1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CfsSubsetEval.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.ContingencyTables; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.Option; |
---|
30 | import weka.core.OptionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.TechnicalInformation; |
---|
33 | import weka.core.TechnicalInformationHandler; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.core.Capabilities.Capability; |
---|
36 | import weka.core.TechnicalInformation.Field; |
---|
37 | import weka.core.TechnicalInformation.Type; |
---|
38 | import weka.filters.Filter; |
---|
39 | import weka.filters.supervised.attribute.Discretize; |
---|
40 | |
---|
41 | import java.util.BitSet; |
---|
42 | import java.util.Enumeration; |
---|
43 | import java.util.Vector; |
---|
44 | |
---|
45 | /** |
---|
46 | <!-- globalinfo-start --> |
---|
47 | * CfsSubsetEval :<br/> |
---|
48 | * <br/> |
---|
49 | * Evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them.<br/> |
---|
50 | * <br/> |
---|
51 | * Subsets of features that are highly correlated with the class while having low intercorrelation are preferred.<br/> |
---|
52 | * <br/> |
---|
53 | * For more information see:<br/> |
---|
54 | * <br/> |
---|
55 | * M. A. Hall (1998). Correlation-based Feature Subset Selection for Machine Learning. Hamilton, New Zealand. |
---|
56 | * <p/> |
---|
57 | <!-- globalinfo-end --> |
---|
58 | * |
---|
59 | <!-- technical-bibtex-start --> |
---|
60 | * BibTeX: |
---|
61 | * <pre> |
---|
62 | * @phdthesis{Hall1998, |
---|
63 | * address = {Hamilton, New Zealand}, |
---|
64 | * author = {M. A. Hall}, |
---|
65 | * school = {University of Waikato}, |
---|
66 | * title = {Correlation-based Feature Subset Selection for Machine Learning}, |
---|
67 | * year = {1998} |
---|
68 | * } |
---|
69 | * </pre> |
---|
70 | * <p/> |
---|
71 | <!-- technical-bibtex-end --> |
---|
72 | * |
---|
73 | <!-- options-start --> |
---|
74 | * Valid options are: <p/> |
---|
75 | * |
---|
76 | * <pre> -M |
---|
77 | * Treat missing values as a separate value.</pre> |
---|
78 | * |
---|
79 | * <pre> -L |
---|
80 | * Don't include locally predictive attributes.</pre> |
---|
81 | * |
---|
82 | <!-- options-end --> |
---|
83 | * |
---|
84 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
85 | * @version $Revision: 6132 $ |
---|
86 | * @see Discretize |
---|
87 | */ |
---|
88 | public class CfsSubsetEval |
---|
89 | extends ASEvaluation |
---|
90 | implements SubsetEvaluator, |
---|
91 | OptionHandler, |
---|
92 | TechnicalInformationHandler { |
---|
93 | |
---|
94 | /** for serialization */ |
---|
95 | static final long serialVersionUID = 747878400813276317L; |
---|
96 | |
---|
97 | /** The training instances */ |
---|
98 | private Instances m_trainInstances; |
---|
99 | /** Discretise attributes when class in nominal */ |
---|
100 | private Discretize m_disTransform; |
---|
101 | /** The class index */ |
---|
102 | private int m_classIndex; |
---|
103 | /** Is the class numeric */ |
---|
104 | private boolean m_isNumeric; |
---|
105 | /** Number of attributes in the training data */ |
---|
106 | private int m_numAttribs; |
---|
107 | /** Number of instances in the training data */ |
---|
108 | private int m_numInstances; |
---|
109 | /** Treat missing values as separate values */ |
---|
110 | private boolean m_missingSeparate; |
---|
111 | /** Include locally predictive attributes */ |
---|
112 | private boolean m_locallyPredictive; |
---|
113 | /** Holds the matrix of attribute correlations */ |
---|
114 | // private Matrix m_corr_matrix; |
---|
115 | private float [][] m_corr_matrix; |
---|
116 | /** Standard deviations of attributes (when using pearsons correlation) */ |
---|
117 | private double[] m_std_devs; |
---|
118 | /** Threshold for admitting locally predictive features */ |
---|
119 | private double m_c_Threshold; |
---|
120 | |
---|
121 | /** |
---|
122 | * Returns a string describing this attribute evaluator |
---|
123 | * @return a description of the evaluator suitable for |
---|
124 | * displaying in the explorer/experimenter gui |
---|
125 | */ |
---|
126 | public String globalInfo() { |
---|
127 | return "CfsSubsetEval :\n\nEvaluates the worth of a subset of attributes " |
---|
128 | +"by considering the individual predictive ability of each feature " |
---|
129 | +"along with the degree of redundancy between them.\n\n" |
---|
130 | +"Subsets of features that are highly correlated with the class " |
---|
131 | +"while having low intercorrelation are preferred.\n\n" |
---|
132 | + "For more information see:\n\n" |
---|
133 | + getTechnicalInformation().toString(); |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | * Returns an instance of a TechnicalInformation object, containing |
---|
138 | * detailed information about the technical background of this class, |
