441 | print("Problem during training"); |
---|
1442 | println(": " + ex.getMessage() + "\n"); |
---|
1443 | if (!acceptable) { |
---|
1444 | if (accepts.size() > 0) { |
---|
1445 | print("Error message doesn't mention "); |
---|
1446 | for (int i = 0; i < accepts.size(); i++) { |
---|
1447 | if (i != 0) { |
---|
1448 | print(" or "); |
---|
1449 | } |
---|
1450 | print('"' + (String)accepts.elementAt(i) + '"'); |
---|
1451 | } |
---|
1452 | } |
---|
1453 | println("here is the dataset:\n"); |
---|
1454 | println("=== Train Dataset ===\n" |
---|
1455 | + train.toString() + "\n"); |
---|
1456 | } |
---|
1457 | } |
---|
1458 | } |
---|
1459 | |
---|
1460 | return result; |
---|
1461 | } |
---|
1462 | |
---|
1463 | /** |
---|
1464 | * Make a simple set of instances, which can later be modified |
---|
1465 | * for use in specific tests. |
---|
1466 | * |
---|
1467 | * @param seed the random number seed |
---|
1468 | * @param numInstances the number of instances to generate |
---|
1469 | * @param numNominal the number of nominal attributes |
---|
1470 | * @param numNumeric the number of numeric attributes |
---|
1471 | * @param numString the number of string attributes |
---|
1472 | * @param numDate the number of date attributes |
---|
1473 | * @param numRelational the number of relational attributes |
---|
1474 | * @param numClasses the number of classes (if nominal class) |
---|
1475 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1476 | * @param multiInstance whether the dataset should a multi-instance dataset |
---|
1477 | * @return the test dataset |
---|
1478 | * @throws Exception if the dataset couldn't be generated |
---|
1479 | * @see #process(Instances) |
---|
1480 | */ |
---|
1481 | protected Instances makeTestDataset(int seed, int numInstances, |
---|
1482 | int numNominal, int numNumeric, |
---|
1483 | int numString, int numDate, |
---|
1484 | int numRelational, |
---|
1485 | int numClasses, int classType, |
---|
1486 | boolean multiInstance) |
---|
1487 | throws Exception { |
---|
1488 | |
---|
1489 | return makeTestDataset( |
---|
1490 | seed, |
---|
1491 | numInstances, |
---|
1492 | numNominal, |
---|
1493 | numNumeric, |
---|
1494 | numString, |
---|
1495 | numDate, |
---|
1496 | numRelational, |
---|
1497 | numClasses, |
---|
1498 | classType, |
---|
1499 | TestInstances.CLASS_IS_LAST, |
---|
1500 | multiInstance); |
---|
1501 | } |
---|
1502 | |
---|
1503 | /** |
---|
1504 | * Make a simple set of instances with variable position of the class |
---|
1505 | * attribute, which can later be modified for use in specific tests. |
---|
1506 | * |
---|
1507 | * @param seed the random number seed |
---|
1508 | * @param numInstances the number of instances to generate |
---|
1509 | * @param numNominal the number of nominal attributes |
---|
1510 | * @param numNumeric the number of numeric attributes |
---|
1511 | * @param numString the number of string attributes |
---|
1512 | * @param numDate the number of date attributes |
---|
1513 | * @param numRelational the number of relational attributes |
---|
1514 | * @param numClasses the number of classes (if nominal class) |
---|
1515 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1516 | * @param classIndex the index of the class (0-based, -1 as last) |
---|
1517 | * @param multiInstance whether the dataset should a multi-instance dataset |
---|
1518 | * @return the test dataset |
---|
1519 | * @throws Exception if the dataset couldn't be generated |
---|
1520 | * @see TestInstances#CLASS_IS_LAST |
---|
1521 | * @see #process(Instances) |
---|
1522 | */ |
---|
1523 | protected Instances makeTestDataset(int seed, int numInstances, |
---|
1524 | int numNominal, int numNumeric, |
---|
1525 | int numString, int numDate, |
---|
1526 | int numRelational, |
---|
1527 | int numClasses, int classType, |
---|
1528 | int classIndex, |
---|
1529 | boolean multiInstance) |
---|
1530 | throws Exception { |
---|
1531 | |
---|