---|
139 | * e.g., paper reference or book this class is based on. |
---|
140 | * |
---|
141 | * @return the technical information about this class |
---|
142 | */ |
---|
143 | public TechnicalInformation getTechnicalInformation() { |
---|
144 | TechnicalInformation result; |
---|
145 | |
---|
146 | result = new TechnicalInformation(Type.PHDTHESIS); |
---|
147 | result.setValue(Field.AUTHOR, "M. A. Hall"); |
---|
148 | result.setValue(Field.YEAR, "1998"); |
---|
149 | result.setValue(Field.TITLE, "Correlation-based Feature Subset Selection for Machine Learning"); |
---|
150 | result.setValue(Field.SCHOOL, "University of Waikato"); |
---|
151 | result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); |
---|
152 | |
---|
153 | return result; |
---|
154 | } |
---|
155 | |
---|
156 | /** |
---|
157 | * Constructor |
---|
158 | */ |
---|
159 | public CfsSubsetEval () { |
---|
160 | resetOptions(); |
---|
161 | } |
---|
162 | |
---|
163 | |
---|
164 | /** |
---|
165 | * Returns an enumeration describing the available options. |
---|
166 | * @return an enumeration of all the available options. |
---|
167 | * |
---|
168 | **/ |
---|
169 | public Enumeration listOptions () { |
---|
170 | Vector newVector = new Vector(3); |
---|
171 | newVector.addElement(new Option("\tTreat missing values as a separate " |
---|
172 | + "value.", "M", 0, "-M")); |
---|
173 | newVector.addElement(new Option("\tDon't include locally predictive attributes" |
---|
174 | + ".", "L", 0, "-L")); |
---|
175 | return newVector.elements(); |
---|
176 | } |
---|
177 | |
---|
178 | |
---|
179 | /** |
---|
180 | * Parses and sets a given list of options. <p/> |
---|
181 | * |
---|
182 | <!-- options-start --> |
---|
183 | * Valid options are: <p/> |
---|
184 | * |
---|
185 | * <pre> -M |
---|
186 | * Treat missing values as a separate value.</pre> |
---|
187 | * |
---|
188 | * <pre> -L |
---|
189 | * Don't include locally predictive attributes.</pre> |
---|
190 | * |
---|
191 | <!-- options-end --> |
---|
192 | * |
---|
193 | * @param options the list of options as an array of strings |
---|
194 | * @throws Exception if an option is not supported |
---|
195 | * |
---|
196 | **/ |
---|
197 | public void setOptions (String[] options) |
---|
198 | throws Exception { |
---|
199 | |
---|
200 | resetOptions(); |
---|
201 | setMissingSeparate(Utils.getFlag('M', options)); |
---|
202 | setLocallyPredictive(!Utils.getFlag('L', options)); |
---|
203 | } |
---|
204 | |
---|
205 | /** |
---|
206 | * Returns the tip text for this property |
---|
207 | * @return tip text for this property suitable for |
---|
208 | * displaying in the explorer/experimenter gui |
---|
209 | */ |
---|
210 | public String locallyPredictiveTipText() { |
---|
211 | return "Identify locally predictive attributes. Iteratively adds " |
---|
212 | +"attributes with the highest correlation with the class as long " |
---|
213 | +"as there is not already an attribute in the subset that has a " |
---|
214 | +"higher correlation with the attribute in question"; |
---|
215 | } |
---|
216 | |
---|
217 | /** |
---|
218 | * Include locally predictive attributes |
---|
219 | * |
---|
220 | * @param b true or false |
---|
221 | */ |
---|
222 | public void setLocallyPredictive (boolean b) { |
---|
223 | m_locallyPredictive = b; |
---|
224 | } |
---|
225 | |
---|
226 | |
---|
227 | /** |
---|
228 | * Return true if including locally predictive attributes |
---|
229 | * |
---|
230 | * @return true if locally predictive attributes are to be used |
---|
231 | */ |
---|
232 | public boolean getLocallyPredictive () { |
---|
233 | return m_locallyPredictive; |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * Returns the tip text for this property |
---|
238 | * @return tip text for this property suitable for |
---|
239 | * displaying in the explorer/experimenter gui |
---|
240 | */ |
---|
241 | public String missingSeparateTipText() { |
---|
242 | return "Treat missing as a separate value. Otherwise, counts for missing " |
---|
243 | +"values are distributed across other values in proportion to their " |
---|
244 | +"frequency."; |
---|
245 | } |
---|
246 | |
---|
247 | /** |
---|
248 | * Treat missing as a separate value |
---|
249 | * |
---|
250 | * @param b true or false |
---|
251 | */ |
---|
252 | public void setMissingSeparate (boolean b) { |
---|
253 | m_missingSeparate = b; |
---|
254 | } |
---|
255 | |
---|
256 | |
---|
257 | /** |
---|
258 | * Return true is missing is treated as a separate value |
---|
259 | * |
---|
260 | * @return true if missing is to be treated as a separate value |
---|
261 | */ |
---|
262 | public boolean getMissingSeparate () { |
---|
263 | return m_missingSeparate; |
---|
264 | } |
---|
265 | |
---|
266 | |
---|
267 | /** |
---|
268 | * Gets the current settings of CfsSubsetEval |
---|
269 | * |
---|
270 | * @return an array of strings suitable for passing to setOptions() |
---|
271 | */ |
---|
272 | public String[] getOptions () { |
---|
273 | String[] options = new String[2]; |
---|
274 | int current = 0; |
---|
275 | |
---|
276 | if (getMissingSeparate()) { |
---|
277 | options[current++] = "-M"; |
---|
278 | } |
---|
279 | |
---|
280 | if (!getLocallyPredictive()) { |
---|
281 | options[current++] = "-L"; |
---|
282 | } |
---|
283 | |
---|
284 | while (current < options.length) { |
---|
285 | options[current++] = ""; |
---|
286 | } |
---|
287 | |
---|
288 | return options; |
---|
289 | } |
---|
290 | |
---|
291 | /** |
---|
292 | * Returns the capabilities of this evaluator. |
---|
293 | * |
---|
294 | * @return the capabilities of this evaluator |
---|
295 | * @see Capabilities |
---|
296 | */ |
---|
297 | public Capabilities getCapabilities() { |
---|
298 | Capabilities result = super.getCapabilities(); |
---|
299 | result.disableAll(); |
---|
300 | |
---|
301 | // attributes |
---|
302 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
303 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
304 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
305 | result.enable(Capability.MISSING_VALUES); |
---|
306 | |
---|
307 | // class |
---|
308 | result.enable(Capability.NOMINAL_CLASS); |
---|
309 | result.enable(Capability.NUMERIC_CLASS); |
---|
310 | result.enable(Capability.DATE_CLASS); |
---|
311 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
312 | |
---|
313 | return result; |
---|
314 | } |
---|
315 | |
---|
316 | /** |
---|
317 | * Generates a attribute evaluator. Has to initialize all fields of the |
---|
318 | * evaluator that are not being set via options. |
---|
319 | * |
---|
320 | * CFS also discretises attributes (if necessary) and initializes |
---|
321 | * the correlation matrix. |
---|
322 | * |
---|
323 | * @param data set of instances serving as training data |
---|
324 | * @throws Exception if the evaluator has not been |
---|
325 | * generated successfully |
---|
326 | */ |
---|
327 | public void buildEvaluator (Instances data) |
---|
328 | throws Exception { |
---|
329 | |
---|
330 | // can evaluator handle data? |
---|
331 | getCapabilities().testWithFail(data); |
---|
332 | |
---|
333 | m_trainInstances = new Instances(data); |
---|
334 | m_trainInstances.deleteWithMissingClass(); |
---|
335 | m_classIndex = m_trainInstances.classIndex(); |
---|
336 | m_numAttribs = m_trainInstances.numAttributes(); |
---|
337 | m_numInstances = m_trainInstances.numInstances(); |
---|
338 | m_isNumeric = m_trainInstances.attribute(m_classIndex).isNumeric(); |
---|
339 | |
---|
340 | if (!m_isNumeric) { |
---|
341 | m_disTransform = new Discretize(); |
---|
342 | m_disTransform.setUseBetterEncoding(true); |
---|
343 | m_disTransform.setInputFormat(m_trainInstances); |
---|
344 | m_trainInstances = Filter.useFilter(m_trainInstances, m_disTransform); |
---|
345 | } |
---|
346 | |
---|
347 | m_std_devs = new double[m_numAttribs]; |
---|
348 | m_corr_matrix = new float [m_numAttribs][]; |
---|
349 | for (int i = 0; i < m_numAttribs; i++) { |
---|
350 | m_corr_matrix[i] = new float [i+1]; |
---|
351 | } |
---|
352 | |
---|
353 | for (int i = 0; i < m_corr_matrix.length; i++) { |
---|
354 | m_corr_matrix[i][i] = 1.0f; |
---|
355 | m_std_devs[i] = 1.0; |
---|
356 | } |
---|
357 | |
---|
358 | for (int i = 0; i < m_numAttribs; i++) { |
---|
359 | for (int j = 0; j < m_corr_matrix[i].length - 1; j++) { |
---|
360 | m_corr_matrix[i][j] = -999; |
---|
361 | } |
---|
362 | } |
---|
363 | } |
---|
364 | |
---|
365 | |
---|
366 | /** |
---|
367 | * evaluates a subset of attributes |
---|
368 | * |
---|
369 | * @param subset a bitset representing the attribute subset to be |
---|
370 | * evaluated |
---|
371 | * @return the merit |
---|
372 | * @throws Exception if the subset could not be evaluated |
---|
373 | */ |
---|
374 | public double evaluateSubset (BitSet subset) |
---|
375 | throws Exception { |
---|
376 | double num = 0.0; |
---|
377 | double denom = 0.0; |
---|
378 | float corr; |
---|
379 | int larger, smaller; |
---|
380 | // do numerator |
---|
381 | for (int i = 0; i < m_numAttribs; i++) { |
---|
382 | if (i != m_classIndex) { |
---|
383 | if (subset.get(i)) { |
---|
384 | if (i > m_classIndex) { |
---|
385 | larger = i; smaller = m_classIndex; |
---|
386 | } else { |
---|
387 | smaller = i; larger = m_classIndex; |
---|
388 | } |
---|
389 | /* int larger = (i > m_classIndex ? i : m_classIndex); |
---|
390 | int smaller = (i > m_classIndex ? m_classIndex : i); */ |
---|
391 | if (m_corr_matrix[larger][smaller] == -999) { |
---|
392 | corr = correlate(i, m_classIndex); |
---|
393 | m_corr_matrix[larger][smaller] = corr; |
---|
394 | num += (m_std_devs[i] * corr); |
---|
395 | } |
---|
396 | else { |
---|
397 | num += (m_std_devs[i] * m_corr_matrix[larger][smaller]); |