1532 | TestInstances dataset = new TestInstances(); |
---|
1533 | |
---|
1534 | dataset.setSeed(seed); |
---|
1535 | dataset.setNumInstances(numInstances); |
---|
1536 | dataset.setNumNominal(numNominal); |
---|
1537 | dataset.setNumNumeric(numNumeric); |
---|
1538 | dataset.setNumString(numString); |
---|
1539 | dataset.setNumDate(numDate); |
---|
1540 | dataset.setNumRelational(numRelational); |
---|
1541 | dataset.setNumClasses(numClasses); |
---|
1542 | dataset.setClassType(classType); |
---|
1543 | dataset.setClassIndex(classIndex); |
---|
1544 | dataset.setNumClasses(numClasses); |
---|
1545 | dataset.setMultiInstance(multiInstance); |
---|
1546 | dataset.setWords(getWords()); |
---|
1547 | dataset.setWordSeparators(getWordSeparators()); |
---|
1548 | |
---|
1549 | return process(dataset.generate()); |
---|
1550 | } |
---|
1551 | |
---|
1552 | /** |
---|
1553 | * Print out a short summary string for the dataset characteristics |
---|
1554 | * |
---|
1555 | * @param nominalPredictor true if nominal predictor attributes are present |
---|
1556 | * @param numericPredictor true if numeric predictor attributes are present |
---|
1557 | * @param stringPredictor true if string predictor attributes are present |
---|
1558 | * @param datePredictor true if date predictor attributes are present |
---|
1559 | * @param relationalPredictor true if relational predictor attributes are present |
---|
1560 | * @param multiInstance whether multi-instance is needed |
---|
1561 | * @param classType the class type (NUMERIC, NOMINAL, etc.) |
---|
1562 | */ |
---|
1563 | protected void printAttributeSummary(boolean nominalPredictor, |
---|
1564 | boolean numericPredictor, |
---|
1565 | boolean stringPredictor, |
---|
1566 | boolean datePredictor, |
---|
1567 | boolean relationalPredictor, |
---|
1568 | boolean multiInstance, |
---|
1569 | int classType) { |
---|
1570 | |
---|
1571 | String str = ""; |
---|
1572 | |
---|
1573 | if (numericPredictor) |
---|
1574 | str += " numeric"; |
---|
1575 | |
---|
1576 | if (nominalPredictor) { |
---|
1577 | if (str.length() > 0) |
---|
1578 | str += " &"; |
---|
1579 | str += " nominal"; |
---|
1580 | } |
---|
1581 | |
---|
1582 | if (stringPredictor) { |
---|
1583 | if (str.length() > 0) |
---|
1584 | str += " &"; |
---|
1585 | str += " string"; |
---|
1586 | } |
---|
1587 | |
---|
1588 | if (datePredictor) { |
---|
1589 | if (str.length() > 0) |
---|
1590 | str += " &"; |
---|
1591 | str += " date"; |
---|
1592 | } |
---|
1593 | |
---|
1594 | if (relationalPredictor) { |
---|
1595 | if (str.length() > 0) |
---|
1596 | str += " &"; |
---|
1597 | str += " relational"; |
---|
1598 | } |
---|
1599 | |
---|
1600 | str += " predictors)"; |
---|
1601 | |
---|
1602 | switch (classType) { |
---|
1603 | case Attribute.NUMERIC: |
---|
1604 | str = " (numeric class," + str; |
---|
1605 | break; |
---|
1606 | case Attribute.NOMINAL: |
---|
1607 | str = " (nominal class," + str; |
---|
1608 | break; |
---|
1609 | case Attribute.STRING: |
---|
1610 | str = " (string class," + str; |
---|
1611 | break; |
---|
1612 | case Attribute.DATE: |
---|
1613 | str = " (date class," + str; |
---|
1614 | break; |
---|
1615 | case Attribute.RELATIONAL: |
---|
1616 | str = " (relational class," + str; |
---|
1617 | break; |
---|
1618 | } |
---|
1619 | |
---|
1620 | print(str); |
---|
1621 | } |
---|
1622 | |
---|
1623 | /** |
---|
1624 | * Returns the revision string. |
---|
1625 | * |
---|
1626 | * @return the revision |
---|
1627 | */ |
---|
1628 | public String getRevision() { |
---|
1629 | return RevisionUtils.extract("$Revision: 4783 $"); |
---|
1630 | } |
---|
1631 | |
---|
1632 | /** |
---|
1633 | * Test method for this class |
---|
1634 | * |
---|
1635 | * @param args the commandline parameters |
---|
1636 | */ |
---|
1637 | public static void main(String [] args) { |
---|
1638 | runCheck(new CheckAttributeSelection(), args); |
---|
1639 | } |
---|
1640 | } |
---|
1641 | |
---|