---|
398 | } |
---|
399 | } |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | // do denominator |
---|
404 | for (int i = 0; i < m_numAttribs; i++) { |
---|
405 | if (i != m_classIndex) { |
---|
406 | if (subset.get(i)) { |
---|
407 | denom += (1.0 * m_std_devs[i] * m_std_devs[i]); |
---|
408 | |
---|
409 | for (int j = 0; j < m_corr_matrix[i].length - 1; j++) { |
---|
410 | if (subset.get(j)) { |
---|
411 | if (m_corr_matrix[i][j] == -999) { |
---|
412 | corr = correlate(i, j); |
---|
413 | m_corr_matrix[i][j] = corr; |
---|
414 | denom += (2.0 * m_std_devs[i] * m_std_devs[j] * corr); |
---|
415 | } |
---|
416 | else { |
---|
417 | denom += (2.0 * m_std_devs[i] * m_std_devs[j] * m_corr_matrix[i][j]); |
---|
418 | } |
---|
419 | } |
---|
420 | } |
---|
421 | } |
---|
422 | } |
---|
423 | } |
---|
424 | |
---|
425 | if (denom < 0.0) { |
---|
426 | denom *= -1.0; |
---|
427 | } |
---|
428 | |
---|
429 | if (denom == 0.0) { |
---|
430 | return (0.0); |
---|
431 | } |
---|
432 | |
---|
433 | double merit = (num/Math.sqrt(denom)); |
---|
434 | |
---|
435 | if (merit < 0.0) { |
---|
436 | merit *= -1.0; |
---|
437 | } |
---|
438 | |
---|
439 | return merit; |
---|
440 | } |
---|
441 | |
---|
442 | |
---|
443 | private float correlate (int att1, int att2) { |
---|
444 | if (!m_isNumeric) { |
---|
445 | return (float) symmUncertCorr(att1, att2); |
---|
446 | } |
---|
447 | |
---|
448 | boolean att1_is_num = (m_trainInstances.attribute(att1).isNumeric()); |
---|
449 | boolean att2_is_num = (m_trainInstances.attribute(att2).isNumeric()); |
---|
450 | |
---|
451 | if (att1_is_num && att2_is_num) { |
---|
452 | return (float) num_num(att1, att2); |
---|
453 | } |
---|
454 | else {if (att2_is_num) { |
---|
455 | return (float) num_nom2(att1, att2); |
---|
456 | } |
---|
457 | else {if (att1_is_num) { |
---|
458 | return (float) num_nom2(att2, att1); |
---|
459 | } |
---|
460 | } |
---|
461 | } |
---|
462 | |
---|
463 | return (float) nom_nom(att1, att2); |
---|
464 | } |
---|
465 | |
---|
466 | |
---|
467 | private double symmUncertCorr (int att1, int att2) { |
---|
468 | int i, j, k, ii, jj; |
---|
469 | int ni, nj; |
---|
470 | double sum = 0.0; |
---|
471 | double sumi[], sumj[]; |
---|
472 | double counts[][]; |
---|
473 | Instance inst; |
---|
474 | double corr_measure; |
---|
475 | boolean flag = false; |
---|
476 | double temp = 0.0; |
---|
477 | |
---|
478 | if (att1 == m_classIndex || att2 == m_classIndex) { |
---|
479 | flag = true; |
---|
480 | } |
---|
481 | |
---|
482 | ni = m_trainInstances.attribute(att1).numValues() + 1; |
---|
483 | nj = m_trainInstances.attribute(att2).numValues() + 1; |
---|
484 | counts = new double[ni][nj]; |
---|
485 | sumi = new double[ni]; |
---|
486 | sumj = new double[nj]; |
---|
487 | |
---|
488 | for (i = 0; i < ni; i++) { |
---|
489 | sumi[i] = 0.0; |
---|
490 | |
---|
491 | for (j = 0; j < nj; j++) { |
---|
492 | sumj[j] = 0.0; |
---|
493 | counts[i][j] = 0.0; |
---|
494 | } |
---|
495 | } |
---|
496 | |
---|
497 | // Fill the contingency table |
---|
498 | for (i = 0; i < m_numInstances; i++) { |
---|
499 | inst = m_trainInstances.instance(i); |
---|
500 | |
---|
501 | if (inst.isMissing(att1)) { |
---|
502 | ii = ni - 1; |
---|
503 | } |
---|
504 | else { |
---|
505 | ii = (int)inst.value(att1); |
---|
506 | } |
---|
507 | |
---|
508 | if (inst.isMissing(att2)) { |
---|
509 | jj = nj - 1; |
---|
510 | } |
---|
511 | else { |
---|
512 | jj = (int)inst.value(att2); |
---|
513 | } |
---|
514 | |
---|
515 | counts[ii][jj]++; |
---|
516 | } |
---|
517 | |
---|
518 | // get the row totals |
---|
519 | for (i = 0; i < ni; i++) { |
---|
520 | sumi[i] = 0.0; |
---|
521 | |
---|
522 | for (j = 0; j < nj; j++) { |
---|
523 | sumi[i] += counts[i][j]; |
---|
524 | sum += counts[i][j]; |
---|
525 | } |
---|
526 | } |
---|
527 | |
---|
528 | // get the column totals |
---|
529 | for (j = 0; j < nj; j++) { |
---|
530 | sumj[j] = 0.0; |
---|
531 | |
---|
532 | for (i = 0; i < ni; i++) { |
---|
533 | sumj[j] += counts[i][j]; |
---|
534 | } |
---|
535 | } |
---|
536 | |
---|
537 | // distribute missing counts |
---|
538 | if (!m_missingSeparate && |
---|
539 | (sumi[ni-1] < m_numInstances) && |
---|
540 | (sumj[nj-1] < m_numInstances)) { |
---|
541 | double[] i_copy = new double[sumi.length]; |
---|
542 | double[] j_copy = new double[sumj.length]; |
---|
543 | double[][] counts_copy = new double[sumi.length][sumj.length]; |
---|
544 | |
---|
545 | for (i = 0; i < ni; i++) { |
---|
546 | System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length); |
---|
547 | } |
---|
548 | |
---|
549 | System.arraycopy(sumi, 0, i_copy, 0, sumi.length); |
---|
550 | System.arraycopy(sumj, 0, j_copy, 0, sumj.length); |
---|
551 | double total_missing = |
---|
552 | (sumi[ni - 1] + sumj[nj - 1] - counts[ni - 1][nj - 1]); |
---|
553 | |
---|
554 | // do the missing i's |
---|
555 | if (sumi[ni - 1] > 0.0) { |
---|
556 | for (j = 0; j < nj - 1; j++) { |
---|
557 | if (counts[ni - 1][j] > 0.0) { |
---|
558 | for (i = 0; i < ni - 1; i++) { |
---|
559 | temp = ((i_copy[i]/(sum - i_copy[ni - 1]))*counts[ni - 1][j]); |
---|
560 | counts[i][j] += temp; |
---|
561 | sumi[i] += temp; |
---|
562 | } |
---|
563 | |
---|
564 | counts[ni - 1][j] = 0.0; |
---|
565 | } |
---|
566 | } |
---|
567 | } |
---|
568 | |
---|
569 | sumi[ni - 1] = 0.0; |
---|
570 | |
---|
571 | // do the missing j's |
---|
572 | if (sumj[nj - 1] > 0.0) { |
---|
573 | for (i = 0; i < ni - 1; i++) { |
---|
574 | if (counts[i][nj - 1] > 0.0) { |
---|
575 | for (j = 0; j < nj - 1; j++) { |
---|
576 | temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]); |
---|
577 | counts[i][j] += temp; |
---|
578 | sumj[j] += temp; |
---|
579 | } |
---|
580 | |
---|
581 | counts[i][nj - 1] = 0.0; |
---|
582 | } |
---|
583 | } |
---|
584 | } |
---|
585 | |
---|
586 | sumj[nj - 1] = 0.0; |
---|
587 | |
---|
588 | // do the both missing |
---|
589 | if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) { |
---|
590 | for (i = 0; i < ni - 1; i++) { |
---|
591 | for (j = 0; j < nj - 1; j++) { |
---|
592 | temp = (counts_copy[i][j]/(sum - total_missing)) * |
---|
593 | counts_copy[ni - 1][nj - 1]; |
---|
594 | |
---|
595 | counts[i][j] += temp; |
---|
596 | sumi[i] += temp; |
---|
597 | sumj[j] += temp; |
---|
598 | } |
---|
599 | } |
---|
600 | |
---|
601 | counts[ni - 1][nj - 1] = 0.0; |
---|
602 | } |
---|
603 | } |
---|
604 | |
---|
605 | corr_measure = ContingencyTables.symmetricalUncertainty(counts); |
---|
606 | |
---|
607 | if (Utils.eq(corr_measure, 0.0)) { |
---|
608 | if (flag == true) { |
---|
609 | return (0.0); |
---|
610 | } |
---|
611 | else { |
---|
612 | return (1.0); |
---|
613 | } |
---|
614 | } |
---|
615 | else { |
---|
616 | return (corr_measure); |
---|
617 | } |
---|
618 | } |
---|
619 | |
---|
620 | |
---|
621 | private double num_num (int att1, int att2) { |
---|
622 | int i; |
---|
623 | Instance inst; |
---|
624 | double r, diff1, diff2, num = 0.0, sx = 0.0, sy = 0.0; |
---|
625 | double mx = m_trainInstances.meanOrMode(m_trainInstances.attribute(att1)); |
---|
626 | double my = m_trainInstances.meanOrMode(m_trainInstances.attribute(att2)); |
---|
627 | |
---|
628 | for (i = 0; i < m_numInstances; i++) { |
---|
629 | inst = m_trainInstances.instance(i); |
---|
630 | diff1 = (inst.isMissing(att1))? 0.0 : (inst.value(att1) - mx); |
---|
631 | diff2 = (inst.isMissing(att2))? 0.0 : (inst.value(att2) - my); |
---|
632 | num += (diff1*diff2); |
---|
633 | sx += (diff1*diff1); |
---|
634 | sy += (diff2*diff2); |
---|
635 | } |
---|
636 | |
---|
637 | if (sx != 0.0) { |
---|
638 | if (m_std_devs[att1] == 1.0) { |
---|
639 | m_std_devs[att1] = Math.sqrt((sx/m_numInstances)); |
---|
640 | } |
---|
641 | } |
---|
642 | |
---|
643 | if (sy != 0.0) { |
---|
644 | if (m_std_devs[att2] == 1.0) { |
---|
645 | m_std_devs[att2] = Math.sqrt((sy/m_numInstances)); |
---|
646 | } |
---|
647 | } |
---|
648 | |
---|
649 | if ((sx*sy) > 0.0) { |
---|
650 | r = (num/(Math.sqrt(sx*sy))); |
---|
651 | return ((r < 0.0)? -r : r); |
---|
652 | } |
---|
653 | else { |
---|
654 | if (att1 != m_classIndex && att2 != m_classIndex) { |
---|
655 | return 1.0; |
---|
656 | } |
---|
657 | else { |
---|
658 | return 0.0; |
---|
659 | } |
---|
660 | } |
---|
661 | } |
---|
662 | |
---|
663 | |
---|
664 | private double num_nom2 (int att1, int att2) { |
---|
665 | int i, ii, k; |
---|
666 | double temp; |
---|
667 | Instance inst; |
---|
668 | int mx = (int)m_trainInstances. |
---|
669 | meanOrMode(m_trainInstances.attribute(att1)); |
---|
670 | double my = m_trainInstances. |
---|
671 | meanOrMode(m_trainInstances.attribute(att2)); |
---|
672 | double stdv_num = 0.0; |
---|
673 | double diff1, diff2; |
---|
674 | double r = 0.0, rr; |
---|
675 | int nx = (!m_missingSeparate) |
---|
676 | ? m_trainInstances.attribute(att1).numValues() |
---|
677 | : m_trainInstances.attribute(att1).numValues() + 1; |
---|
678 | |
---|
679 | double[] prior_nom = new double[nx]; |
---|
680 | double[] stdvs_nom = new double[nx]; |
---|
681 | double[] covs = new double[nx]; |
---|
682 | |
---|
683 | for (i = 0; i < nx; i++) { |
---|
684 | stdvs_nom[i] = covs[i] = prior_nom[i] = 0.0; |
---|
685 | } |
---|
686 | |
---|
687 | // calculate frequencies (and means) of the values of the nominal |
---|
688 | // attribute |
---|
689 | for (i = 0; i < m_numInstances; i++) { |
---|
690 | inst = m_trainInstances.instance(i); |
---|
691 | |
---|
692 | if (inst.isMissing(att1)) { |
---|
693 | if (!m_missingSeparate) { |
---|
694 | ii = mx; |
---|
695 | } |
---|
696 | else { |
---|
697 | ii = nx - 1; |
---|
698 | } |
---|
699 | } |
---|
700 | else { |
---|
701 | ii = (int)inst.value(att1); |
---|
702 | } |
---|
703 | |
---|
704 | // increment freq for nominal |
---|
705 | prior_nom[ii]++; |
---|
706 | } |
---|
707 | |
---|
708 | for (k = 0; k < m_numInstances; k++) { |
---|
709 | inst = m_trainInstances.instance(k); |
---|
710 | // std dev of numeric attribute |
---|
711 | diff2 = (inst.isMissing(att2))? 0.0 : (inst.value(att2) - my); |
---|
712 | stdv_num += (diff2*diff2); |
---|
713 | |
---|
714 | // |
---|
715 | for (i = 0; i < nx; i++) { |
---|
716 | if (inst.isMissing(att1)) { |
---|
717 | if (!m_missingSeparate) { |
---|
718 | temp = (i == mx)? 1.0 : 0.0; |
---|
719 | } |
---|
720 | else { |
---|
721 | temp = (i == (nx - 1))? 1.0 : 0.0; |
---|
722 | } |
---|
723 | } |
---|
724 | else { |
---|
725 | temp = (i == inst.value(att1))? 1.0 : 0.0; |
---|
726 | } |
---|
727 | |
---|
728 | diff1 = (temp - (prior_nom[i]/m_numInstances)); |
---|
729 | stdvs_nom[i] += (diff1*diff1); |
---|
730 | covs[i] += (diff1*diff2); |
---|
731 | } |
---|
732 | } |
---|
733 | |
---|
734 | // calculate weighted correlation |
---|
735 | for (i = 0, temp = 0.0; i < nx; i++) { |
---|
736 | // calculate the weighted variance of the nominal |
---|
737 | temp += ((prior_nom[i]/m_numInstances)*(stdvs_nom[i]/m_numInstances)); |
---|
738 | |
---|
739 | if ((stdvs_nom[i]*stdv_num) > 0.0) { |
---|
740 | //System.out.println("Stdv :"+stdvs_nom[i]); |
---|
741 | rr = (covs[i]/(Math.sqrt(stdvs_nom[i]*stdv_num))); |
---|
742 | |
---|
743 | if (rr < 0.0) { |
---|
744 | rr = -rr; |
---|
745 | } |
---|
746 | |
---|
747 | r += ((prior_nom[i]/m_numInstances)*rr); |
---|
748 | } |
---|
749 | /* if there is zero variance for the numeric att at a specific |
---|
750 | level of the catergorical att then if neither is the class then |
---|
751 | make this correlation at this level maximally bad i.e. 1.0. |
---|
752 | If either is the class then maximally bad correlation is 0.0 */ |
---|
753 | else {if (att1 != m_classIndex && att2 != m_classIndex) { |
---|
754 | r += ((prior_nom[i]/m_numInstances)*1.0); |
---|
755 | } |
---|
756 | } |
---|
757 | } |
---|
758 | |
---|
759 | // set the standard deviations for these attributes if necessary |
---|
760 | // if ((att1 != classIndex) && (att2 != classIndex)) // ============= |
---|
761 | if (temp != 0.0) { |
---|
762 | if (m_std_devs[att1] == 1.0) { |
---|
763 | m_std_devs[att1] = Math.sqrt(temp); |
---|
764 | } |
---|
765 | } |
---|
766 | |
---|
767 | if (stdv_num != 0.0) { |
---|
768 | if (m_std_devs[att2] == 1.0) { |
---|
769 | m_std_devs[att2] = Math.sqrt((stdv_num/m_numInstances)); |
---|
770 | } |
---|
771 | } |
---|
772 | |
---|
773 | if (r == 0.0) { |
---|
774 | if (att1 != m_classIndex && att2 != m_classIndex) { |
---|
775 | r = 1.0; |
---|
776 | } |
---|
777 | } |
---|
778 | |
---|
779 | return r; |
---|
780 | } |
---|
781 | |
---|
782 | |
---|
783 | private double nom_nom (int att1, int att2) { |
---|
784 | int i, j, ii, jj, z; |
---|
785 | double temp1, temp2; |
---|
786 | Instance inst; |
---|
787 | int mx = (int)m_trainInstances. |
---|
788 | meanOrMode(m_trainInstances.attribute(att1)); |
---|
789 | int my = (int)m_trainInstances. |
---|
790 | meanOrMode(m_trainInstances.attribute(att2)); |
---|
791 | double diff1, diff2; |
---|
792 | double r = 0.0, rr; |
---|
793 | int nx = (!m_missingSeparate) |
---|
794 | ? m_trainInstances.attribute(att1).numValues() |
---|
795 | : m_trainInstances.attribute(att1).numValues() + 1; |
---|
796 | |
---|
797 | int ny = (!m_missingSeparate) |
---|
798 | ? m_trainInstances.attribute(att2).numValues() |
---|
799 | : m_trainInstances.attribute(att2).numValues() + 1; |
---|
800 | |
---|
801 | double[][] prior_nom = new double[nx][ny]; |
---|
802 | double[] sumx = new double[nx]; |
---|
803 | double[] sumy = new double[ny]; |
---|
804 | double[] stdvsx = new double[nx]; |
---|
805 | double[] stdvsy = new double[ny]; |
---|
806 | double[][] covs = new double[nx][ny]; |
---|
807 | |
---|
808 | for (i = 0; i < nx; i++) { |
---|
809 | sumx[i] = stdvsx[i] = 0.0; |
---|
810 | } |
---|
811 | |
---|
812 | for (j = 0; j < ny; j++) { |
---|
813 | sumy[j] = stdvsy[j] = 0.0; |
---|
814 | } |
---|
815 | |
---|
816 | for (i = 0; i < nx; i++) { |
---|
817 | for (j = 0; j < ny; j++) { |
---|
818 | covs[i][j] = prior_nom[i][j] = 0.0; |
---|
819 | } |
---|
820 | } |
---|
821 | |
---|
822 | // calculate frequencies (and means) of the values of the nominal |
---|
823 | // attribute |
---|
824 | for (i = 0; i < m_numInstances; i++) { |
---|
825 | inst = m_trainInstances.instance(i); |
---|
826 | |
---|
827 | if (inst.isMissing(att1)) { |
---|
828 | if (!m_missingSeparate) { |
---|
829 | ii = mx; |
---|
830 | } |
---|
831 | else { |
---|
832 | ii = nx - 1; |
---|
833 | } |
---|
834 | } |
---|
835 | else { |
---|
836 | ii = (int)inst.value(att1); |
---|
837 | } |
---|
838 | |
---|
839 | if (inst.isMissing(att2)) { |
---|
840 | if (!m_missingSeparate) { |
---|
841 | jj = my; |
---|
842 | } |
---|
843 | else { |
---|
844 | jj = ny - 1; |
---|
845 | } |
---|
846 | } |
---|
847 | else { |
---|
848 | jj = (int)inst.value(att2); |
---|
849 | } |
---|
850 | |
---|
851 | // increment freq for nominal |
---|
852 | prior_nom[ii][jj]++; |
---|
853 | sumx[ii]++; |
---|
854 | sumy[jj]++; |
---|
855 | } |
---|
856 | |
---|
857 | for (z = 0; z < m_numInstances; z++) { |
---|
858 | inst = m_trainInstances.instance(z); |
---|
859 | |
---|
860 | for (j = 0; j < ny; j++) { |
---|
861 | if (inst.isMissing(att2)) { |
---|
862 | if (!m_missingSeparate) { |
---|
863 | temp2 = (j == my)? 1.0 : 0.0; |
---|
864 | } |
---|
865 | else { |
---|
866 | temp2 = (j == (ny - 1))? 1.0 : 0.0; |
---|
867 | } |
---|
868 | } |
---|
869 | else { |
---|
870 | temp2 = (j == inst.value(att2))? 1.0 : 0.0; |
---|
871 | } |
---|
872 | |
---|
873 | diff2 = (temp2 - (sumy[j]/m_numInstances)); |
---|
874 | stdvsy[j] += (diff2*diff2); |
---|
875 | } |
---|
876 | |
---|
877 | // |
---|
878 | for (i = 0; i < nx; i++) { |
---|
879 | if (inst.isMissing(att1)) { |
---|
880 | if (!m_missingSeparate) { |
---|
881 | temp1 = (i == mx)? 1.0 : 0.0; |
---|
882 | } |
---|
883 | else { |
---|
884 | temp1 = (i == (nx - 1))? 1.0 : 0.0; |
---|
885 | } |
---|
886 | } |
---|
887 | else { |
---|
888 | temp1 = (i == inst.value(att1))? 1.0 : 0.0; |
---|
889 | } |
---|
890 | |
---|
891 | diff1 = (temp1 - (sumx[i]/m_numInstances)); |
---|
892 | stdvsx[i] += (diff1*diff1); |
---|
893 | |
---|
894 | for (j = 0; j < ny; j++) { |
---|
895 | if (inst.isMissing(att2)) { |
---|
896 | if (!m_missingSeparate) { |
---|
897 | temp2 = (j == my)? 1.0 : 0.0; |
---|
898 | } |
---|
899 | else { |
---|
900 | temp2 = (j == (ny - 1))? 1.0 : 0.0; |
---|
901 | } |
---|
902 | } |
---|
903 | else { |
---|
904 | temp2 = (j == inst.value(att2))? 1.0 : 0.0; |
---|
905 | } |
---|
906 | |
---|
907 | diff2 = (temp2 - (sumy[j]/m_numInstances)); |
---|
908 | covs[i][j] += (diff1*diff2); |
---|
909 | } |
---|
910 | } |
---|
911 | } |
---|
912 | |
---|
913 | // calculate weighted correlation |
---|
914 | for (i = 0; i < nx; i++) { |
---|
915 | for (j = 0; j < ny; j++) { |
---|
916 | if ((stdvsx[i]*stdvsy[j]) > 0.0) { |
---|
917 | //System.out.println("Stdv :"+stdvs_nom[i]); |
---|
918 | rr = (covs[i][j]/(Math.sqrt(stdvsx[i]*stdvsy[j]))); |
---|
919 | |
---|
920 | if (rr < 0.0) { |
---|
921 | rr = -rr; |
---|
922 | } |
---|
923 | |
---|
924 | r += ((prior_nom[i][j]/m_numInstances)*rr); |
---|
925 | } |
---|
926 | // if there is zero variance for either of the categorical atts then if |
---|
927 | // neither is the class then make this |
---|
928 | // correlation at this level maximally bad i.e. 1.0. If either is |
---|
929 | // the class then maximally bad correlation is 0.0 |
---|
930 | else {if (att1 != m_classIndex && att2 != m_classIndex) { |
---|
931 | r += ((prior_nom[i][j]/m_numInstances)*1.0); |
---|
932 | } |
---|
933 | } |
---|
934 | } |
---|
935 | } |
---|
936 | |
---|
937 | // calculate weighted standard deviations for these attributes |
---|
938 | // (if necessary) |
---|
939 | for (i = 0, temp1 = 0.0; i < nx; i++) { |
---|
940 | temp1 += ((sumx[i]/m_numInstances)*(stdvsx[i]/m_numInstances)); |
---|
941 | } |
---|
942 | |
---|
943 | if (temp1 != 0.0) { |
---|
944 | if (m_std_devs[att1] == 1.0) { |
---|
945 | m_std_devs[att1] = Math.sqrt(temp1); |
---|
946 | } |
---|
947 | } |
---|
948 | |
---|
949 | for (j = 0, temp2 = 0.0; j < ny; j++) { |
---|
950 | temp2 += ((sumy[j]/m_numInstances)*(stdvsy[j]/m_numInstances)); |
---|
951 | } |
---|
952 | |
---|
953 | if (temp2 != 0.0) { |
---|
954 | if (m_std_devs[att2] == 1.0) { |
---|
955 | m_std_devs[att2] = Math.sqrt(temp2); |
---|
956 | } |
---|
957 | } |
---|
958 | |
---|
959 | if (r == 0.0) { |
---|
960 | if (att1 != m_classIndex && att2 != m_classIndex) { |
---|
961 | r = 1.0; |
---|
962 | } |
---|
963 | } |
---|
964 | |
---|
965 | return r; |
---|
966 | } |
---|
967 | |
---|
968 | |
---|
969 | /** |
---|
970 | * returns a string describing CFS |
---|
971 | * |
---|
972 | * @return the description as a string |
---|
973 | */ |
---|
974 | public String toString () { |
---|
975 | StringBuffer text = new StringBuffer(); |
---|
976 | |
---|
977 | if (m_trainInstances == null) { |
---|
978 | text.append("CFS subset evaluator has not been built yet\n"); |
---|
979 | } |
---|
980 | else { |
---|
981 | text.append("\tCFS Subset Evaluator\n"); |
---|
982 | |
---|
983 | if (m_missingSeparate) { |
---|
984 | text.append("\tTreating missing values as a separate value\n"); |
---|
985 | } |
---|
986 | |
---|
987 | if (m_locallyPredictive) { |
---|
988 | text.append("\tIncluding locally predictive attributes\n"); |
---|
989 | } |
---|
990 | } |
---|
991 | |
---|
992 | return text.toString(); |
---|
993 | } |
---|
994 | |
---|
995 | |
---|
996 | private void addLocallyPredictive (BitSet best_group) { |
---|
997 | int i, j; |
---|
998 | boolean done = false; |
---|
999 | boolean ok = true; |
---|
1000 | double temp_best = -1.0; |
---|
1001 | float corr; |
---|
1002 | j = 0; |
---|
1003 | BitSet temp_group = (BitSet)best_group.clone(); |
---|
1004 | int larger, smaller; |
---|
1005 | |
---|
1006 | while (!done) { |
---|
1007 | temp_best = -1.0; |
---|
1008 | |
---|
1009 | // find best not already in group |
---|
1010 | for (i = 0; i < m_numAttribs; i++) { |
---|
1011 | if (i > m_classIndex) { |
---|
1012 | larger = i; smaller = m_classIndex; |
---|
1013 | } else { |
---|
1014 | smaller = i; larger = m_classIndex; |
---|
1015 | } |
---|
1016 | /* int larger = (i > m_classIndex ? i : m_classIndex); |
---|
1017 | int smaller = (i > m_classIndex ? m_classIndex : i); */ |
---|
1018 | if ((!temp_group.get(i)) && (i != m_classIndex)) { |
---|
1019 | if (m_corr_matrix[larger][smaller] == -999) { |
---|
1020 | corr = correlate(i, m_classIndex); |
---|
1021 | m_corr_matrix[larger][smaller] = corr; |
---|
1022 | } |
---|
1023 | |
---|
1024 | if (m_corr_matrix[larger][smaller] > temp_best) { |
---|
1025 | temp_best = m_corr_matrix[larger][smaller]; |
---|
1026 | j = i; |
---|
1027 | } |
---|
1028 | } |
---|
1029 | } |
---|
1030 | |
---|
1031 | if (temp_best == -1.0) { |
---|
1032 | done = true; |
---|
1033 | } |
---|
1034 | else { |
---|
1035 | ok = true; |
---|
1036 | temp_group.set(j); |
---|
1037 | |
---|
1038 | // check the best against correlations with others already |
---|
1039 | // in group |
---|
1040 | for (i = 0; i < m_numAttribs; i++) { |
---|
1041 | if (i > j) { |
---|
1042 | larger = i; smaller = j; |
---|
1043 | } else { |
---|
1044 | larger = j; smaller = i; |
---|
1045 | } |
---|
1046 | /* int larger = (i > j ? i : j); |
---|
1047 | int smaller = (i > j ? j : i); */ |
---|
1048 | if (best_group.get(i)) { |
---|
1049 | if (m_corr_matrix[larger][smaller] == -999) { |
---|
1050 | corr = correlate(i, j); |
---|
1051 | m_corr_matrix[larger][smaller] = corr; |
---|
1052 | } |
---|
1053 | |
---|
1054 | if (m_corr_matrix[larger][smaller] > temp_best - m_c_Threshold) { |
---|
1055 | ok = false; |
---|
1056 | break; |
---|
1057 | } |
---|
1058 | } |
---|
1059 | } |
---|
1060 | |
---|
1061 | // if ok then add to best_group |
---|
1062 | if (ok) { |
---|
1063 | best_group.set(j); |
---|
1064 | } |
---|
1065 | } |
---|
1066 | } |
---|
1067 | } |
---|
1068 | |
---|
1069 | |
---|
1070 | /** |
---|
1071 | * Calls locallyPredictive in order to include locally predictive |
---|
1072 | * attributes (if requested). |
---|
1073 | * |
---|
1074 | * @param attributeSet the set of attributes found by the search |
---|
1075 | * @return a possibly ranked list of postprocessed attributes |
---|
1076 | * @throws Exception if postprocessing fails for some reason |
---|
1077 | */ |
---|
1078 | public int[] postProcess (int[] attributeSet) |
---|
1079 | throws Exception { |
---|
1080 | int j = 0; |
---|
1081 | |
---|
1082 | if (!m_locallyPredictive) { |
---|
1083 | // m_trainInstances = new Instances(m_trainInstances,0); |
---|
1084 | return attributeSet; |
---|
1085 | } |
---|
1086 | |
---|
1087 | BitSet bestGroup = new BitSet(m_numAttribs); |
---|
1088 | |
---|
1089 | for (int i = 0; i < attributeSet.length; i++) { |
---|
1090 | bestGroup.set(attributeSet[i]); |
---|
1091 | } |
---|
1092 | |
---|
1093 | addLocallyPredictive(bestGroup); |
---|
1094 | |
---|
1095 | // count how many are set |
---|
1096 | for (int i = 0; i < m_numAttribs; i++) { |
---|
1097 | if (bestGroup.get(i)) { |
---|
1098 | j++; |
---|
1099 | } |
---|
1100 | } |
---|
1101 | |
---|
1102 | int[] newSet = new int[j]; |
---|
1103 | j = 0; |
---|
1104 | |
---|
1105 | for (int i = 0; i < m_numAttribs; i++) { |
---|
1106 | if (bestGroup.get(i)) { |
---|
1107 | newSet[j++] = i; |
---|
1108 | } |
---|
1109 | } |
---|
1110 | |
---|
1111 | // m_trainInstances = new Instances(m_trainInstances,0); |
---|
1112 | return newSet; |
---|
1113 | } |
---|
1114 | |
---|
1115 | |
---|
1116 | protected void resetOptions () { |
---|
1117 | m_trainInstances = null; |
---|
1118 | m_missingSeparate = false; |
---|
1119 | m_locallyPredictive = true; |
---|
1120 | m_c_Threshold = 0.0; |
---|
1121 | } |
---|
1122 | |
---|
1123 | /** |
---|
1124 | * Returns the revision string. |
---|
1125 | * |
---|
1126 | * @return the revision |
---|
1127 | */ |
---|
1128 | public String getRevision() { |
---|
1129 | return RevisionUtils.extract("$Revision: 6132 $"); |
---|
1130 | } |
---|
1131 | |
---|
1132 | /** |
---|
1133 | * Main method for testing this class. |
---|
1134 | * |
---|
1135 | * @param args the options |
---|
1136 | */ |
---|
1137 | public static void main (String[] args) { |
---|
1138 | runEvaluator(new CfsSubsetEval(), args); |
---|
1139 | } |
---|
1140 | } |
---|